Ejemplo n.º 1
0
TEST(McmcNutsBaseNuts, build_tree_test) {

  rng_t base_rng(0);

  int model_size = 1;
  double init_momentum = 1.5;

  stan::mcmc::ps_point z_init(model_size);
  z_init.q(0) = 0;
  z_init.p(0) = init_momentum;

  stan::mcmc::ps_point z_propose(model_size);

  Eigen::VectorXd p_sharp_left = Eigen::VectorXd::Zero(model_size);
  Eigen::VectorXd p_sharp_right = Eigen::VectorXd::Zero(model_size);
  Eigen::VectorXd rho = z_init.p;
  double log_sum_weight = -std::numeric_limits<double>::infinity();

  double H0 = -0.1;
  int n_leapfrog = 0;
  double sum_metro_prob = 0;

  stan::mcmc::mock_model model(model_size);
  stan::mcmc::mock_nuts sampler(model, base_rng);

  sampler.set_nominal_stepsize(1);
  sampler.set_stepsize_jitter(0);
  sampler.sample_stepsize();
  sampler.z() = z_init;

  std::stringstream debug, info, warn, error, fatal;
  stan::callbacks::stream_logger logger(debug, info, warn, error, fatal);

  bool valid_subtree = sampler.build_tree(3, z_propose,
                                          p_sharp_left, p_sharp_right, rho,
                                          H0, 1, n_leapfrog, log_sum_weight,
                                          sum_metro_prob, logger);

  EXPECT_TRUE(valid_subtree);

  EXPECT_EQ(init_momentum * (n_leapfrog + 1), rho(0));
  EXPECT_EQ(1, p_sharp_left(0));
  EXPECT_EQ(1, p_sharp_right(0));

  EXPECT_EQ(8 * init_momentum, sampler.z().q(0));
  EXPECT_EQ(init_momentum, sampler.z().p(0));

  EXPECT_EQ(8, n_leapfrog);
  EXPECT_FLOAT_EQ(H0 + std::log(n_leapfrog), log_sum_weight);
  EXPECT_FLOAT_EQ(std::exp(H0) * n_leapfrog, sum_metro_prob);

  EXPECT_EQ("", debug.str());
  EXPECT_EQ("", info.str());
  EXPECT_EQ("", warn.str());
  EXPECT_EQ("", error.str());
  EXPECT_EQ("", fatal.str());
}
Ejemplo n.º 2
0
TEST(McmcUnitENuts, tree_boundary_test) {
  rng_t base_rng(4839294);

  stan::mcmc::unit_e_point z_init(3);
  z_init.q(0) = 1;
  z_init.q(1) = -1;
  z_init.q(2) = 1;
  z_init.p(0) = -1;
  z_init.p(1) = 1;
  z_init.p(2) = -1;

  std::stringstream output;
  stan::interface_callbacks::writer::stream_writer writer(output);
  std::stringstream error_stream;
  stan::interface_callbacks::writer::stream_writer error_writer(error_stream);

  std::fstream empty_stream("", std::fstream::in);
  stan::io::dump data_var_context(empty_stream);

  typedef gauss3D_model_namespace::gauss3D_model model_t;
  model_t model(data_var_context);

  // Compute expected tree boundaries
  typedef stan::mcmc::unit_e_metric<model_t, rng_t> metric_t;
  metric_t metric(model);

  stan::mcmc::expl_leapfrog<metric_t> unit_e_integrator;
  double epsilon = 0.1;

  stan::mcmc::unit_e_point z_test = z_init;
  metric.init(z_test, writer, error_writer);

  unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer);
  Eigen::VectorXd p_sharp_forward_1 = metric.dtau_dp(z_test);

  unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer);
  Eigen::VectorXd p_sharp_forward_2 = metric.dtau_dp(z_test);

  unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer);
  unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer);
  Eigen::VectorXd p_sharp_forward_3 = metric.dtau_dp(z_test);

  unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer);
  unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer);
  unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer);
  unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer);
  Eigen::VectorXd p_sharp_forward_4 = metric.dtau_dp(z_test);

  z_test = z_init;
  metric.init(z_test, writer, error_writer);

  unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer);
  Eigen::VectorXd p_sharp_backward_1 = metric.dtau_dp(z_test);

  unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer);
  Eigen::VectorXd p_sharp_backward_2 = metric.dtau_dp(z_test);

  unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer);
  unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer);
  Eigen::VectorXd p_sharp_backward_3 = metric.dtau_dp(z_test);

  unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer);
  unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer);
  unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer);
  unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer);
  Eigen::VectorXd p_sharp_backward_4 = metric.dtau_dp(z_test);

