Ejemplo n.º 1
0
static int  rd_numW(char* s, double *p)
{ 
  int n; 

  if(rd_num(s,p)) return 1;

  for(n=0;n<nModelParticles;n++) if(strcmp(s, ModelPrtcls[n].width)==0) 
  {  *p=pWidth(ModelPrtcls[n].name,NULL,NULL);
     return 1;
  }      

  return 0;
}
Ejemplo n.º 2
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

 delFiles=0; /* switch to save/delete RGE input/output */
 ForceUG=0;  /* to Force Unitary Gauge assign 1 */
#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  sgn, gMHu,  gMHd,
         gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3;
         
  printf("\n========= mSUGRA scenario =====\n");
  PRINTRGE(RGE);

  if(argc<5) 
  { 
    printf(" This program needs 4 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 1 173.1 \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1;
     if(argc>6){ sscanf(argv[6],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>7){ sscanf(argv[7],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;  gMHu=m0,  gMHd=m0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRAMODEL(RGE) (tb,  
    gMG1, gMG2, gMG3,  gAl,  gAt, gAb,  sgn, gMHu, gMHd,
    gMl2, gMl3, gMr2, gMr3, gMq2,  gMq3, gMu2, gMu3, gMd2, gMd3); 
}
#elif defined(AMSB)
{
  double m0,m32,sgn,tb;

  printf("\n========= AMSB scenario =====\n");
  PRINTRGE(RGE);
  if(argc<4) 
  { 
    printf(" This program needs 3 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   m3/2    gravitino mass\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
   printf("Example: ./main 450  60000 10\n");                                                                          
   exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&m32);
     sscanf(argv[3],"%lf",&tb);
     if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1;
     if(argc>5){ sscanf(argv[5],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>6){ sscanf(argv[6],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err= AMSBMODEL(RGE)(m0,m32,tb,sgn);
 
}
#elif defined(EWSB)
{ 
   printf("\n========= EWSB scale input =========\n");
   PRINTRGE(RGE);

   if(argc <2) 
   {  printf("The program needs one argument:the name of file with MSSM parameters.\n"
            "Example: ./main mssm1.par \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readVarMSSM(argv[1]);
          
   if(err==-1)     { printf("Can not open the file\n"); exit(2);}
   else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}

   err=EWSBMODEL(RGE)();
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main suspect2_lha.out \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
   err=lesHinput(argv[1]);
   if(err) exit(2);
}
#endif
  
  { int nw;
    printf("Warnings from spectrum calculator:\n");
    nw=slhaWarnings(stdout);
    if(nw==0) printf(" .....none\n");
  }  
  if(err) exit(1);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2  mass=%.2E\n",
  cdmName,       spin2, Mcdm); 
    
  
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                              else o1Contents(stdout);

                
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ printf("\n\n==== Physical Constraints: =====\n"); 
  printf("deltartho=%.2E\n",deltarho());
  printf("gmuon=%.2E\n", gmuon());
  printf("bsgnlo=%.2E\n", bsgnlo());
  printf("bsmumu=%.2E\n", bsmumu());
  printf("btaunu=%.2E\n", btaunu());
  if(masslimits()==0) printf("MassLimits OK\n");
}
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf;   
  printf("\n==== Calculation of relic density =====\n");  
  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
}
#endif


#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
  double  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double SpNe[NZ],SpNm[NZ],SpNl[NZ];  
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
 
/* default DarkSUSY parameters */

/*
    K_dif=0.036;
    L_dif=4;  
    Delta_dif=0.6; 
    Vc_dif=10;
    Rdisk=30;
    SMmev=320;
*/                        
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum( 1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
    
  printf("sigmav=%.2E[cm^3/s]\n",sigmaV); 

  if(SpA)
  { 
     double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ 
                                                   /* dfi corresponds to solid angle 1.E-3sr */                                             
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi);
     gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
     if(loopGamma(&vcs_gz,&vcs_gg)==0)
     {
         printf("Gamma  ray lines:\n");
         printf("E=%.2E[GeV]  vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz,
                               gammaFlux(fi,dfi,vcs_gz));  
         printf("E=%.2E[GeV]  vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 
                             2*gammaFlux(fi,dfi,vcs_gg));
     }
  }

  if(SpE)
  { 

    posiFluxTab(Emin, sigmaV, SpE, FluxE);
    if(SMmev>0)  solarModulation(SMmev,0.0005,FluxE,FluxE);    
#ifdef SHOWPLOTS     
    displaySpectrum(SpE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest); 
  }
  
  if(SpP)
  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP); 
    
    if(SMmev>0)  solarModulation(SMmev,1,FluxP,FluxP);     
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);     
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

  calcScalarFF(0.553,18.9,70.,35.);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);



/* Option to change parameters of DM velocity  distribution  */   
   SetfMaxwell(220.,600.);
/* 
    dN  ~  exp(-v^2/arg1^2)*Theta(v-arg2)  d^3v     
    Earth velocity with respect to Galaxy defined by 'Vearth' parameter.
    All parameters are  in [km/s] units.       
*/
}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   
#ifdef TEST_Direct_Detection
printf("         TREE LEVEL\n");

    MSSMDDtest(0, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

printf("         BOX DIAGRAMS\n");  

    MSSMDDtest(1, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    
#endif

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,S00Na23,S01Na23,S11Na23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,S00I127,S01I127,S11I127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef DECAYS
{  
  txtList L;
   int dim;
   double width,br;
   char * pname;

   pname = "h";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);

   pname = "l";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    printf("Br(e,Ne,nl)= %E\n",findBr(L,"e,Ne,nl"));

   pname = "~o2";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    
   pname = "~g";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    
    
}
#endif

#ifdef CROSS_SECTIONS
{
  double Pcm=500, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=500.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x","eE_2x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
}

#endif
   
  killPlots();

  return 0;
}
Ejemplo n.º 3
0
void doFrame()
{
    if(Input::IsKeyDown(SDLK_LCTRL) && Input::IsPressed(SDLK_q))
    {
        if(connected)
        {
            MAKE_MSG(quit_msg,msg,QUIT_MSG);
            nc.send((unsigned char *)&msg,sizeof(quit_msg),SEND_GUARANTEED);
        }
        else
            done=1;
    }
    if ((Input::IsKeyDown(SDLK_LALT) || Input::IsKeyDown(SDLK_RALT)) && Input::IsPressed(SDLK_RETURN))
    {
        fullscreen = !fullscreen;
        Renderer::SetFullscreen(fullscreen);
        // The next block of code is stupid nonsense crap because it is already setup.
        // There is no reason to reload EVERYTHING just because we are going to fullscreen.
        /*initializeSystem();
        Renderer::Clear();
        Renderer::LoadIdentity();
        //load images and sounds
        char pnum[32];
        int i;
        soundMax=-1;
        bodyMax=-1;
        hairMax=-1;
        clothesMax=-1;
        monsterMax=-1;
        for(i=0;i<255;i++)
        {
        	if(soundMax==-1)
        	{
        		sprintf(pnum,"data/sounds/%d.wav",i);
        		if(!sounds.Load(i,pnum))
        			soundMax=i;
        	}
        	if(bodyMax==-1)
        	{
        		sprintf(pnum,"data/body/%d.png",i);
        		if(!pBody[i].Load(pnum))
        			bodyMax=i;
        	}
        	if(hairMax==-1)
        	{
        		sprintf(pnum,"data/hair/%d.png",i);
        		if(!pHair[i].Load(pnum))
        			hairMax=i;
        	}
        	if(clothesMax==-1)
        	{
        		sprintf(pnum,"data/clothes/%d.png",i);
        		if(!pClothes[i].Load(pnum))
        			clothesMax=i;
        	}
        	if(monsterMax==-1 && i>0)
        	{
        		sprintf(pnum,"data/monsters/%d.png",i);
        		if(!pMonster[i].Load(pnum))
        			monsterMax=i;
        	}
        }
        tiledata.Load("data/misc/tiledata.png");
        effdata.Load("data/misc/effects.png");
        itemdata.Load("data/misc/items.png");
        loading.Load("data/misc/loading.png");
        skin.Load("data/misc/skin0.png");

        //load fonts
        font.Load("data/misc/font.png");
        TEXTDRAWER.Initialize(font.img);
        TEXTDRAWER.setColor(0,0,0,1);
        //create effects,terminal,dialog boxes
        eff.create(MAX_EFFECTS);
        bar.create(MAX_HPBAR);
        term.create(255,11);

        //	setupDialogs();
        loadEffectsMap();
        updateFPS();*/

        //render images
        doGameGraphics();
    }
    if(Input::IsPressed(SDLK_F5))//change skins
    {
        guiskin++;
        char name[256];
        sprintf(name,"data/misc/skin%d.png",guiskin);
        FILE *f=fopen(name,"r");
        if(f==NULL)
        {
            guiskin=0;
            sprintf(name,"data/misc/skin%d.png",guiskin);
            skin.Load(name);
        }
        else
        {
            fclose(f);
            f=0;
            skin.Load(name);
        }
    }
    if(Input::IsPressed(SDLK_ESCAPE))
    {
        target=-1;
        mtarget_id=-1;
        MAKE_MSG(trgt_msg,tr,TRGT_MSG);
        tr.index=mtarget_id;
        nc.send((unsigned char *)&tr,sizeof(trgt_msg),SEND_GUARANTEED);
        ptarget_id=-1;
        chatting=0;
        Input::ResetString();
    }
    if(connected && dialog==-1 && Input::IsPressed(SDLK_RETURN) && !Input::IsKeyDown(SDLK_LALT) && !Input::IsKeyDown(SDLK_RALT))
    {
        if(chatting)
        {
            if(strlen(Input::GetString())==0)
                chatting=0;
        }
        else
            chatting=1;
    }
    if(connected && me > -1 && MYGUY.access > 5)
    {
        if(Input::IsPressed(SDLK_F1))
        {
            target=-1;
            if(mode==1) mode=0;
            else mode=1;
        }
        if(Input::IsPressed(SDLK_F11)) //debug
        {

            if(debug==1) debug=0;
            else debug=1;
        }
    }
    if(me > -1 && !chatting && dialog==-1 && MYGUY.hp>0 && (strcmp(world[MYGUY.p.map].name,"_EMPTY_")!=0 || mode==1))
        doGameInput();
    else if((ptarget_id!=-1&&MYGUY.front()==player[ptarget_id].p)&& attackTimer.tick(50))
        attack();
    if(dialog==-1 && chatting && Input::StringInput(240))
    {
        if(parse(Input::GetString()))
        {
            if(me > -1)
            {
                //sprintf(temp,"%s:%s",MYGUY.name, Input::GetString());
                //term.newLine("Here is a very long sentence i am using to test with will you please split it up correctly at the spaces so it will wrap around, thank you very much sir...");
                //term.newLine(Input::GetString());
                //balloon.add(Input::GetString(),me);
                MAKE_MSG(chat_msg,reply,CHAT_MSG);
                reply.size=strlen(Input::GetString())+1;//+1 for null
                char buf[256];
                char *InputString = Input::GetString();
                memcpy(&buf,(void *)&reply,sizeof(chat_msg));//store header
                memcpy(buf+sizeof(chat_msg),(void *)&InputString,reply.size);//store string
                nc.send((unsigned char *)&buf,sizeof(chat_msg)+reply.size,SEND_GUARANTEED);
                chatting=0;
            }
        }
        else if(me > -1)
        {
            chatting=0;
        }
        Input::ResetString();
    }
    updateFPS();
    //render images
    Renderer::Clear();
    Renderer::LoadIdentity();
    doGameGraphics();

    /*TEXTDRAWER.setColor(1,1,1,1);//draw bottleneck stats
    for(int i=0;i<4;i++)
    	TEXTDRAWER.PrintText(10,50+i*20,"%d) %d",i,bottle.times[i]);
    TEXTDRAWER.defaultColor();*/

    if(mode==1)
    {
        doMapDialog();
        int r=mapDialog.modified();
        if(r>-1)
            mapEvent(r);
    }
    //if(keyDown[SDLK_HOME])
    //	term.renderAll(0,200);
    //else
    term.render(0,480,246-chat_scroll,9);
    if(dialog!=-1)
    {
        vDialog[dialog].draw();
        if(dialog==4)//draw sprites
        {
            if(animTimer.tick(400))
                animSel=abs(animSel-1);
            TEXTDRAWER.PrintTextf(vDialog[4].x+160,vDialog[4].y+162,"%d",bodySel);
            TEXTDRAWER.PrintTextf(vDialog[4].x+160,vDialog[4].y+162+35,"%d",clothesSel);
            TEXTDRAWER.PrintTextf(vDialog[4].x+160,vDialog[4].y+162+70,"%d",hairSel);
            drawChar(vDialog[4].x+10,vDialog[4].y+10,-1,bodySel,clothesSel,hairSel,0,animSel,4);
            drawChar(vDialog[4].x+90,vDialog[4].y+10,-1,bodySel,clothesSel,hairSel,1,animSel,4);
            drawChar(vDialog[4].x+170,vDialog[4].y+10,-1,bodySel,clothesSel,hairSel,2,animSel,4);
            drawChar(vDialog[4].x+250,vDialog[4].y+10,-1,bodySel,clothesSel,hairSel,3,animSel,4);
        }
        else if(dialog==6)
        {
            if(animTimer.tick(400))
                animSel=abs(animSel-1);
            for(int i=0; i<4; i++)if(slot[i].lvl>0)
                {
                    TEXTDRAWER.PrintTextf(vDialog[6].x+16+128*i,vDialog[6].y+162,"%s",slot[i].name);
                    TEXTDRAWER.PrintTextf(vDialog[6].x+16+128*i,vDialog[6].y+162+16,"Level %d",slot[i].lvl);
                    drawChar(vDialog[6].x+10+128*i,vDialog[6].y+10,slot[i].sprite,slot[i].body,slot[i].clothes,slot[i].hair,0,animSel,4);
                    TEXTDRAWER.PrintTextf(vDialog[6].x+28+128*i,vDialog[6].y+196,"Use");
                }
                else TEXTDRAWER.PrintTextf(vDialog[6].x+28+128*i,vDialog[6].y+196,"New");
        }
        int r=vDialog[dialog].modified();
        if(r!=-1)
            dialogEvent(r);
    }
    else
    {
        if(me>-1 && strcmp(world[MYGUY.p.map].name,"_EMPTY_")==0)
        {
            loading.blitFast(150,150,float(Input::MouseX())/640.0f,float(Input::MouseY())/480.0f);
        }
        if(chatting)
        {
            char temp[256];
            int x=0,len;
            sprintf(temp,"Send:%s_",Input::GetString());
            len=pWidth(temp);
            if(len>636)
                x=636-len;
            TEXTDRAWER.setColor(1,1,1,1);
            TEXTDRAWER.PrintText(x,585,temp);
            TEXTDRAWER.defaultColor();
        }
    }
    //cursor
    skin.blit(Input::MouseX(),Input::MouseY(),64,0,32,32,1,1);
    Renderer::Swap();
}
Ejemplo n.º 4
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

  ForceUG=0;  /* to Force Unitary Gauge assign 1 */
  
  if(argc==1)
  { 
      printf(" Correct usage:  ./main <file with parameters> \n");
      exit(1);
  }
                               

/*  err=readVar(argv[1]);*/
   err=readVarRHNM(argv[1]);
  if(err==-1)     {printf("Can not open the file\n"); exit(1);}
  else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(1);}


  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}
  qNumbers(cdmName, &spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2 \n",cdmName,spin2); 
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~n4")) printf(" ~n4 is not CDM\n"); 
                               
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF PARTICLES OF ODD SECTOR: ===\n");
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf;   
  printf("\n==== Calculation of relic density =====\n");  



  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
}
#endif


#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,/* Energy cut  in GeV   */  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum(1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
  printf("sigmav=%.2E[cm^3/s]\n",sigmaV);  


  if(SpA)
  { 
     double fi=0.1,dfi=0.05; /* angle of sight and 1/2 of cone angle in [rad] */ 

     gammaFluxTab(fi,dfi, sigmaV, SpA,  FluxA);     
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.2f[rad]\n",fi,2*dfi);
#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux[cm^2 s GeV]^{1} at f=%.2f[rad], cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE, FluxE);
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest);           
  }
  
  if(SpP)
  { 
    pbarFluxTab(Emin, sigmaV, SpP, FluxP  ); 
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);             
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

  calcScalarFF(0.553,18.9,70.,35.);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);



/* Option to change parameters of DM velocity  distribution  */   
   SetfMaxwell(220.,600.);
/* 
    dN  ~  exp(-v^2/arg1^2)*Theta(v-arg2)  d^3v     
    Earth velocity with respect to Galaxy defined by 'Vearth' parameter.
    All parameters are  in [km/s] units.       
*/
}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM[antiCDM]-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",pA0[0], pA0[1],  pA5[0], pA5[1] );
    printf("neutron: SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",nA0[0], nA0[1],  nA5[0], nA5[1] ); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM[antiCDM]-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*pA0[0]*pA0[0],SCcoeff*pA0[1]*pA0[1],3*SCcoeff*pA5[0]*pA5[0],3*SCcoeff*pA5[1]*pA5[1]);
    printf(" neutron SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*nA0[0]*nA0[0],SCcoeff*nA0[1]*nA0[1],3*SCcoeff*nA5[0]*nA5[0],3*SCcoeff*nA5[1]*nA5[1]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,S00Na23,S01Na23,S11Na23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,S00I127,S01I127,S11I127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef DECAYS
{  
  txtList L;
   int dim;
   double width,br;
   char * pname;
 
   printf("\n Calculation of particle decays\n");
   pname = "H";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);

   pname = "l";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    printf("Br(e,Ne,nl)= %E\n",findBr(L,"e,Ne,nl"));

   pname = "Zp";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
}
#endif

#ifdef CROSS_SECTIONS
{
  double Pcm=500, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=500.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x","eE_2x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
}

#endif
  killPlots();
  return 0;
}
Ejemplo n.º 5
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

  ForceUG=0;  /* to Force Unitary Gauge assign 1 */
/*
gauss345_arg(ff,Y,0,1,1E-5,&err);
printf("err=%d\n",err);
exit(0);
*/ 
  VZdecay=1; VWdecay=1;

  if(argc==1)
  {
      printf(" Correct usage:  ./main  <file with parameters> \n");
      printf("Example: ./main data1.par\n");
      exit(1);
  }

  err=readVar(argv[1]);

  if(err==-1)     {printf("Can not open the file\n"); exit(1);}
  else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(1);}



  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

  if(CDM1)
  {
     qNumbers(CDM1, &spin2, &charge3, &cdim);
     printf("\nDark matter candidate is '%s' with spin=%d/2 mass=%.2E\n",CDM1,  spin2,Mcdm1);
     if(charge3) printf("Dark Matter has electric charge %d/3\n",charge3);
     if(cdim!=1) printf("Dark Matter is a color particle\n");
  }
  if(CDM2)
  {
     qNumbers(CDM2, &spin2, &charge3, &cdim);
     printf("\nDark matter candidate is '%s' with spin=%d/2 mass=%.2E\n",CDM2,spin2,Mcdm2);
     if(charge3) printf("Dark Matter has electric charge %d/3\n",charge3);
     if(cdim!=1) printf("Dark Matter is a color particle\n");
  }


#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND ODD PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ double csLim;
  if(Zinvisible()) printf("Excluded by Z->invizible\n");
  if(LspNlsp_LEP(&csLim)) printf("LEP excluded by e+,e- -> DM q q-\\bar  Cross Section= %.2E pb\n",csLim);
}
#endif

#ifdef MONOJET
{ double CL=monoJet();
  printf(" Monojet signal exclusion CL is %.3e\n", CL);
}
#endif

#if defined(HIGGSBOUNDS) || defined(HIGGSSIGNALS)
{  int NH0,NHch;  // number of neutral and charged Higgs particles.
   double HB_result,HB_obsratio,HS_observ,HS_chi2, HS_pval;
   char HB_chan[100]={""}, HB_version[50], HS_version[50];
   NH0=hbBlocksMO("HB.in",&NHch);
   system("echo 'BLOCK DMASS\n 25  2  '>> HB.in");
#include "../include/hBandS.inc"
#ifdef HIGGSBOUNDS
   printf("HB(%s): result=%.0f  obsratio=%.2E  channel= %s \n", HB_version,HB_result,HB_obsratio,HB_chan);
#endif
#ifdef HIGGSSIGNALS
   printf("HS(%s): Nobservables=%.0f chi^2 = %.2E pval= %.2E\n",HS_version,HS_observ,HS_chi2, HS_pval);
#endif
}
#endif

#ifdef LILITH
{  double m2logL, m2logL_reference=0,pvalue;
   int exp_ndf,n_par=0,ndf;
   char call_lilith[100], Lilith_version[20];
   if(LilithMO("Lilith_in.xml"))
   {
#include "../include/Lilith.inc"
      if(ndf)
      {
        printf("LILITH(DB%s):  -2*log(L): %.2f; -2*log(L_reference): %.2f; ndf: %d; p-value: %.2E \n",
        Lilith_version,m2logL,m2logL_reference,ndf,pvalue);
      }
   } else printf("LILITH: there is no Higgs candidate\n");
}
#endif


#ifdef SMODELS
{  int result=0;
   double Rvalue=0;
   char analysis[30]={},topology[30]={};
   int LHCrun=LHC8|LHC13;  //  LHC8  - 8TeV; LHC13  - 13TeV; 
#include "../include/SMODELS.inc"
}
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-4, cut=0.01;
  double Omega;  
  int i,err; 
  printf("\n==== Calculation of relic density =====\n");   

  if(CDM1 && CDM2) 
  {
  
    Omega= darkOmega2(fast,Beps);
    printf("Omega_1h^2=%.2E\n", Omega*(1-fracCDM2));
    printf("Omega_2h^2=%.2E\n", Omega*fracCDM2);
  } else
  {  double Xf;
     Omega=darkOmega(&Xf,fast,Beps,&err);
     printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
     if(Omega>0)printChannels(Xf,cut,Beps,1,stdout);
  }
}

#endif



#ifdef FREEZEIN
{
  double TR=1E10;
  double omegaFi;  
  toFeebleList("~s0");
  VWdecay=0; VZdecay=0;
  
  omegaFi=darkOmegaFi(TR,&err);
  printf("omega freeze-in=%.3E\n", omegaFi);
  printChannelsFi(0,0,stdout);
}
#endif
 
#ifdef INDIRECT_DETECTION
{
  int err,i;
  double Emin=1,/* Energy cut  in GeV   */  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;

printf("\n==== Indirect detection =======\n");

  sigmaV=calcSpectrum(1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.

       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections
    */



  {
     double fi=0.1,dfi=0.05; /* angle of sight and 1/2 of cone angle in [rad] */

     gammaFluxTab(fi,dfi, sigmaV, SpA,  FluxA);
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.2f[rad]\n",fi,2*dfi);
#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displayPlot(txt,"E[GeV]",Emin,Mcdm,0,1,"",0,SpectdNdE,FluxA);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);
  }

  {
    posiFluxTab(Emin, sigmaV, SpE,  FluxE);
#ifdef SHOWPLOTS
    displayPlot("positron flux [cm^2 s sr GeV]^{-1}","E[GeV]",Emin,Mcdm,0,1,"",0,SpectdNdE,FluxE);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest);
  }

  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP  );
#ifdef SHOWPLOTS
     displayPlot("antiproton flux [cm^2 s sr GeV]^{-1}","E[GeV]",Emin,Mcdm,0,1,"",0,SpectdNdE,FluxP);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);
  }
}
#endif

#ifdef RESET_FORMFACTORS
{
/*
   The user has approach to form factors  which specifies quark contents
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma";
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV])
   calculates and rewrites Scalar form factors
*/
  printf("\n======== RESET_FORMFACTORS ======\n");

  printf("protonFF (default) d %.2E, u %.2E, s %.2E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);
  printf("neutronFF(default) d %.2E, u %.2E, s %.2E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);
//                    To restore default form factors of  version 2  call
     calcScalarQuarkFF(0.553,18.9,55.,243.5);


  printf("protonFF (new)     d %.2E, u %.2E, s %.2E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);
  printf("neutronFF(new)     d %.2E, u %.2E, s %.2E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

//                    To restore default form factors  current version  call
//  calcScalarQuarkFF(0.56,20.2,34,42);


}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");

  if(CDM1)
  {
    nucleonAmplitudes(CDM1, pA0,pA5,nA0,nA5);
    printf("CDM[antiCDM]-nucleon micrOMEGAs amplitudes for %s \n",CDM1);
    printf("proton:  SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",pA0[0], pA0[1],  pA5[0], pA5[1] );
    printf("neutron: SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",nA0[0], nA0[1],  nA5[0], nA5[1] );

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM[antiCDM]-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*pA0[0]*pA0[0],SCcoeff*pA0[1]*pA0[1],3*SCcoeff*pA5[0]*pA5[0],3*SCcoeff*pA5[1]*pA5[1]);
    printf(" neutron SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*nA0[0]*nA0[0],SCcoeff*nA0[1]*nA0[1],3*SCcoeff*nA5[0]*nA5[0],3*SCcoeff*nA5[1]*nA5[1]);
  }
  if(CDM2)
  {
    nucleonAmplitudes(CDM2, pA0,pA5,nA0,nA5);
    printf("CDM[antiCDM]-nucleon micrOMEGAs amplitudes for %s \n",CDM2);
    printf("proton:  SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",pA0[0], pA0[1],  pA5[0], pA5[1] );
    printf("neutron: SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",nA0[0], nA0[1],  nA5[0], nA5[1] );

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM[antiCDM]-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*pA0[0]*pA0[0],SCcoeff*pA0[1]*pA0[1],3*SCcoeff*pA5[0]*pA5[0],3*SCcoeff*pA5[1]*pA5[1]);
    printf(" neutron SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*nA0[0]*nA0[0],SCcoeff*nA0[1]*nA0[1],3*SCcoeff*nA5[0]*nA5[0],3*SCcoeff*nA5[1]*nA5[1]);
  }
}
#endif

#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,NULL,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));

#ifdef SHOWPLOTS
    displayPlot("Distribution of recoil energy of 73Ge","E[KeV]",0,200,0,1,"dN/dE",0,dNdERecoil,dNdE);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,NULL,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
#ifdef SHOWPLOTS
    displayPlot("Distribution of recoil energy of 131Xe","E[KeV]",0,200,0,1,"dN/dE",0,dNdERecoil,dNdE);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,NULL,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
#ifdef SHOWPLOTS
    displayPlot("Distribution of recoil energy of 23Na","E[KeV]",0,200,0,1,"dN/dE",0,dNdERecoil,dNdE);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,NULL,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
#ifdef SHOWPLOTS
  displayPlot("Distribution of recoil energy of 127I","E[KeV]",0,200,0,1,"dN/dE",0,dNdERecoil,dNdE);
#endif