  // Check expected tree boundaries to those dynamically geneated by NUTS
  stan::mcmc::unit_e_nuts<model_t, rng_t> sampler(model, base_rng);

  sampler.set_nominal_stepsize(epsilon);
  sampler.set_stepsize_jitter(0);
  sampler.sample_stepsize();

  stan::mcmc::ps_point z_propose = z_init;

  Eigen::VectorXd p_sharp_left = Eigen::VectorXd::Zero(z_init.p.size());
  Eigen::VectorXd p_sharp_right = Eigen::VectorXd::Zero(z_init.p.size());
  Eigen::VectorXd rho = z_init.p;
  double log_sum_weight = -std::numeric_limits<double>::infinity();

  double H0 = -0.1;
  int n_leapfrog = 0;
  double sum_metro_prob = 0;

  // Depth 0 forward
  sampler.z() = z_init;
  sampler.init_hamiltonian(writer, error_writer);
  sampler.build_tree(0, z_propose,
                     p_sharp_left, p_sharp_right, rho,
                     H0, 1, n_leapfrog, log_sum_weight,
                     sum_metro_prob,
                     writer, error_writer);

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_left(n));

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_right(n));

  // Depth 1 forward
  sampler.z() = z_init;
  sampler.init_hamiltonian(writer, error_writer);
  sampler.build_tree(1, z_propose,
                     p_sharp_left, p_sharp_right, rho,
                     H0, 1, n_leapfrog, log_sum_weight,
                     sum_metro_prob,
                     writer, error_writer);

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_left(n));

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_forward_2(n), p_sharp_right(n));

  // Depth 2 forward
  sampler.z() = z_init;
  sampler.init_hamiltonian(writer, error_writer);
  sampler.build_tree(2, z_propose,
                     p_sharp_left, p_sharp_right, rho,
                     H0, 1, n_leapfrog, log_sum_weight,
                     sum_metro_prob,
                     writer, error_writer);

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_left(n));

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_forward_3(n), p_sharp_right(n));

  // Depth 3 forward
  sampler.z() = z_init;
  sampler.init_hamiltonian(writer, error_writer);
  sampler.build_tree(3, z_propose,
                     p_sharp_left, p_sharp_right, rho,
                     H0, 1, n_leapfrog, log_sum_weight,
                     sum_metro_prob,
                     writer, error_writer);

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_left(n));

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_forward_4(n), p_sharp_right(n));

  // Depth 0 backward
  sampler.z() = z_init;
  sampler.init_hamiltonian(writer, error_writer);
  sampler.build_tree(0, z_propose,
                     p_sharp_left, p_sharp_right, rho,
                     H0, -1, n_leapfrog, log_sum_weight,
                     sum_metro_prob,
                     writer, error_writer);

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_left(n));

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_right(n));

  // Depth 1 backward
  sampler.z() = z_init;
  sampler.init_hamiltonian(writer, error_writer);
  sampler.build_tree(1, z_propose,
                     p_sharp_left, p_sharp_right, rho,
                     H0, -1, n_leapfrog, log_sum_weight,
                     sum_metro_prob,
                     writer, error_writer);

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_left(n));

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_backward_2(n), p_sharp_right(n));

  // Depth 2 backward
  sampler.z() = z_init;
  sampler.init_hamiltonian(writer, error_writer);
  sampler.build_tree(2, z_propose,
                     p_sharp_left, p_sharp_right, rho,
                     H0, -1, n_leapfrog, log_sum_weight,
                     sum_metro_prob,
                     writer, error_writer);

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_left(n));

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_backward_3(n), p_sharp_right(n));

  // Depth 3 backward
  sampler.z() = z_init;
  sampler.init_hamiltonian(writer, error_writer);
  sampler.build_tree(3, z_propose,
                     p_sharp_left, p_sharp_right, rho,
                     H0, -1, n_leapfrog, log_sum_weight,
                     sum_metro_prob,
                     writer, error_writer);

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_left(n));

  for (int n = 0; n < rho.size(); ++n)
    EXPECT_FLOAT_EQ(p_sharp_backward_4(n), p_sharp_right(n));
}