}
#endif

#ifdef NEUTRINO
if(!CDM1 || !CDM2)
{ double nu[NZ], nu_bar[NZ],mu[NZ];
  double Ntot;
  int forSun=1;
  double Emin=1;

 printf("\n===============Neutrino Telescope=======  for  ");
 if(forSun) printf("Sun\n"); else printf("Earth\n");

  err=neutrinoFlux(Maxwell,forSun, nu,nu_bar);
#ifdef SHOWPLOTS
  displayPlot("neutrino fluxes [1/Year/km^2/GeV]","E[GeV]",Emin,Mcdm,0, 2,"dnu/dE",0,SpectdNdE,nu,"dnu_bar/dE",0,SpectdNdE,nu_bar);
#endif
{
    printf(" E>%.1E GeV neutrino flux       %.2E [1/Year/km^2] \n",Emin,spectrInfo(Emin,nu,NULL));
    printf(" E>%.1E GeV anti-neutrino flux  %.2E [1/Year/km^2]\n",Emin,spectrInfo(Emin,nu_bar,NULL));
}

/* Upward events */

  muonUpward(nu,nu_bar, mu);
#ifdef SHOWPLOTS
  displayPlot("Upward muons[1/Year/km^2/GeV]","E",Emin,Mcdm/2, 0,1,"mu",0,SpectdNdE,mu);
#endif
    printf(" E>%.1E GeV Upward muon flux    %.2E [1/Year/km^2]\n",Emin,spectrInfo(Emin,mu,NULL));

/* Contained events */
  muonContained(nu,nu_bar,1., mu);
#ifdef SHOWPLOTS
  displayPlot("Contained  muons[1/Year/km^3/GeV]","E",Emin,Mcdm,0,1,"",0,SpectdNdE,mu);
#endif
  printf(" E>%.1E GeV Contained muon flux %.2E [1/Year/km^3]\n",Emin,spectrInfo(Emin/Mcdm,mu,NULL));
}
#endif


#ifdef DECAYS
{ char*  pname = pdg2name(25);
  txtList L;
  double width;
  if(pname)
  {
    width=pWidth(pname,&L);
    printf("\n%s :   total width=%E \n and Branchings:\n",pname,width);
    printTxtList(L,stdout);
  }

  pname = pdg2name(24);
  if(pname)
  {
    width=pWidth(pname,&L);
    printf("\n%s :   total width=%E \n and Branchings:\n",pname,width);
    printTxtList(L,stdout);
  }
}
#endif

#ifdef CROSS_SECTIONS
{
  char* next,next_;
  double nextM;

  next=nextOdd(1,&nextM);
  if(next && nextM<1000)
  {
     double cs, Pcm=6500, Qren, Qfact, pTmin=0;
     int nf=3;
     char*next_=antiParticle(next);
     Qren=Qfact=nextM;

     printf("\npp > nextOdd  at sqrt(s)=%.2E GeV\n",2*Pcm);

     Qren=Qfact;
     cs=hCollider(Pcm,1,nf,Qren, Qfact, next,next_,pTmin,1);
     printf("Production of 'next' odd particle: cs(pp-> %s,%s)=%.2E[pb]\n",next,next_, cs);
  }
}

#endif

#ifdef CLEAN
  system("rm -f HB.* HB.* hb.* hs.*  debug_channels.txt debug_predratio.txt  Key.dat");
  system("rm -f Lilith_*   particles.py*");
  system("rm -f   smodels.in  smodels.log  smodels.out  summary.*");
#endif



  killPlots();
  return 0;
}
Ejemplo n.º 6
0
static void show_spectrum(int X, int Y)
{ int i;
  char *menuP=malloc(2+22*(nModelParticles+2));
  int mode=1;  
  menuP[0]=22;
  menuP[1]=0;

  strcpy(menuP+1,              " All Particles -> SLHA");
//  sprintf(menuP++strlen(menuP)," Select.Particl-> SLHA");       
  for(i=0;i<nModelParticles;i++)
  { char *mass=ModelPrtcls[i].mass;
    char *name=ModelPrtcls[i].name;
    if(!strcmp(mass,"0")) sprintf(menuP+strlen(menuP)," %-6.6s      Zero     ",name);
    else sprintf(menuP+strlen(menuP)," %-6.6s  %12.4E ",name,pMass(name));
  }
  
  while(mode)
  {  menu1(X,Y,"",menuP,"n_qnumbers",NULL, &mode);
     if(mode==1) writeSLHA(); 
     else if(mode>1)  
     { FILE*f=fopen("width.tmp","w");
       int pos=mode-2;
       txtList LL=NULL;
       
       char *mass=ModelPrtcls[pos].mass;
        
       fprintf(f, "Patricle %s(%s),  PDG = %d,  Mass= ", 
       ModelPrtcls[pos].name, ModelPrtcls[pos].aname,
       ModelPrtcls[pos].NPDG);
       if(strcmp(mass,"0")==0)  fprintf(f, "Zero\n"); else
       { 
         double width;
         fprintf(f,"%.3E ", pMass(ModelPrtcls[pos].name));       
         width=pWidth(ModelPrtcls[pos].name,&LL); 
         fprintf(f," Width=%.2E\n",width);
       }
       fprintf(f,"Quantum numbers: ");
       { int spin=ModelPrtcls[pos].spin2;
         int q3=ModelPrtcls[pos].q3; 
         fprintf(f," spin=");
         if(spin&1)  fprintf(f,"%d/2, ",spin); else fprintf(f,"%d, ",spin/2);
         fprintf(f," charge(el.)="); 
         if(q3!=3*(q3/3)) fprintf(f,"%d/3, ",q3);else fprintf(f,"%d ",q3/3); 
         fprintf(f," color=%d\n",ModelPrtcls[pos].cdim);
       }
       if(LL) 
       { txtList ll=LL;
          fprintf(f," Branchings & Decay channels:\n");
          for(;ll;ll=ll->next)
          { char buff[100];
            double br;
            sscanf(ll->txt,"%lf %[^\n]",&br,buff);
            fprintf(f," %.2E     %s\n",br,buff);
          }   
       }  
  
       fclose(f);
       f=fopen("width.tmp","r");
       showtext(2,Y,78,  maxRow()-1,"Particle information",f); 
       fclose(f);                   
       unlink("width.tmp");       
     }
  }   
  free(menuP);
  return;
}
Ejemplo n.º 7
0
int LiLithF(char*fname)
{
  unsigned int i, npart=0;

  double tb, sb, cb, alpha, sa, ca, ta, samb, camb, dMb, MbHl, MbH, MbH3, MbSM;
  double CU, Cb, Ctau, CV, Cgamma, Cg;
  double Mcp=findValW("Mcp"), Mbp=findValW("Mbp"), Mtp=findValW("Mtp");
  double LGGSM, LAASM;
  double vev = 2*findValW("MW")*findValW("SW")/findValW("EE");
  FILE*f;
  

  tb=findValW("tB");
  sb=tb/sqrt(1+tb*tb);
  cb=1/sqrt(1+tb*tb);
  alpha=findValW("alpha");
  sa=sin(alpha);
  ca=cos(alpha);
  ta=sa/ca;
  samb=sa*cb-ca*sb;
  camb=ca*cb+sa*sb;
  dMb=findValW("dMb");
  MbSM=findValW("Mb");
  MbHl = MbSM/(1+dMb)*(1-dMb/ta/tb);
  MbH = MbSM/(1+dMb)*(1+dMb*ta/tb);  
  MbH3 = MbSM/(1+dMb)*(1-dMb/tb/tb);

  // define Higgs states possibly contributing to the signal
  char *parts[3]={"h","H","H3"};

  f=fopen(fname,"w");
  
  fprintf(f, "<?xml version=\"1.0\"?>\n");
  fprintf(f, "<lilithinput>\n");

  for(i=0; i<3; i++) {
    double mass = pMass(parts[i]);
    if(mass < 123. || mass > 128.) {
      continue;
    }
    ++npart;

    // compute invisible and undetected branching ratios
    double invBR = 0., undBR = 0.;
    double w;
    txtList L;
    w=pWidth((char*)parts[i], &L);

    if(Mcdm1 < 0.5*mass) {
      char invdecay[50];
      char cdmName[50];
//      sortOddParticles(cdmName);
      strcpy(invdecay, CDM1);
      strcat(invdecay, ",");
      strcat(invdecay, CDM1);
      invBR = findBr(L, invdecay);
    }
    undBR = 1 - invBR - findBr(L, "b B") - findBr(L, "c C") - findBr(L, "l L") -
            findBr(L, "W+ W-") - findBr(L, "A A") - findBr(L, "Z Z") -
            findBr(L, "G G") - findBr(L, "m M") - findBr(L, "A Z") -
            findBr(L, "u U") - findBr(L, "d D") - findBr(L, "s S");

    LGGSM=lGGhSM(mass, alphaQCD(mass)/M_PI, Mcp, Mbp, Mtp, vev);
    LAASM=lAAhSM(mass, alphaQCD(mass)/M_PI, Mcp, Mbp, Mtp, vev);

    if(strcmp(parts[i], "h") == 0) {
      CU = ca/sb;
      Cb = -(sa/cb)*(MbHl/MbSM);
      Ctau = -(sa/cb);
      CV = -samb;
      Cgamma = findValW("LAAh")/LAASM;
      Cg = findValW("LGGh")/LGGSM;
    } else if(strcmp(parts[i], "H") == 0) {
      CU = sa/sb;
      Cb = (ca/cb)*(MbH/MbSM);
      Ctau = ca/cb;
      CV = camb;
      Cgamma = findValW("LAAH")/LAASM;
      Cg = findValW("LGGH")/LGGSM;
    } else { // for H3 (i.e. A)
      CU = 1./tb;
      Cb = tb*(MbH3/MbSM);
      Ctau = tb;
      CV = 0.;
      Cgamma = 0.5*findValW("LAAH3")/LAASM;
      Cg = 0.5*findValW("LGGH3")/LGGSM;
    }


    fprintf(f, "  <reducedcouplings part=\"%s\">\n", parts[i]);
    fprintf(f, "    <mass>%f</mass>\n", mass);
    fprintf(f, "    <C to=\"uu\">%f</C>\n", CU);
    fprintf(f, "    <C to=\"bb\">%f</C>\n", Cb);
    fprintf(f, "    <C to=\"mumu\">%f</C>\n", Ctau);
    fprintf(f, "    <C to=\"tautau\">%f</C>\n", Ctau);
    fprintf(f, "    <C to=\"VV\">%f</C>\n", CV);
    fprintf(f, "    <C to=\"gammagamma\">%f</C>\n", Cgamma);
    fprintf(f, "    <C to=\"gg\">%f</C>\n", Cg);
//    fprintf(f, "    <C to=\"Zgamma\">%f</C>\n", 1.);
    fprintf(f, "    <precision>%s</precision>\n", "BEST-QCD");
    fprintf(f, "    <extraBR>\n");
    fprintf(f, "      <BR to=\"invisible\">%f</BR>\n", invBR);
    fprintf(f, "      <BR to=\"undetected\">%f</BR>\n", undBR);
    fprintf(f, "    </extraBR>\n");
    fprintf(f, "  </reducedcouplings>\n");
  }

  fprintf(f, "</lilithinput>\n");
  fclose(f);
  return npart;
}
Ejemplo n.º 8
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;
   
  

// sysTimeLim=1000; 
  ForceUG=0;   /* to Force Unitary Gauge assign 1 */
//  nPROCSS=0; /* to switch off multiprocessor calculations */
/*
   if you would like to work with superIso
    setenv("superIso","./superiso_v3.1",1);  
*/


#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  sgn, gMHu,  gMHd,
         gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3;
         
  printf("\n========= mSUGRA scenario =====\n");
  PRINTRGE(RGE);

  if(argc<5) 
  { 
    printf(" This program needs 4 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 1 173.1 \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1;
     if(argc>6){ sscanf(argv[6],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>7){ sscanf(argv[7],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;  gMHu=m0,  gMHd=m0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRAMODEL(RGE) (tb,  
    gMG1, gMG2, gMG3,  gAl,  gAt, gAb,  sgn, gMHu, gMHd,
    gMl2, gMl3, gMr2, gMr3, gMq2,  gMq3, gMu2, gMu3, gMd2, gMd3); 
}
#elif defined(SUGRANUH)
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3,mu,MA;
         
  printf("\n========= mSUGRA non-universal Higgs scenario =====\n");
  PRINTRGE(RGE);

  if(argc<7) 
  { 
    printf(" This program needs 6 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n" 
           "   mu      mu(EWSB)\n"
           "   MA      mass of pseudoscalar Higgs\n");     
    printf(" Auxiliary parameters are:\n"
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 680 760  \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     sscanf(argv[5],"%lf",&mu);
     sscanf(argv[6],"%lf",&MA); 
     if(argc>7){ sscanf(argv[7],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>8){ sscanf(argv[8],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>9){ sscanf(argv[9],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRANUHMODEL(RGE) (tb,gMG1,gMG2,gMG3,gAl,gAt,gAb,gMl2,gMl3,gMr2,gMr3,gMq2,gMq3,gMu2,gMu3,gMd2,gMd3,mu,MA); 
}
#elif defined(AMSB)
{
  double m0,m32,sgn,tb;

  printf("\n========= AMSB scenario =====\n");
  PRINTRGE(RGE);
  if(argc<4) 
  { 
    printf(" This program needs 3 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   m3/2    gravitino mass\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
   printf("Example: ./main 450  60000 10\n");                                                                          
   exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&m32);
     sscanf(argv[3],"%lf",&tb);
     if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1;
     if(argc>5){ sscanf(argv[5],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>6){ sscanf(argv[6],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err= AMSBMODEL(RGE)(m0,m32,tb,sgn);
 
}
#elif defined(EWSB)
{ 
   printf("\n========= EWSB scale input =========\n");
   PRINTRGE(RGE);

   if(argc <2) 
   {  printf("The program needs one argument:the name of file with MSSM parameters.\n"
            "Example: ./main mssm1.par \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readVarMSSM(argv[1]);
          
   if(err==-1)     { printf("Can not open the file\n"); exit(2);}
   else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}

   err=EWSBMODEL(RGE)();
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main suspect2_lha.out \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
   err=lesHinput(argv[1]);
   if(err) exit(2);
}
#endif
          
    if(err==-1)     { printf("Can not open the file\n"); exit(2);}
    else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}
  
  { int nw;
    printf("Warnings from spectrum calculator:\n");
    nw=slhaWarnings(stdout);
    if(nw==0) printf(" .....none\n");
  } 

  if(err) exit(1);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2  mass=%.2E\n",
  cdmName,       spin2, Mcdm); 
  
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                              else o1Contents(stdout);

                             
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ double SMbsg,dmunu;
  printf("\n\n==== Physical Constraints: =====\n"); 
  printf("deltartho=%.2E\n",deltarho());
  printf("gmuon=%.2E\n", gmuon());
  printf("bsgnlo=%.2E ", bsgnlo(&SMbsg)); printf("( SM %.2E )\n",SMbsg);

  printf("bsmumu=%.2E\n", bsmumu());
  printf("btaunu=%.2E\n", btaunu());

  printf("dtaunu=%.2E  ", dtaunu(&dmunu)); printf("dmunu=%.2E\n", dmunu);   
  printf("Rl23=%.3E\n", Rl23());
  
  if(masslimits()==0) printf("MassLimits OK\n");
}
#endif


#ifdef HIGGSBOUNDS
   if(access(HIGGSBOUNDS "/HiggsBounds",X_OK )) system( "cd " HIGGSBOUNDS "; ./configure; make ");
   slhaWrite("HB.in");
   HBblocks("HB.in");
   system(HIGGSBOUNDS "/HiggsBounds  LandH SLHA 3 1 HB.in HB.out > hb.stdout");
   slhaRead("HB.out",1+4);
    printf("HB result= %.0E  obsratio=%.2E\n",slhaValFormat("HiggsBoundsResults",0.,"1 2 %lf"), slhaValFormat("HiggsBoundsResults",0.,"1 3 %lf" )  );
   { char hbInfo[100];
    if(0==slhaSTRFormat("HiggsBoundsResults","1 5 ||%[^|]||",hbInfo)) printf("Channel: %s\n",hbInfo);
   }     
#endif

#ifdef HIGGSSIGNALS
#define DataSet " latestresults "
//#define Method  " peak " 
//#define  Method " mass "
#define  Method " both "
#define PDF  " 2 "  // Gaussian
//#define PDF " 1 "  // box 
//#define PDF " 3 "  // box+Gaussia
#define dMh " 2 "
   printf("HiggsSignals:\n");
   if(access(HIGGSSIGNALS "/HiggsSignals",X_OK )) system( "cd " HIGGSSIGNALS "; ./configure; make ");
     system("rm -f HS.in HS.out");
     slhaWrite("HS.in");
     HBblocks("HS.in");
     system("echo 'BLOCK DMASS\n 25 " dMh " '>> HS.in");
     system(HIGGSSIGNALS "/HiggsSignals" DataSet Method  PDF  " SLHA 3 1 HS.in > hs.stdout");
     system("grep -A 10000  HiggsSignalsResults HS.in > HS.out");
     slhaRead("HS.out",1+4);
     printf("  Number of observables %.0f\n",slhaVal("HiggsSignalsResults",0.,1,7));
     printf("  total chi^2= %.1E\n",slhaVal("HiggsSignalsResults",0.,1,12));
     printf("  HS p-value = %.1E\n", slhaVal("HiggsSignalsResults",0.,1,13));     
#undef dMh
#undef PDF
#undef Method
#undef DataSet

#endif

#ifdef LILITH
   if(LiLithF("Lilith_in.xml"))
   {  double  like; 
      int exp_ndf;
      system("python " LILITH "/run_lilith.py  Lilith_in.xml  -s -r  Lilith_out.slha");
      slhaRead("Lilith_out.slha", 1);
      like = slhaVal("LilithResults",0.,1,0);
      exp_ndf = slhaVal("LilithResults",0.,1,1);
      printf("LILITH:  -2*log(L): %f; exp ndf: %d \n", like,exp_ndf );
   } else printf("LILITH: there is no Higgs candidate\n");
     
#endif

#ifdef SMODELS
{  int res;

   smodels(4000.,5, 0.1, "smodels.in",0);
   system("make -C " SMODELS); 
   system(SMODELS "/runTools.py xseccomputer -p -N -O -f smodels.in");
   system(SMODELS "/runSModelS.py -f smodels.in -s smodels.res -particles ./  > smodels.out "); 
   slhaRead("smodels.res", 1);
   res=slhaVal("SModelS_Exclusion",0.,2,0,0); 
   switch(res)
   { case -1: printf("SMODELS: no channels for testing\n");break;
     case  0: printf("SMODELS: not excluded\n");break; 
     case  1:  printf("SMODELS: excluded\n");break;
   }  
}   
#endif 


#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf; 
  
// to exclude processes with virtual W/Z in DM   annihilation      
    VZdecay=0; VWdecay=0; cleanDecayTable(); 

// to include processes with virtual W/Z  also  in co-annihilation 
//   VZdecay=2; VWdecay=2; cleanDecayTable(); 
    
  printf("\n==== Calculation of relic density =====\n");  

  sortOddParticles(cdmName);
  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
//  printChannels(Xf,cut,Beps,1,stdout);
  
// direct access for annihilation channels 


/*
if(omegaCh){
  int i; 
  for(i=0; omegaCh[i].weight>0  ;i++)
  printf(" %.2E %s %s -> %s %s\n", omegaCh[i].weight, omegaCh[i].prtcl[0],
  omegaCh[i].prtcl[1],omegaCh[i].prtcl[2],omegaCh[i].prtcl[3]); 
}  
*/
// to restore default switches  
    VZdecay=1; VWdecay=1; cleanDecayTable();
}
#endif

 VZdecay=0; VWdecay=0; cleanDecayTable();
 

#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
  double  sigmaV;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double SpNe[NZ],SpNm[NZ],SpNl[NZ];  
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
 
/* default DarkSUSY parameters */

/*
    K_dif=0.036;
    L_dif=4;  
    Delta_dif=0.6; 
    Vc_dif=10;
    Rdisk=30;
    SMmev=320;
*/                        
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum(1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
    

  if(SpA)
  { 
     double fi=0.1,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ 
                                                   /* dfi corresponds to solid angle 1.E-3sr */                                             
     printf("\nPhoton flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi);
     gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);

#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(txt,Emin,Mcdm,FluxA);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE, FluxE);
    if(SMmev>0)  solarModulation(SMmev,0.0005,FluxE,FluxE);
#ifdef SHOWPLOTS     
    displaySpectrum("positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,FluxE);
#endif
    printf("\nPositron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest); 
  }
  
  if(SpP)
  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP); 
    
    if(SMmev>0)  solarModulation(SMmev,1,FluxP,FluxP);     
#ifdef SHOWPLOTS    
     displaySpectrum("antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,FluxP);
#endif
    printf("\nAntiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);     
  }
}  
#endif

#ifdef LoopGAMMA
{    double vcs_gz,vcs_gg;
     double fi=0.,dfi=M_PI/180.; /* fi angle of sight[rad], dfi  1/2 of cone angle in [rad] */
                                 /* dfi corresponds to solid angle  pi*(1-cos(dfi)) [sr] */
                                                       
     if(loopGamma(&vcs_gz,&vcs_gg)==0)
     {
         printf("\nGamma  ray lines:\n");
         printf("E=%.2E[GeV]  vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz,
                               gammaFlux(fi,dfi,vcs_gz));  
         printf("E=%.2E[GeV]  vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 
                             2*gammaFlux(fi,dfi,vcs_gg));
     }
}     
#endif     



#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigmaS[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

 
  calcScalarQuarkFF(0.46,27.5,34.,42.);

//  To restore default form factors of  version 2  call 
//  calcScalarQuarkFF(0.553,18.9,55.,243.5);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   
#ifdef TEST_Direct_Detection
printf("         TREE LEVEL\n");

    MSSMDDtest(0, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf(" proton:  SI %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf(" neutron: SI %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    nucleonAmplitudes(CDM1,NULL, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

printf("         BOX DIAGRAMS\n");  

    MSSMDDtest(1, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf(" proton:  SI %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf(" neutron: SI %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    
#endif

    nucleonAmplitudes(CDM1,pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("\n==== CDM-nucleon cross sections[pb] ====\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef NEUTRINO
{ double nu[NZ], nu_bar[NZ],mu[NZ];
  int forSun=1;
  double Emin=1;

WIMPSIM=0;
 
  printf("\n===============Neutrino Telescope=======  for  "); 
  if(forSun) printf("Sun\n"); else printf("Earth\n");  

  err=neutrinoFlux(Maxwell,forSun, nu,nu_bar);
#ifdef SHOWPLOTS
  displaySpectra("neutrino fluxes [1/Year/km^2/GeV]",Emin,Mcdm,2,nu,"nu",nu_bar,"nu_bar");
#endif

printf(" E>%.1E GeV neutrino/anti-neutrin fluxes   %.2E/%.2E [1/Year/km^2]\n",Emin,
          spectrInfo(Emin,nu,NULL), spectrInfo(Emin,nu_bar,NULL));  
//  ICE CUBE
if(forSun)printf("IceCube22 exclusion confidence level = %.2E%%\n", 100*exLevIC22(nu,nu_bar,NULL));
  
/* Upward events */
  
  muonUpward(nu,nu_bar, mu);
#ifdef SHOWPLOTS  
  displaySpectrum("Upward muons[1/Year/km^2/GeV]",Emin,Mcdm/2,mu);
#endif

  printf(" E>%.1E GeV Upward muon flux    %.2E [1/Year/km^2]\n",Emin,spectrInfo(Emin,mu,NULL));
  
/* Contained events */
  muonContained(nu,nu_bar,1., mu);
#ifdef SHOWPLOTS  
  displaySpectrum("Contained  muons[1/Year/km^3/GeV]",Emin,Mcdm,mu); 
#endif
  printf(" E>%.1E GeV Contained muon flux %.2E [1/Year/km^3]\n",Emin,spectrInfo(Emin,mu,NULL)); 
}        
#endif 


#ifdef DECAYS
{  
  txtList L;
   double width,br;
   char * pname;
   printf("\n================= Decays ==============\n");

   pname = "h";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);

   pname = "~o2";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);            
}
#endif


#ifdef CROSS_SECTIONS
{
  double cs, Pcm=4000, Qren,Qfact=pMass("~o2"),pTmin=0;
  int nf=3;

  printf("pp collision at %.2E GeV\n",Pcm);  

  Qren=Qfact;
  cs=hCollider(Pcm,1,nf,Qren, Qfact, "~o1","~o2",pTmin,1);
  printf("cs(pp->~o1,~o2)=%.2E[pb]\n",cs);
  
}
#endif

#ifdef CLEAN
  killPlots();
  system("rm -f suspect2_lha.in suspect2_lha.out suspect2.out  Key.dat  nngg.out output.flha ");
  system("rm -f HB.in HB.out HS.in HS.out hb.stdout hs.stdout  debug_channels.txt debug_predratio.txt");
  system("rm -f Lilith_in.xml  Lilith_out.slha smodels.* summary.*  particles.py");
#endif 

return 0;
}
Ejemplo n.º 9
0
HRESULT ConnectVideoWindow(IGraphBuilder *pFg, HWND hwnd, RECT *pRect, BOOL is16By9)
{
    HRESULT       hr=NOERROR;
    IVideoWindow  *pVideoWindow=NULL;  
    IMediaEventEx *pMediaEvent=NULL;  


	if (pFg==NULL)
		return(E_POINTER);
    
    hr = pFg->QueryInterface(IID_IVideoWindow, (void **)&pVideoWindow);
    if (hr == NOERROR) 
        {
        if (pVideoWindow==NULL)
	        return(FALSE);
        hr=pVideoWindow->put_Owner((long)hwnd);    // We own the window now
        hr=pVideoWindow->put_WindowStyle(WS_CHILD);    // you are now a child
        
        if (pRect!=NULL)
            {
            int w=pWidth(pRect);
            int h=pHeight(pRect);
            int l=pRect->left;
            int t=pRect->top;
            if (is16By9)
                {
                int hh=(9*w)/16;
                int ww=(h*16)/9;
                if (hh<h)
                    t=t+(h-hh)/2;
                if (ww<w)
                    {
                    l=l+(w-ww)/2;
                    w=ww;
                    hh=(9*w)/16;
                    }
                h=hh;
                }
            else
                {
                int hh=(3*w)/4;
                int ww=(h*4)/3;
                if (hh<h)
                    t=t+(h-hh)/2;
                if (ww<w)
                    {
                    l=l+(w-ww)/2;
                    w=ww;
                    hh=(3*w)/4;
                    }
                h=hh;
                }
            hr=pVideoWindow->SetWindowPosition(l,t,w,h);
            }
        
        hr=pVideoWindow->put_Visible(OATRUE);
        hr=pVideoWindow->put_MessageDrain ((OAHWND)hwnd);     
        }
    else 
        return(E_FAIL);


    hr = pFg->QueryInterface(IID_IMediaEventEx, (void **)&pMediaEvent);  
    if (SUCCEEDED(hr)) 
       hr=pMediaEvent->SetNotifyWindow((LONG)ghWndApp, WM_GRAPHNOTIFY, 0);

    RELEASE(pVideoWindow);
    RELEASE(pMediaEvent);

	return(hr);
}
Ejemplo n.º 10
0
int LiLithF(char*fname)
{
  unsigned int i, npart=0;

  double CU, Cb, Ctau, CV, Cgamma, Cg;

  char *parts[4]={"h1","h2","h3","ha"};
  FILE*f; 
  f=fopen(fname,"w");
  
  fprintf(f, "<?xml version=\"1.0\"?>\n");
  fprintf(f, "<lilithinput>\n");

  for(i=0; i<4; i++) 
  {
    double mass = pMass(parts[i]);
    if(mass < 123. || mass > 128.) {
      continue;
    }
    ++npart;

    // compute invisible and undetected branching ratios
    double invBR = 0., undBR = 0.;
    double w;
    txtList L;
    w=pWidth((char*)parts[i], &L);

    if(Mcdm1 < 0.5*mass) {
      char invdecay[50];
      char cdmName[50];
//      sortOddParticles(cdmName);
      strcpy(invdecay, CDM1);
      strcat(invdecay, ",");
      strcat(invdecay, CDM1);
      invBR = findBr(L, invdecay);
    }
    undBR = 1 - invBR - findBr(L, "b B") - findBr(L, "c C") - findBr(L, "l L") -
            findBr(L, "W+ W-") - findBr(L, "A A") - findBr(L, "Z1 Z1") -
            findBr(L, "G G") - findBr(L, "m M") - findBr(L, "A Z1") -
            findBr(L, "u U") - findBr(L, "d D") - findBr(L, "s S");

    CU =   slhaVal("REDCOUP",0.,2,1+i,1);
    Cb =   slhaVal("REDCOUP",0.,2,1+i,3);
    Ctau = slhaVal("REDCOUP",0.,2,1+i,2);
    CV =   slhaVal("REDCOUP",0.,2,1+i,4);
    Cg=    slhaVal("REDCOUP",0.,2,1+i,5);
    Cgamma=slhaVal("REDCOUP",0.,2,1+i,6);

    fprintf(f, "  <reducedcouplings part=\"%s\">\n", parts[i]);
    fprintf(f, "    <mass>%f</mass>\n", mass);
    fprintf(f, "    <C to=\"uu\">%f</C>\n", CU);
    fprintf(f, "    <C to=\"bb\">%f</C>\n", Cb);
    fprintf(f, "    <C to=\"mumu\">%f</C>\n", Ctau);
    fprintf(f, "    <C to=\"tautau\">%f</C>\n", Ctau);
    fprintf(f, "    <C to=\"VV\">%f</C>\n", CV);
    fprintf(f, "    <C to=\"gammagamma\">%f</C>\n", Cgamma);
    fprintf(f, "    <C to=\"gg\">%f</C>\n", Cg);
//    fprintf(f, "    <C to=\"Zgamma\">%f</C>\n", 1.);
    fprintf(f, "    <precision>%s</precision>\n", "BEST-QCD");
    fprintf(f, "    <extraBR>\n");
    fprintf(f, "      <BR to=\"invisible\">%f</BR>\n", invBR);
    fprintf(f, "      <BR to=\"undetected\">%f</BR>\n", undBR);
    fprintf(f, "    </extraBR>\n");
    fprintf(f, "  </reducedcouplings>\n");
  }

  fprintf(f, "</lilithinput>\n");
  fclose(f);
  return npart;
}
Ejemplo n.º 11
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

   ForceUG=0;  /* to Force Unitary Gauge assign 1 */
// sysTimeLim=1000; 
/*
   if you would like to work with superIso
    setenv("superIso","./superiso_v3.1",1);  
*/

#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  sgn, gMHu,  gMHd,
         gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3;
         
  printf("\n========= mSUGRA scenario =====\n");
  PRINTRGE(RGE);

  if(argc<5) 
  { 
    printf(" This program needs 4 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 1 173.1 \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1;
     if(argc>6){ sscanf(argv[6],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>7){ sscanf(argv[7],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;  gMHu=m0,  gMHd=m0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRAMODEL(RGE) (tb,  
    gMG1, gMG2, gMG3,  gAl,  gAt, gAb,  sgn, gMHu, gMHd,
    gMl2, gMl3, gMr2, gMr3, gMq2,  gMq3, gMu2, gMu3, gMd2, gMd3); 
}
#elif defined(SUGRANUH)
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3,mu,MA;
         
  printf("\n========= mSUGRA non-universal Higgs scenario =====\n");
  PRINTRGE(RGE);

  if(argc<7) 
  { 
    printf(" This program needs 6 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n" 
           "   mu      mu(EWSB)\n"
           "   MA      mass of pseudoscalar Higgs\n");     
    printf(" Auxiliary parameters are:\n"
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 680 760  \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     sscanf(argv[5],"%lf",&mu);
     sscanf(argv[6],"%lf",&MA); 
     if(argc>7){ sscanf(argv[7],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>8){ sscanf(argv[8],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>9){ sscanf(argv[9],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRANUHMODEL(RGE) (tb,gMG1,gMG2,gMG3,gAl,gAt,gAb,gMl2,gMl3,gMr2,gMr3,gMq2,gMq3,gMu2,gMu3,gMd2,gMd3,mu,MA); 
}
#elif defined(AMSB)
{
  double m0,m32,sgn,tb;

  printf("\n========= AMSB scenario =====\n");
  PRINTRGE(RGE);
  if(argc<4) 
  { 
    printf(" This program needs 3 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   m3/2    gravitino mass\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
   printf("Example: ./main 450  60000 10\n");                                                                          
   exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&m32);
     sscanf(argv[3],"%lf",&tb);
     if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1;
     if(argc>5){ sscanf(argv[5],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>6){ sscanf(argv[6],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err= AMSBMODEL(RGE)(m0,m32,tb,sgn);
 
}
#elif defined(EWSB)
{ 
   printf("\n========= EWSB scale input =========\n");
   PRINTRGE(RGE);

   if(argc <2) 
   {  printf("The program needs one argument:the name of file with MSSM parameters.\n"
            "Example: ./main mssm1.par \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readVarMSSM(argv[1]);
          
   if(err==-1)     { printf("Can not open the file\n"); exit(2);}
   else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}

   err=EWSBMODEL(RGE)();
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main suspect2_lha.out \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
   err=lesHinput(argv[1]);
   if(err) exit(2);
}
#endif
          
    if(err==-1)     { printf("Can not open the file\n"); exit(2);}
    else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}
  
  { int nw;
    printf("Warnings from spectrum calculator:\n");
    nw=slhaWarnings(stdout);
    if(nw==0) printf(" .....none\n");
  } 

  if(err) exit(1);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2  mass=%.2E\n",
  cdmName,       spin2, Mcdm); 
  
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                              else o1Contents(stdout);
                             
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ double SMbsg,dmunu;
  printf("\n\n==== Physical Constraints: =====\n"); 
  printf("deltartho=%.2E\n",deltarho());
  printf("gmuon=%.2E\n", gmuon());
  printf("bsgnlo=%.2E ", bsgnlo(&SMbsg)); printf("( SM %.2E )\n",SMbsg);

  printf("bsmumu=%.2E\n", bsmumu());
  printf("btaunu=%.2E\n", btaunu());

  printf("dtaunu=%.2E  ", dtaunu(&dmunu)); printf("dmunu=%.2E\n", dmunu);   
  printf("Rl23=%.3E\n", Rl23());
  
  if(masslimits()==0) printf("MassLimits OK\n");
}
#endif

#ifdef SUPERISO
    slhaWrite("slha.in");
    system( SUPERISO "/slha.x slha.in >/dev/null");
    slhaRead("output.flha",1);
    unlink("slha.in");
    printf("superIsoBSG=%.3E\n", slhaValFormat("FOBS",0., " 5 1  %lf 0 2 3 22"));    
#endif 

#ifdef HIGGSBOUNDS
   if(access(HIGGSBOUNDS "/HiggsBounds",X_OK )) system( "cd " HIGGSBOUNDS "; ./configure; make ");
   slhaWrite("slha.in");
   system("cp slha.in HB.slha");
   HBblocks("HB.slha");
   System("%s/HiggsBounds  LandH SLHA 3 1 HB.slha",HIGGSBOUNDS);
   slhaRead("HB.slha",1+4);
    printf("HB result= %.0E  obsratio=%.2E\n",slhaValFormat("HiggsBoundsResults",0.,"1 2 %lf"), slhaValFormat("HiggsBoundsResults",0.,"1 3 %lf" )  );
   { char hbInfo[100];
    if(0==slhaSTRFormat("HiggsBoundsResults","1 5 ||%[^|]||",hbInfo)) printf("Channel: %s\n",hbInfo);
   }  
   slhaRead("slha.in",0);
   unlink("slha.in");
#endif


#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf; 
  
// to exclude processes with virtual W/Z in DM   annihilation      
   VZdecay=0; VWdecay=0; cleanDecayTable(); 

// to include processes with virtual W/Z  also  in co-annihilation 
//   VZdecay=2; VWdecay=2; cleanDecayTable(); 
    
  printf("\n==== Calculation of relic density =====\n");  

  sortOddParticles(cdmName);
  Omega=darkOmega(&Xf,fast,Beps);
  
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
// direct access for annihilation channels 
/*
if(omegaCh){
  int i; 
  for(i=0; omegaCh[i].weight>0  ;i++)
  printf(" %.2E %s %s -> %s %s\n", omegaCh[i].weight, omegaCh[i].prtcl[0],
  omegaCh[i].prtcl[1],omegaCh[i].prtcl[2],omegaCh[i].prtcl[3]); 
}  
*/  
// to restore VZdecay and VWdecay switches 

   VZdecay=1; VWdecay=1; cleanDecayTable();   

}
#endif


#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
  double  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double SpNe[NZ],SpNm[NZ],SpNl[NZ];  
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
 
/* default DarkSUSY parameters */

/*
    K_dif=0.036;
    L_dif=4;  
    Delta_dif=0.6; 
    Vc_dif=10;
    Rdisk=30;
    SMmev=320;
*/                        
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum( 2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */

  if(SpA)
  { 
     double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ 
                                                   /* dfi corresponds to solid angle 1.E-3sr */                                             
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi);
     gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
#ifdef LoopGAMMA
     if(loopGamma(&vcs_gz,&vcs_gg)==0)
     {
         printf("Gamma  ray lines:\n");
         printf("E=%.2E[GeV]  vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz,
                               gammaFlux(fi,dfi,vcs_gz));  
         printf("E=%.2E[GeV]  vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 
                             2*gammaFlux(fi,dfi,vcs_gg));
     }
#endif     
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE, FluxE);
    if(SMmev>0)  solarModulation(SMmev,0.0005,FluxE,FluxE);    
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest); 
  }
  
  if(SpP)
  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP); 
    
    if(SMmev>0)  solarModulation(SMmev,1,FluxP,FluxP);     
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);     
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigmaS[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

 
  calcScalarQuarkFF(0.46,27.5,34.,42.);

//  To restore default form factors of  version 2  call 
//  calcScalarQuarkFF(0.553,18.9,55.,243.5);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   
#ifdef TEST_Direct_Detection
printf("         TREE LEVEL\n");

    MSSMDDtest(0, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

printf("         BOX DIAGRAMS\n");  

    MSSMDDtest(1, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    
#endif

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef NEUTRINO
{ double nu[NZ], nu_bar[NZ],mu[NZ];
  double Ntot;
  int forSun=1;
  double Emin=0.01;
  
 printf("\n===============Neutrino Telescope=======  for  "); 
 if(forSun) printf("Sun\n"); else printf("Earth\n");  

  err=neutrinoFlux(Maxwell,forSun, nu,nu_bar);
#ifdef SHOWPLOTS
  displaySpectrum(nu,"nu flux from Sun [1/Year/km^2/GeV]",Emin,Mcdm,1);
  displaySpectrum(nu_bar,"nu-bar from Sun [1/Year/km^2/GeV]",Emin,Mcdm,1);
#endif
{ double Ntot;
  double Emin=1; //GeV
  spectrInfo(Emin/Mcdm,nu, &Ntot,NULL);
    printf(" E>%.1E GeV neutrino flux       %.2E [1/Year/km^2] \n",Emin,Ntot);
  spectrInfo(Emin/Mcdm,nu_bar, &Ntot,NULL);
    printf(" E>%.1E GeV anti-neutrino flux  %.2E [1/Year/km^2]\n",Emin,Ntot);  
} 
  
/* Upward events */
  
  muonUpward(nu,nu_bar, mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Upward muons[1/Year/km^2/GeV]",1,Mcdm/2,1);
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Upward muon flux    %.2E [1/Year/km^2]\n",Emin,Ntot);
  } 
  
/* Contained events */
  muonContained(nu,nu_bar,1., mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Contained  muons[1/Year/km^3/GeV]",Emin,Mcdm,1); 
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Contained muon flux %.2E [1/Year/km^3]\n",Emin,Ntot);
  }  
}        
#endif 


#ifdef DECAYS
{  
  txtList L;
   double width,br;
   char * pname;
   printf("\n================= Decays ==============\n");

   pname = "h";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);

   pname = "~o2";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);
}
#endif


#ifdef CROSS_SECTIONS
{
  double Pcm=250, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=250.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
/*
 { double stot=0;
      int i,j;
   char * sq[25]=
   {"~dL","~dR","~uL","~uR","~sL","~sR","~cL","~cR","~b1","~b2","~t1","~t2",
    "~DL","~DR","~UL","~UR","~SL","~SR","~CL","~CR","~B1","~B2","~T1","~T2",
    "~g"};

    Pcm=4000;

    for(i=0;i<25;i++) for(j=0;j<25;j++)
    {double dcs=hCollider(Pcm,1,0,sq[i],sq[j]);
        stot+=dcs;
        printf("p,p -> %s %s %E\n", sq[i],sq[j],dcs);
    }
    printf("total cross section =%E (without K-factor)\n",stot);
 }
*/
}
#endif

#ifdef CLEAN

  killPlots();
  system("rm -f suspect2_lha.in suspect2_lha.out  suspect2.out HB.slha Key.dat  nngg.in nngg.out output.flha ");

#endif 

return 0;
}
Ejemplo n.º 12
0
int LilithMDL(char*fname)
{
  unsigned int i, npart=0;

  double CU, Cb, Cl,  CU5, Cb5, Cl5,  CV,Cgamma, Cg;
  double Mcp=findValW("Mcp"), Mbp=findValW("Mbp"), Mtp=findValW("Mtp");
  double vev = 2*findValW("MW")*findValW("SW")/findValW("EE");

  FILE*f;
  
  char *parts[3]={"h1","h2","h3"};
  int hPdgn[3]={25,35,36};
  

  f=fopen(fname,"w");
  
  fprintf(f, "<?xml version=\"1.0\"?>\n");
  fprintf(f, "<lilithinput>\n");

  for(i=0; i<3; i++) {
    double mass = pMass(parts[i]);
    if(mass < 123 || mass > 128)  continue;
    
    ++npart;

    // compute invisible and undetected branching ratios
    double invBR = 0., undBR = 0.;
    double w;
    char format[100];
    txtList L;
    w=pWidth((char*)parts[i], &L);

    if(Mcdm1 < 0.5*mass) {
      char invdecay[50];
      char cdmName[50];
//      sortOddParticles(cdmName);
      strcpy(invdecay, CDM1);
      strcat(invdecay, ",");
      strcat(invdecay, CDM1);
      invBR = findBr(L, invdecay);
    }
    undBR = 1 - invBR - findBr(L, "b B") - findBr(L, "c C") - findBr(L, "l L") -
            findBr(L, "W+ W-") - findBr(L, "A A") - findBr(L, "Z Z") -
            findBr(L, "G G") - findBr(L, "m M") - findBr(L, "A Z") -
            findBr(L, "u U") - findBr(L, "d D") - findBr(L, "s S");

      sprintf(format,"%%lf %%*f  3 %d 6 6", hPdgn[i]);
      CU=   slhaValFormat("LiLithInputHiggsCouplingsFermions",0.,format);
      sprintf(format,"%%*f %%lf  3 %d 6 6", hPdgn[i]);
      CU5=  slhaValFormat("LiLithInputHiggsCouplingsFermions",0.,format);

      sprintf(format,"%%lf %%*f  3 %d 5 5", hPdgn[i]);
      Cb=   slhaValFormat("LiLithInputHiggsCouplingsFermions",0.,format);
      sprintf(format,"%%*f %%lf  3 %d 5 5", hPdgn[i]);
      Cb5=  slhaValFormat("LiLithInputHiggsCouplingsFermions",0.,format);
    
      sprintf(format,"%%lf %%*f  3 %d 15 15", hPdgn[i]);
      Cl=   slhaValFormat("LiLithInputHiggsCouplingsFermions",0.,format);
      sprintf(format,"%%*f %%lf  3 %d 15 15", hPdgn[i]);
      Cl5=  slhaValFormat("LiLithInputHiggsCouplingsFermions",0.,format);
      
      sprintf(format,"%%lf  3 %d  24 24", hPdgn[i]);
      CV=   slhaValFormat("LiLithInputHiggsCouplingsBosons",0.,format);
      sprintf(format,"%%lf  3 %d  21 21", hPdgn[i]);
      Cg=   slhaValFormat("LiLithInputHiggsCouplingsBosons",0.,format);

//      sprintf(format,"%%lf  3 %d  22 22", hPdgn[i]);
//      Cgamma= slhaValFormat("LiLithInputHiggsCouplingsBosons",0.,format);

      char LaTxt[20];
      double LaV,LaV5,LaSM;
      sprintf(LaTxt,"LAA%s",parts[i]);
      LaV=findValW(LaTxt);
      sprintf(LaTxt,"imLAA%s",parts[i]);
      LaV5=findValW(LaTxt); 
             
      Cgamma=-sqrt(LaV*LaV+4*LaV5*LaV5)/lAAhSM(mass,alphaQCD(mass)/M_PI, Mcp,Mbp,Mtp,vev);

    
      fprintf(f, "  <reducedcouplings part=\"%s\">\n", parts[i]);
      fprintf(f, "    <mass>%f</mass>\n", mass);
      fprintf(f, "    <C to=\"uu\" part=\"re\">  %f</C>\n", CU);
      fprintf(f, "    <C to=\"uu\" part=\"im\">  %f</C>\n", CU5);
      fprintf(f, "    <C to=\"bb\" part=\"re\">%f</C>\n", Cb);
      fprintf(f, "    <C to=\"bb\" part=\"im\">%f</C>\n", Cb5); 
      fprintf(f, "    <C to=\"mumu\" part=\"re\">%f</C>\n", Cl);
      fprintf(f, "    <C to=\"mumu\" part=\"im\">%f</C>\n", Cl5); 
      fprintf(f, "    <C to=\"tautau\" part=\"re\">%f</C>\n", Cl);
      fprintf(f, "    <C to=\"tautau\" part=\"im\">%f</C>\n", Cl5); 
    
      fprintf(f, "    <C to=\"VV\">%f</C>\n", CV);
      fprintf(f, "    <C to=\"gammagamma\">%f</C>\n", Cgamma);
      fprintf(f, "    <C to=\"gg\">%f</C>\n", Cg);
//    fprintf(f, "    <C to=\"Zgamma\">%f</C>\n", 1.);
      fprintf(f, "    <precision>%s</precision>\n", "LO");
      fprintf(f, "    <extraBR>\n");
      fprintf(f, "      <BR to=\"invisible\">%f</BR>\n", invBR);
      fprintf(f, "      <BR to=\"undetected\">%f</BR>\n", undBR);
      fprintf(f, "    </extraBR>\n");
      fprintf(f, "  </reducedcouplings>\n");
  }

  fprintf(f, "</lilithinput>\n");
  fclose(f);
  return npart;
}
Ejemplo n.º 13
0
void smodels(double Pcm, int nf,double csMinFb, char*fileName,int wrt) 
{ 
   int SMP[16]={1,2,3,4,5,6, 11,12,13,14,15,16, 21,22,23,24};
   int i,j;
   FILE*f=fopen(fileName,"w");
   int np=0;
   char**plist=NULL;
   int smH=-1; 
   char* gluname=NULL;
   char* phname=NULL;
   char* bname=NULL;
   char* Bname=NULL;
   char* lname=NULL;
   char* Lname=NULL;
   
  // find SM Higgs 
    
   for(i=0;i<nModelParticles;i++)
   {
      if(ModelPrtcls[i].NPDG== 21)   gluname=ModelPrtcls[i].name;
      if(ModelPrtcls[i].NPDG== 22)   phname=ModelPrtcls[i].name;
      if(ModelPrtcls[i].NPDG==  5) { bname=ModelPrtcls[i].name;  Bname=ModelPrtcls[i].aname;}
      if(ModelPrtcls[i].NPDG== -5) { bname=ModelPrtcls[i].aname; Bname=ModelPrtcls[i].name; }  
      if(ModelPrtcls[i].NPDG== 15) { lname=ModelPrtcls[i].name;  Lname=ModelPrtcls[i].aname;}
      if(ModelPrtcls[i].NPDG==-15) { Lname=ModelPrtcls[i].aname; lname=ModelPrtcls[i].name; } 
   }

//printf("gluname  %s bname %s lname %s\n", gluname,bname,lname);  

   if(gluname && bname && lname)
   for(smH=0;smH<nModelParticles;smH++) if( ModelPrtcls[smH].spin2==0 && ModelPrtcls[smH].cdim==1 
   && ModelPrtcls[smH].name[0]!='~'  && strcmp(ModelPrtcls[smH].name,ModelPrtcls[smH].aname)==0  )
   {  double w,ggBr,bbBr,llBr, hMass=pMass(ModelPrtcls[smH].name);
      txtList L;
      
      double ggBrSM=0.073, bbBrSM=0.60,llBrSM=0.063,wSM=4.24E-3;
      double prec=0.9;
      
      char chan[50];
      if(hMass<123 || hMass>128)  continue;
      w=pWidth(ModelPrtcls[smH].name,&L);
      sprintf(chan,"%s,%s",gluname,gluname);
      ggBr=findBr(L, chan);
      sprintf(chan,"%s,%s",lname,Lname);
      llBr=findBr(L, chan);
      sprintf(chan,"%s,%s",bname,Bname);     
      bbBr=findBr(L, chan);

      if(ggBr==0) { bbBr*=w/(w+0.073*0.00424); llBr*=w/(w+ggBrSM*wSM);}             
      if( bbBrSM*prec< bbBr && bbBr<bbBrSM*(2-prec) && llBrSM*prec< llBr && llBr<llBrSM*(2-prec)) break;       
   }
   
   if(smH<nModelParticles) printf("SM HIGGS=%s\n",ModelPrtcls[smH].name);
   else  printf("NO SM-like HIGGS in the model\n");
    
   fprintf(f,"BLOCK MASS\n");
   for(i=0;i<nModelParticles;i++) if(pMass(ModelPrtcls[i].name) <Pcm)
   { 
     for(j=0;j<16;j++) if(abs(ModelPrtcls[i].NPDG)==SMP[j]) break; 
     if(j==16 )
     { 
        np++; 
        plist=realloc(plist,np*sizeof(char*));
        plist[np-1]=ModelPrtcls[i].name;
        if(strcmp(ModelPrtcls[i].name,ModelPrtcls[i].aname))
        { np++;
          plist=realloc(plist,np*sizeof(char*));
          plist[np-1]=ModelPrtcls[i].aname;
        }    
        fprintf(f,"  %d  %E  # %s  \n",ModelPrtcls[i].NPDG,findValW(ModelPrtcls[i].mass),ModelPrtcls[i].name);   
     }
   }
   fprintf(f,"\n");

   for(i=0;i<nModelParticles;i++) 
   {  for(j=0;j<16;j++) if(ModelPrtcls[i].NPDG==SMP[j]) break;
      
      if(j==16) slhaDecayPrint(ModelPrtcls[i].name,1,f); 
   }

   for(i=0;i<np;i++) for(j=i;j<np;j++) if(pMass(plist[i])+pMass(plist[j])<Pcm)
    if(plist[i][0]=='~' && plist[j][0]=='~')
    {  int q31,q32,q3,c1,c2;

       qNumbers(plist[i], NULL, &q31,&c1);
       qNumbers(plist[j], NULL, &q32,&c2);
       q3=q31+q32;
       if(q3<0) { q3*=-1; if(abs(c1)==3) c1*=-1; if(abs(c2)==3)  c2*=-1;}
       if(c1>c2){ int c=c1; c1=c2;c2=c;}
       
       if (  (c2==1 || (c1==1 && c2==8) || (c1==-3 && c2==3) || (c1==8 && c2==8) ) 
        
                                       && (q3!=0 && q3 !=3) ) continue;
                                       
       if ( ((c1==-3 && c2== 3)||(c1== 1 && c2== 1)||
             (c1== 8 && c2== 8)||(c1== 1 && c2== 8))  && (q3!=0 && q3!=3) ) continue;                            
       if ( ((c1== 3 && c2== 8)||(c1== 1 && c2== 3))  && (q3!=2)          ) continue;
       if ( ((c1==-3 && c2== 8)||(c1==-3 && c2== 1))  && (q3!=1)          ) continue;
       if (  (c1== 3 && c2== 3)                       && (q3!=4 && q3!=1) ) continue;
       if (  (c1==-3 && c2==-3)                       && (q3!=2)          ) continue;
        
       {  double dcs;
          double Qf=0.5*(pMass(plist[i])+pMass(plist[j]));
          dcs=hCollider(Pcm,1,nf,Qf,Qf,plist[i],plist[j],0,wrt);
          if(dcs>csMinFb*0.001)
          {
            fprintf(f,"XSECTION  %E   2212  2212  2  %d  %d\n",2*Pcm, pNum(plist[i]),pNum(plist[j])); 
/*pb*/      fprintf(f,"0  0  0  0  0  0 %E micrOMEGAs 3.6\n\n", dcs);
          }
       }
    }    

  fclose(f);
  free(plist);
  
  f=fopen("particles.py","w");
  fprintf(f,"#!/usr/bin/env python\n");
  
  fprintf(f,"rOdd ={\n");
  for(np=0,i=0;i<nModelParticles;i++) if(ModelPrtcls[i].name[0]=='~'  && pMass(ModelPrtcls[i].name) <Pcm )
  {  
     if(np) fprintf(f,",\n");
     fprintf(f, " %d : \"%s\",\n",  ModelPrtcls[i].NPDG,ModelPrtcls[i].name);
     fprintf(f, " %d : \"%s\""   , -ModelPrtcls[i].NPDG,ModelPrtcls[i].aname);
     np++; 
  }
  fprintf(f,"\n}\n");

  fprintf(f,"rEven ={\n");
  for(np=0,i=0;i<nModelParticles;i++) if(ModelPrtcls[i].name[0]!='~' && pMass(ModelPrtcls[i].name) <Pcm  )
  {  
     for(j=0;j<16;j++) if(abs(ModelPrtcls[i].NPDG)==SMP[j]) break;
     if(j==16 )
     { if(np) fprintf(f,",\n");
       if(ModelPrtcls[i].NPDG==smH)
       { 
          fprintf(f, " %d : \"higgs\",\n", ModelPrtcls[i].NPDG);
          fprintf(f, " %d : \"higgs\"\n", -ModelPrtcls[i].NPDG);
       } else
       {  char * n=ModelPrtcls[i].name;
          char * an=ModelPrtcls[i].aname;
          if(strcmp( n,"higgs")==0)  n="!higgs";
          if(strcmp(an,"higgs")==0) an="!higgs";
          fprintf(f, " %d : \"%s\",\n",  ModelPrtcls[i].NPDG,n);
          fprintf(f, " %d : \"%s\""   , -ModelPrtcls[i].NPDG,an);
       }
       np++;
     }
  }

     fprintf(f,",\n"
"  23 : \"Z\",\n"
" -23 : \"Z\",\n" 
"  22 : \"photon\",\n"
" -22 : \"photon\",\n"
"  24 : \"W+\",\n"
" -24 : \"W-\",\n"
"  16 : \"nu\",\n"
" -16 : \"nu\",\n"
"  15 : \"ta-\",\n"
" -15 : \"ta+\",\n"
"  14 : \"nu\",\n"
" -14 : \"nu\",\n"
"  13 : \"mu-\",\n"
" -13 : \"mu+\",\n"
"  12 : \"nu\",\n"
" -12 : \"nu\",\n"
"  11 : \"e-\",\n"
" -11 : \"e+\",\n"
"  5  : \"b\",\n"
" -5  : \"b\",\n"
"  6  : \"t+\",\n"
" -6  : \"t-\",\n"
"  1  : \"jet\",\n"
"  2  : \"jet\",\n"
"  3  : \"jet\",\n"
"  4  : \"jet\",\n"
"  21 : \"jet\",\n"
" -21 : \"jet\",\n" 
" -1  : \"jet\",\n"
" -2  : \"jet\",\n"
" -3  : \"jet\",\n"
" -4  : \"jet\""  );
  
  fprintf(f,"\n}\n");

fprintf(f,  
"\nptcDic = {\"e\"  : [\"e+\",  \"e-\"],\n"
"          \"mu\" : [\"mu+\", \"mu-\"],\n"
"          \"ta\" : [\"ta+\", \"ta-\"],\n"
"          \"l+\" : [\"e+\",  \"mu+\"],\n"
"          \"l-\" : [\"e-\",  \"mu-\"],\n"
"          \"l\"  : [\"e-\",  \"mu-\", \"e+\", \"mu+\"],\n"
"          \"W\"  : [\"W+\",  \"W-\"],\n"
"          \"t\"  : [\"t+\",  \"t-\"],\n"
"          \"L+\" : [\"e+\",  \"mu+\", \"ta+\"],\n"
"          \"L-\" : [\"e-\",  \"mu-\", \"ta-\"],\n"
"          \"L\"  : [\"e+\",  \"mu+\", \"ta+\", \"e-\", \"mu-\", \"ta-\"]}\n"
);  
  

  fprintf(f,"qNumbers ={\n");
  for(np=0,i=0;i<nModelParticles;i++) if(pMass(ModelPrtcls[i].name) <Pcm  )
  {  
     for(j=0;j<16;j++) if(abs(ModelPrtcls[i].NPDG)==SMP[j]) break;
     if(j==16 )
     { if(np) fprintf(f,",\n");
       fprintf(f, " %d : [%d,%d,%d]", ModelPrtcls[i].NPDG, ModelPrtcls[i].spin2, ModelPrtcls[i].q3, ModelPrtcls[i].cdim);
       np++;
     }           
  }
  fprintf(f,"\n}\n");

  
  fclose(f); 
}
Ejemplo n.º 14
0
double pwidth_(char * name, txtList *L , int *dim, int len)
{
   char cName[10];
   fName2c(name,cName, len);
   return pWidth(cName, L , dim);
}
Ejemplo n.º 15
0
int main(int argc,char** argv)
{  int err,nw;
   char cdmName[10];
   int spin2, charge3,cdim;
   double laMax;   

  delFiles=0; /* switch to save/delete NMSSMTools input/output */
  ForceUG=0;  /* to Force Unitary Gauge assign 1 */
   
#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double Lambda, aLambda,aKappa,sgn;

  if(argc<7) 
  { 
    printf(" This program needs 6 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n"
           "   Lambda   Lambda parameter at SUSY\n"
           "   aKappa  aKappa parameter at GUT\n"
           );
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n" 
           "   aLambda at GUT (default aLambda=a0)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
    printf("Example:  ./main 320 600 -1300 2 0.5 -1400\n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     sscanf(argv[5],"%lf",&Lambda);
     sscanf(argv[6],"%lf",&aKappa);
     if(argc>7)  sscanf(argv[7],"%lf",&sgn); else sgn=1;
     if(argc>8)  sscanf(argv[8],"%lf",&aLambda); else aLambda=a0;

     if(argc>9){ sscanf(argv[9],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>10){ sscanf(argv[10],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>11){ sscanf(argv[11],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err=nmssmSUGRA( m0,mhf, a0,tb, sgn,  Lambda, aLambda, aKappa);
}
#elif defined(EWSB)
{
  if(argc!=2)
  { 
      printf(" Correct usage:  ./main <file with NMSSM parameters> \n");
      printf(" Example      :  ./main  data1.par \n");
      exit(1);
  }

  err=readVarNMSSM(argv[1]);
  
  if(err==-1)     {printf("Can not open the file\n"); exit(1);}
  else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(1);}          
  err=nmssmEWSB();  
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main spectr.dat \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readSLHA(argv[1]);
   
   if(err) exit(2);
}

#endif

  slhaWarnings(stdout);

  if(err) exit(1);

//assignValW("Ms2GeV",0.14);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}
  laMax=findValW("laMax");
  printf("Largest coupling of Higgs self interaction %.1E\n",laMax);

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2\n",
  cdmName,       spin2); 
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                    else o1Contents(stdout);

/*  printVar(stdout);  */


#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ double constr0,constrM, constrP;

  printf("\n\n==== Physical Constraints: =====\n");

  constr0=bsgnlo(&constrM,&constrP);
  printf("B->s,gamma = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );

  constr0= bsmumu(&constrM,&constrP);
  printf("Bs->mu,mu  = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );
  
  constr0=btaunu(&constrM,&constrP);
  printf("B+->tau+,nu= %.2E (%.2E ,  %.2E  ) \n",constr0, constrM, constrP );
  
  constr0=deltaMd(&constrM,&constrP);
  printf("deltaMd    = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );

  constr0=deltaMs(&constrM,&constrP);
  printf("deltaMs    = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );

  constr0=gmuon(&constrM,&constrP);
  printf("(g-2)/BSM = %.2E (%.2E ,  %.2E  ) \n",constr0,constrM, constrP );
     
}
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf;   
  printf("\n==== Calculation of relic density =====\n");  
  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
}
#endif

#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=0.1,/* Energy cut  in GeV   */  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
double SpNe[NZ],SpNm[NZ],SpNl[NZ];
  double Etest=Mcdm/2;
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum(2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
  printf("sigmav=%.2E[cm^3/s]\n",sigmaV);  

  if(SpA)
  { 
     double fi=0.1,dfi=0.05; /* angle of sight and 1/2 of cone angle in [rad] */ 

     gammaFluxTab(fi,dfi, sigmaV, SpA,  FluxA);
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.2f[rad]\n",fi,2*dfi);
     
#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux[cm^2 s GeV]^{1} at f=%.2f[rad], cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, SpA), Etest);       
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE,  FluxE);
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest);           
  }
  
  if(SpP)
  { 
    pbarFluxTab(Emin, sigmaV, SpP, FluxP  ); 
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);             
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

  calcScalarFF(0.553,18.9,70.,35.);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);



/* Option to change parameters of DM velocity  distribution  */   
   SetfMaxwell(220.,600.);
/* 
    dN  ~  exp(-v^2/arg1^2)*Theta(v-arg2)  d^3v     
    Earth velocity with respect to Galaxy defined by 'Vearth' parameter.
    All parameters are  in [km/s] units.       
*/
}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);

}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,S00Na23,S01Na23,S11Na23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,S00I127,S01I127,S11I127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef DECAYS
{  
  txtList L;
   int dim;
   double width,br;
   char * pname;
   
   printf("\nParticle decays\n"); 
   pname = "h1";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);

   pname = "l";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    printf("Br(e,Ne,nl)= %E\n",findBr(L,"e,Ne,nl"));

   pname = "~o2";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
}
#endif

#ifdef CROSS_SECTIONS
{
  double Pcm=500, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=500.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x","eE_2x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
}
#endif

  killPlots();
  return 0;
}
Ejemplo n.º 16
0
int main(int argc,char** argv)
{   int err;
    char cdmName[10];
    int spin2, charge3,cdim;

    ForceUG=0;  // to Force Unitary Gauge assign 1

    if(argc==1)
    {
        printf(" Correct usage:  ./main  <file with parameters> \n");
        printf("Example: ./main data1.par\n");
        exit(1);
    }

    err=readVar(argv[1]);

    if(err==-1)     {
        printf("Can not open the file\n");
        exit(1);
    }
    else if(err>0)  {
        printf("Wrong file contents at line %d\n",err);
        exit(1);
    }



    err=sortOddParticles(cdmName);



    if(err) {
        printf("Can't calculate %s\n",cdmName);
        return 1;
    }

    qNumbers(cdmName, &spin2, &charge3, &cdim);
    printf("\nDark matter candidate is '%s' with spin=%d/2\n",
           cdmName,       spin2);
    if(charge3) {
        printf("Dark Matter has electric charge %d*3\n",charge3);
        exit(1);
    }
    if(cdim!=1) {
        printf("Dark Matter ia a color particle\n");
        exit(1);
    }
#ifdef MASSES_INFO
    {
        printf("\n=== MASSES OF HIGG AND ODD PARTICLES: ===\n");
        printHiggs(stdout);
        printMasses(stdout,1);
    }
#endif


#ifdef HIGGSBOUNDS
    if(access(HIGGSBOUNDS "/HiggsBounds",X_OK )) system( "cd " HIGGSBOUNDS "; ./configure; make ");
    HBblocks("HB.in");
    system(HIGGSBOUNDS "/HiggsBounds  LandH SLHA 1 0 HB.in HB.out > hb.stdout");
    slhaRead("HB.out",1+4);
    printf("HB result= %.0E  obsratio=%.2E\n",slhaValFormat("HiggsBoundsResults",0.,"1 2 %lf"), slhaValFormat("HiggsBoundsResults",0.,"1 3 %lf" )  );
    {   char hbInfo[100];
        if(0==slhaSTRFormat("HiggsBoundsResults","1 5 ||%[^|]||",hbInfo)) printf("Channel: %s\n",hbInfo);
    }
#endif

#ifdef HIGGSSIGNALS
#define DataSet " latestresults "
//#define Method  " peak "
//#define  Method " mass "
#define  Method " both "
#define PDF  " 2 "  // Gaussian
//#define PDF " 1 "  // box
//#define PDF " 3 "  // box+Gaussia
#define dMh " 2 "
    printf("HiggsSignals:\n");
    if(access(HIGGSSIGNALS "/HiggsSignals",X_OK )) system( "cd " HIGGSSIGNALS "; ./configure; make ");
    system("rm -f HS.in HS.out");
    HBblocks("HS.in");
    system(HIGGSSIGNALS "/HiggsSignals" DataSet Method  PDF  " SLHA 1 0 HS.in > hs.stdout");
    system("grep -A 10000  HiggsSignalsResults HS.in > HS.out");
    slhaRead("HS.out",1+4);
    printf("  Number of observables %.0f\n",slhaVal("HiggsSignalsResults",0.,1,7));
    printf("  total chi^2= %.1E\n",slhaVal("HiggsSignalsResults",0.,1,12));
    printf("  HS p-value = %.1E\n", slhaVal("HiggsSignalsResults",0.,1,13));
#undef dMh
#undef PDF
#undef Method
#undef DataSet

#endif


#ifdef OMEGA
    {   int fast=1;
        double Beps=1.E-5, cut=0.01;
        double Omega,Xf;
        int i;

// to exclude processes with virtual W/Z in DM   annihilation
        VZdecay=0;
        VWdecay=0;
        cleanDecayTable();

// to include processes with virtual W/Z  also  in co-annihilation
//   VZdecay=2; VWdecay=2; cleanDecayTable();

        printf("\n==== Calculation of relic density =====\n");
        Omega=darkOmega(&Xf,fast,Beps);
        printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
        printChannels(Xf,cut,Beps,1,stdout);

//   VZdecay=1; VWdecay=1; cleanDecayTable();  // restore default

    }
#endif


#ifdef INDIRECT_DETECTION
    {
        int err,i;
        double Emin=1,/* Energy cut  in GeV   */  sigmaV;
        double vcs_gz,vcs_gg;
        char txt[100];
        double SpA[NZ],SpE[NZ],SpP[NZ];
        double FluxA[NZ],FluxE[NZ],FluxP[NZ];
        double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
        double Etest=Mcdm/2;

        printf("\n==== Indirect detection =======\n");

        sigmaV=calcSpectrum(4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
        /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
           Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.

           First parameter 1-includes W/Z polarization
                           2-includes gammas for 2->2+gamma
                           4-print cross sections
        */
        printf("sigmav=%.2E[cm^3/s]\n",sigmaV);


        if(SpA)
        {
            double fi=0.1,dfi=0.05; /* angle of sight and 1/2 of cone angle in [rad] */

            gammaFluxTab(fi,dfi, sigmaV, SpA,  FluxA);
            printf("Photon flux  for angle of sight f=%.2f[rad]\n"
                   "and spherical region described by cone with angle %.2f[rad]\n",fi,2*dfi);
#ifdef SHOWPLOTS
            sprintf(txt,"Photon flux[cm^2 s GeV]^{1} at f=%.2f[rad], cone angle %.2f[rad]",fi,2*dfi);
            displaySpectrum(FluxA,txt,Emin,Mcdm);
#endif
            printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);
        }

        if(SpE)
        {
            posiFluxTab(Emin, sigmaV, SpE,  FluxE);
#ifdef SHOWPLOTS
            displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm);
#endif
            printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
                   SpectdNdE(Etest, FluxE),  Etest);
        }

        if(SpP)
        {
            pbarFluxTab(Emin, sigmaV, SpP,  FluxP  );
#ifdef SHOWPLOTS
            displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin, Mcdm);
#endif
            printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
                   SpectdNdE(Etest, FluxP),  Etest);
        }
    }
#endif

#ifdef RESET_FORMFACTORS
    {
        /*
           The user has approach to form factors  which specifies quark contents
           of  proton and nucleon via global parametes like
              <Type>FF<Nucleon><q>
           where <Type> can be "Scalar", "pVector", and "Sigma";
                 <Nucleon>     "P" or "N" for proton and neutron
                 <q>            "d", "u","s"

           calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV])
           calculates and rewrites Scalar form factors
        */
        printf("\n======== RESET_FORMFACTORS ======\n");

        printf("protonFF (default) d %.2E, u %.2E, s %.2E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);
        printf("neutronFF(default) d %.2E, u %.2E, s %.2E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

//  To restore default form factors of  version 2  call
//  calcScalarQuarkFF(0.553,18.9,55.,243.5);

        calcScalarFF(0.553,18.9,70.,35.);

        printf("protonFF (new)     d %.2E, u %.2E, s %.2E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);
        printf("neutronFF(new)     d %.2E, u %.2E, s %.2E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);


    }
#endif

#ifdef CDM_NUCLEON
    {   double pA0[2],pA5[2],nA0[2],nA5[2];
        double Nmass=0.939; /*nucleon mass*/
        double SCcoeff;
        int i;
        printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");
        nucleonAmplitudes(CDM1,NULL, pA0,pA5,nA0,nA5);
        printf("CDM[antiCDM]-nucleon micrOMEGAs amplitudes:\n");
        printf("proton:  SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",pA0[0], pA0[1],  pA5[0], pA5[1] );
        printf("neutron: SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",nA0[0], nA0[1],  nA5[0], nA5[1] );

        SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
        printf("CDM[antiCDM]-nucleon cross sections[pb]:\n");
        printf(" proton  SI %.3E [%.3E] SD %.3E [%.3E]\n",
               SCcoeff*pA0[0]*pA0[0],SCcoeff*pA0[1]*pA0[1],3*SCcoeff*pA5[0]*pA5[0],3*SCcoeff*pA5[1]*pA5[1]);
        printf(" neutron SI %.3E [%.3E] SD %.3E [%.3E]\n",
               SCcoeff*nA0[0]*nA0[0],SCcoeff*nA0[1]*nA0[1],3*SCcoeff*nA5[0]*nA5[0],3*SCcoeff*nA5[1]*nA5[1]);

    }
#endif

#ifdef CDM_NUCLEUS
    {   double dNdE[300];
        double nEvents;

        printf("\n======== Direct Detection ========\n");

        nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,NULL,dNdE);

        printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
        printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
               cutRecoilResult(dNdE,10,50));

#ifdef SHOWPLOTS
        displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

        nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,NULL,dNdE);

        printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
        printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
               cutRecoilResult(dNdE,10,50));
#ifdef SHOWPLOTS
        displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

        nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,NULL,dNdE);

        printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
        printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
               cutRecoilResult(dNdE,10,50));
#ifdef SHOWPLOTS
        displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

        nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,NULL,dNdE);

        printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
        printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
               cutRecoilResult(dNdE,10,50));
#ifdef SHOWPLOTS
        displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif

    }
#endif
#ifdef NEUTRINO
    {   double nu[NZ], nu_bar[NZ],mu[NZ];
        double Ntot;
        int forSun=1;
        double Emin=0.01;

        printf("\n===============Neutrino Telescope=======  for  ");
        if(forSun) printf("Sun\n");
        else printf("Earth\n");

        err=neutrinoFlux(Maxwell,forSun, nu,nu_bar);
#ifdef SHOWPLOTS
        displaySpectrum(nu,"nu flux from Sun [1/Year/km^2/GeV]",Emin,Mcdm);
        displaySpectrum(nu_bar,"nu-bar from Sun [1/Year/km^2/GeV]",Emin,Mcdm);
#endif
        {   double Ntot;
            double Emin=10; //GeV
            spectrInfo(Emin/Mcdm,nu, &Ntot,NULL);
            printf(" E>%.1E GeV neutrino flux       %.3E [1/Year/km^2] \n",Emin,Ntot);
            spectrInfo(Emin/Mcdm,nu_bar, &Ntot,NULL);
            printf(" E>%.1E GeV anti-neutrino flux  %.3E [1/Year/km^2]\n",Emin,Ntot);
        }

        /* Upward events */

        muonUpward(nu,nu_bar, mu);
#ifdef SHOWPLOTS
        displaySpectrum(mu,"Upward muons[1/Year/km^2/GeV]",1,Mcdm/2);
#endif
        {   double Ntot;
            double Emin=1; //GeV
            spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
            printf(" E>%.1E GeV Upward muon flux    %.3E [1/Year/km^2]\n",Emin,Ntot);
        }

        /* Contained events */
        muonContained(nu,nu_bar,1., mu);
#ifdef SHOWPLOTS
        displaySpectrum(mu,"Contained  muons[1/Year/km^3/GeV]",Emin,Mcdm);
#endif
        {   double Ntot;
            double Emin=1; //GeV
            spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
            printf(" E>%.1E GeV Contained muon flux %.3E [1/Year/km^3]\n",Emin,Ntot);
        }
    }
#endif

#ifdef DECAYS
    {
        txtList L;
        double width,br;
        char * pname;
        printf("\n================= Decays ==============\n");

        pname = "H";
        width=pWidth(pname,&L);
        printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
        printTxtList(L,stdout);

        pname = "~W+";
        width=pWidth(pname,&L);
        printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
        printTxtList(L,stdout);
    }
#endif

#ifdef CLEAN
    system("rm -f HB.in HB.out HS.in HS.out hb.stdout hs.stdout debug_channels.txt debug_predratio.txt Key.dat");
    killPlots();
#endif
    return 0;
}
Ejemplo n.º 17
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

  ForceUG=0;  /* to Force Unitary Gauge assign 1 */
  
  if(argc< 2)
  { 
      printf(" Correct usage:  ./main  <file with parameters>    \n");
      printf("Example: ./main data1.par \n");
      exit(1);
  }
                               
  err=readVar(argv[1]);
  
   
  if(err==-1)     {printf("Can not open the file\n"); exit(1);}
  else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(1);}
           
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}
  
   qNumbers(cdmName, &spin2, &charge3, &cdim);
   printf("\nDark matter candidate is '%s' with spin=%d/2\n",
    cdmName,       spin2); 
   if(charge3) { printf("Dark Matter has electric charge %d*3\n",charge3); exit(1);}
   if(cdim!=1) { printf("Dark Matter ia a color particle\n"); exit(1);}
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGG AND ODD PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.0001;
  double Omega,Xf;   
//  deltaY=4.4E-13;

// to exclude processes with virtual W/Z in DM   annihilation      
     VZdecay=0; VWdecay=0; cleanDecayTable(); 

// to include processes with virtual W/Z  also  in co-annihilation 
//   VZdecay=2; VWdecay=2; cleanDecayTable(); 

  printf("\n==== Calculation of relic density =====\n");  
  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);   
  
  VZdecay=1; VWdecay=1; cleanDecayTable();  // restore default
}
#endif

#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,/* Energy cut  in GeV   */  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum(4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
  printf("sigmav=%.2E[cm^3/s] = %.2E[pb] \n", sigmaV, sigmaV/2.9979E-26);  


  if(SpA)
  { 
     double fi=0.1,dfi=0.05; /* angle of sight and 1/2 of cone angle in [rad] */ 

     gammaFluxTab(fi,dfi, sigmaV, SpA,  FluxA);     
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.2f[rad]\n",fi,2*dfi);
#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux[cm^2 s GeV]^{1} at f=%.2f[rad], cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE,  FluxE);
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest);           
  }
  
  if(SpP)
  { 
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP  ); 
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin, Mcdm);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);             
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigmaS[MeV])  
   calculates and rewrites Scalar form factors
*/
  printf("\n======== RESET_FORMFACTORS ======\n");
 
  printf("protonFF (default) d %.2E, u %.2E, s %.2E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %.2E, u %.2E, s %.2E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

  calcScalarQuarkFF(0.46,27.5,34.,42.);

//  To restore default form factors of  version 2  call 
//  calcScalarQuarkFF(0.553,18.9,55.,243.5);
 
  printf("protonFF (new)     d %.2E, u %.2E, s %.2E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %.2E, u %.2E, s %.2E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);
}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   

    nucleonAmplitudes(CDM1,NULL, pA0,pA5,nA0,nA5);
    printf("CDM[antiCDM]-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",pA0[0], pA0[1],  pA5[0], pA5[1] );
    printf("neutron: SI  %.3E [%.3E]  SD  %.3E [%.3E]\n",nA0[0], nA0[1],  nA5[0], nA5[1] ); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM[antiCDM]-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*pA0[0]*pA0[0],SCcoeff*pA0[1]*pA0[1],3*SCcoeff*pA5[0]*pA5[0],3*SCcoeff*pA5[1]*pA5[1]);
    printf(" neutron SI %.3E [%.3E] SD %.3E [%.3E]\n",
       SCcoeff*nA0[0]*nA0[0],SCcoeff*nA0[1]*nA0[1],3*SCcoeff*nA5[0]*nA5[0],3*SCcoeff*nA5[1]*nA5[1]);

}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,NULL,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,NULL,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,NULL,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,NULL,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef NEUTRINO
{ double nu[NZ], nu_bar[NZ],mu[NZ];
  double Ntot;
  int forSun=1;
  double Emin=0.01;

  printf("\n===============Neutrino Telescope=======  for  ");
  if(forSun) printf("Sun\n"); else printf("Earth\n");
  
  err=neutrinoFlux(Maxwell,forSun, nu,nu_bar);
#ifdef SHOWPLOTS
  displaySpectrum(nu,"nu flux from Sun [1/Year/km^2/GeV]",Emin,Mcdm);
  displaySpectrum(nu_bar,"nu-bar from Sun [1/Year/km^2/GeV]",Emin,Mcdm);
#endif
{ double Ntot;
  double Emin=10; //GeV
  spectrInfo(Emin/Mcdm,nu, &Ntot,NULL);
    printf(" E>%.1E GeV neutrino flux       %.3E [1/Year/km^2] \n",Emin,Ntot);
  spectrInfo(Emin/Mcdm,nu_bar, &Ntot,NULL);
    printf(" E>%.1E GeV anti-neutrino flux  %.3E [1/Year/km^2]\n",Emin,Ntot);
}

/* Upward events */

  muonUpward(nu,nu_bar, mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Upward muons[1/Year/km^2/GeV]",1,Mcdm/2);
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Upward muon flux    %.3E [1/Year/km^2]\n",Emin,Ntot);
  }

/* Contained events */
  muonContained(nu,nu_bar,1., mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Contained  muons[1/Year/km^3/GeV]",Emin,Mcdm);
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Contained muon flux %.3E [1/Year/km^3]\n",Emin,Ntot);
  }
}
#endif

#ifdef DECAYS
{  
  txtList L;
   double width,br;
   char * pname;   
   printf("\n================= Decays ==============\n");

   pname = "h";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.3E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);

   pname = "~L";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.3E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);
}
#endif


#ifdef CROSS_SECTIONS
{ double v0=0.001, Pcm=Mcdm*v0/2,cs;
  int err;
  numout*cc;

  cc=newProcess("~n,~N->W+,W-");
  passParameters(cc);
  cs=v0*cs22(cc,1,0.001*Mcdm/2,-1.,1.,&err);
  printf("cs=%e\n",cs);
}
#endif
  killPlots();
  return 0;
}
Ejemplo n.º 18
0
double aWidth(char * pName)
{  int dim;
   txtList LL;  
   return pWidth(pName,&LL,&dim);
}