STATIC bool fold_logical_constants(parser_t *parser, const rule_t *rule, size_t *num_args) { if (rule->rule_id == RULE_or_test || rule->rule_id == RULE_and_test) { // folding for binary logical ops: or and size_t copy_to = *num_args; for (size_t i = copy_to; i > 0;) { mp_parse_node_t pn = peek_result(parser, --i); parser->result_stack[parser->result_stack_top - copy_to] = pn; if (i == 0) { // always need to keep the last value break; } if (rule->rule_id == RULE_or_test) { if (mp_parse_node_is_const_true(pn)) { // break; } else if (!mp_parse_node_is_const_false(pn)) { copy_to -= 1; } } else { // RULE_and_test if (mp_parse_node_is_const_false(pn)) { break; } else if (!mp_parse_node_is_const_true(pn)) { copy_to -= 1; } } } copy_to -= 1; // copy_to now contains number of args to pop // pop and discard all the short-circuited expressions for (size_t i = 0; i < copy_to; ++i) { pop_result(parser); } *num_args -= copy_to; // we did a complete folding if there's only 1 arg left return *num_args == 1; } else if (rule->rule_id == RULE_not_test_2) { // folding for unary logical op: not mp_parse_node_t pn = peek_result(parser, 0); if (mp_parse_node_is_const_false(pn)) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE); } else if (mp_parse_node_is_const_true(pn)) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE); } else { return false; } pop_result(parser); push_result_node(parser, pn); return true; } return false; }
STATIC void push_result_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t num_args) { // optimise away parenthesis around an expression if possible if (rule->rule_id == RULE_atom_paren) { // there should be just 1 arg for this rule mp_parse_node_t pn = peek_result(parser, 0); if (MP_PARSE_NODE_IS_NULL(pn)) { // need to keep parenthesis for () } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) { // need to keep parenthesis for (a, b, ...) } else { // parenthesis around a single expression, so it's just the expression return; } } #if MICROPY_COMP_CONST_FOLDING if (fold_logical_constants(parser, rule, &num_args)) { // we folded this rule so return straight away return; } if (fold_constants(parser, rule, num_args)) { // we folded this rule so return straight away return; } #endif mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args); pn->source_line = src_line; pn->kind_num_nodes = (rule->rule_id & 0xff) | (num_args << 8); for (size_t i = num_args; i > 0; i--) { pn->nodes[i - 1] = pop_result(parser); } push_result_node(parser, (mp_parse_node_t)pn); }
mp_parse_node_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { // allocate memory for the parser and its stacks parser_t *parser = m_new_obj(parser_t); parser->rule_stack_alloc = 64; parser->rule_stack_top = 0; parser->rule_stack = m_new(rule_stack_t, parser->rule_stack_alloc); parser->result_stack_alloc = 64; parser->result_stack_top = 0; parser->result_stack = m_new(mp_parse_node_t, parser->result_stack_alloc); // work out the top-level rule to use, and push it on the stack int top_level_rule; switch (input_kind) { case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break; //case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break; default: top_level_rule = RULE_file_input; } push_rule(parser, rules[top_level_rule], 0); // parse! uint n, i; bool backtrack = false; const rule_t *rule; mp_token_kind_t tok_kind; bool emit_rule; bool had_trailing_sep; for (;;) { next_rule: if (parser->rule_stack_top == 0) { break; } pop_rule(parser, &rule, &i); n = rule->act & RULE_ACT_ARG_MASK; /* // debugging printf("depth=%d ", parser->rule_stack_top); for (int j = 0; j < parser->rule_stack_top; ++j) { printf(" "); } printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack); */ switch (rule->act & RULE_ACT_KIND_MASK) { case RULE_ACT_OR: if (i > 0 && !backtrack) { goto next_rule; } else { backtrack = false; } for (; i < n - 1; ++i) { switch (rule->arg[i] & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(parser, lex); mp_lexer_to_next(lex); goto next_rule; } break; case RULE_ARG_RULE: push_rule(parser, rule, i + 1); push_rule_from_arg(parser, rule->arg[i]); goto next_rule; default: assert(0); } } if ((rule->arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(parser, lex); mp_lexer_to_next(lex); } else { backtrack = true; goto next_rule; } } else { push_rule_from_arg(parser, rule->arg[i]); } break; case RULE_ACT_AND: // failed, backtrack if we can, else syntax error if (backtrack) { assert(i > 0); if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { // an optional rule that failed, so continue with next arg push_result_node(parser, MP_PARSE_NODE_NULL); backtrack = false; } else { // a mandatory rule that failed, so propagate backtrack if (i > 1) { // already eaten tokens so can't backtrack goto syntax_error; } else { goto next_rule; } } } // progress through the rule for (; i < n; ++i) { switch (rule->arg[i] & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: // need to match a token tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK; if (mp_lexer_is_kind(lex, tok_kind)) { // matched token if (tok_kind == MP_TOKEN_NAME) { push_result_token(parser, lex); } mp_lexer_to_next(lex); } else { // failed to match token if (i > 0) { // already eaten tokens so can't backtrack goto syntax_error; } else { // this rule failed, so backtrack backtrack = true; goto next_rule; } } break; case RULE_ARG_RULE: //if (i + 1 < n) { push_rule(parser, rule, i + 1); //} push_rule_from_arg(parser, rule->arg[i]); goto next_rule; case RULE_ARG_OPT_RULE: push_rule(parser, rule, i + 1); push_rule_from_arg(parser, rule->arg[i]); goto next_rule; default: assert(0); } } assert(i == n); // matched the rule, so now build the corresponding parse_node // count number of arguments for the parse_node i = 0; emit_rule = false; for (int x = 0; x < n; ++x) { if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK; if (tok_kind >= MP_TOKEN_NAME) { emit_rule = true; } if (tok_kind == MP_TOKEN_NAME) { // only tokens which were names are pushed to stack i += 1; } } else { // rules are always pushed i += 1; } } // always emit these rules, even if they have only 1 argument if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) { emit_rule = true; } // never emit these rules if they have only 1 argument // NOTE: can't put atom_paren here because we need it to distinguisg, for example, [a,b] from [(a,b)] // TODO possibly put varargslist_name, varargslist_equal here as well if (rule->rule_id == RULE_else_stmt || rule->rule_id == RULE_testlist_comp_3b || rule->rule_id == RULE_import_as_names_paren || rule->rule_id == RULE_typedargslist_name || rule->rule_id == RULE_typedargslist_colon || rule->rule_id == RULE_typedargslist_equal || rule->rule_id == RULE_dictorsetmaker_colon || rule->rule_id == RULE_classdef_2 || rule->rule_id == RULE_with_item_as || rule->rule_id == RULE_assert_stmt_extra || rule->rule_id == RULE_as_name || rule->rule_id == RULE_raise_stmt_from || rule->rule_id == RULE_vfpdef) { emit_rule = false; } // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data) if (rule->rule_id == RULE_funcdef || rule->rule_id == RULE_classdef || rule->rule_id == RULE_comp_for || rule->rule_id == RULE_lambdef || rule->rule_id == RULE_lambdef_nocond) { emit_rule = true; push_result_node(parser, MP_PARSE_NODE_NULL); i += 1; } int num_not_nil = 0; for (int x = 0; x < i; ++x) { if (peek_result(parser, x) != MP_PARSE_NODE_NULL) { num_not_nil += 1; } } //printf("done and %s n=%d i=%d notnil=%d\n", rule->rule_name, n, i, num_not_nil); if (emit_rule) { push_result_rule(parser, rule, i); } else if (num_not_nil == 0) { push_result_rule(parser, rule, i); // needed for, eg, atom_paren, testlist_comp_3b //result_stack_show(parser); //assert(0); } else if (num_not_nil == 1) { // single result, leave it on stack mp_parse_node_t pn = MP_PARSE_NODE_NULL; for (int x = 0; x < i; ++x) { mp_parse_node_t pn2 = pop_result(parser); if (pn2 != MP_PARSE_NODE_NULL) { pn = pn2; } } push_result_node(parser, pn); } else { push_result_rule(parser, rule, i); } break; case RULE_ACT_LIST: // n=2 is: item item* // n=1 is: item (sep item)* // n=3 is: item (sep item)* [sep] if (backtrack) { list_backtrack: had_trailing_sep = false; if (n == 2) { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else { // fail on item, in later rounds; finish with this rule backtrack = false; } } else { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else if ((i & 1) == 1) { // fail on item, in later rounds; have eaten tokens so can't backtrack if (n == 3) { // list allows trailing separator; finish parsing list had_trailing_sep = true; backtrack = false; } else { // list doesn't allowing trailing separator; fail goto syntax_error; } } else { // fail on separator; finish parsing list backtrack = false; } } } else { for (;;) { uint arg = rule->arg[i & 1 & n]; switch (arg & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: if (mp_lexer_is_kind(lex, arg & RULE_ARG_ARG_MASK)) { if (i & 1 & n) { // separators which are tokens are not pushed to result stack } else { push_result_token(parser, lex); } mp_lexer_to_next(lex); // got element of list, so continue parsing list i += 1; } else { // couldn't get element of list i += 1; backtrack = true; goto list_backtrack; } break; case RULE_ARG_RULE: push_rule(parser, rule, i + 1); push_rule_from_arg(parser, arg); goto next_rule; default: assert(0); } } } assert(i >= 1); // compute number of elements in list, result in i i -= 1; if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { // don't count separators when they are tokens i = (i + 1) / 2; } if (i == 1) { // list matched single item if (had_trailing_sep) { // if there was a trailing separator, make a list of a single item push_result_rule(parser, rule, i); } else { // just leave single item on stack (ie don't wrap in a list) } } else { //printf("done list %s %d %d\n", rule->rule_name, n, i); push_result_rule(parser, rule, i); } break; default: assert(0); } } // check we are at the end of the token stream if (!mp_lexer_is_kind(lex, MP_TOKEN_END)) { goto syntax_error; } //printf("--------------\n"); //result_stack_show(parser); //printf("rule stack alloc: %d\n", parser->rule_stack_alloc); //printf("result stack alloc: %d\n", parser->result_stack_alloc); //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated); // get the root parse node that we created assert(parser->result_stack_top == 1); mp_parse_node_t result = parser->result_stack[0]; finished: // free the memory that we don't need anymore m_del(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc); m_del(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc); m_del_obj(parser_t, parser); // return the result return result; syntax_error: // TODO these should raise a proper exception if (mp_lexer_is_kind(lex, MP_TOKEN_INDENT)) { mp_lexer_show_error_pythonic(lex, "IndentationError: unexpected indent"); } else if (mp_lexer_is_kind(lex, MP_TOKEN_DEDENT_MISMATCH)) { mp_lexer_show_error_pythonic(lex, "IndentationError: unindent does not match any outer indentation level"); } else { mp_lexer_show_error_pythonic(lex, "syntax error:"); #ifdef USE_RULE_NAME mp_lexer_show_error(lex, rule->rule_name); #endif mp_token_show(mp_lexer_cur(lex)); } result = MP_PARSE_NODE_NULL; goto finished; }
mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { // initialise parser and allocate memory for its stacks parser_t parser; parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; parser.rule_stack_top = 0; parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc); parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT; parser.result_stack_top = 0; parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc); parser.lexer = lex; parser.tree.chunk = NULL; parser.cur_chunk = NULL; #if MICROPY_COMP_CONST mp_map_init(&parser.consts, 0); #endif // work out the top-level rule to use, and push it on the stack size_t top_level_rule; switch (input_kind) { case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break; case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break; default: top_level_rule = RULE_file_input; } push_rule(&parser, lex->tok_line, rules[top_level_rule], 0); // parse! size_t n, i; // state for the current rule size_t rule_src_line; // source line for the first token matched by the current rule bool backtrack = false; const rule_t *rule = NULL; for (;;) { next_rule: if (parser.rule_stack_top == 0) { break; } pop_rule(&parser, &rule, &i, &rule_src_line); n = rule->act & RULE_ACT_ARG_MASK; /* // debugging printf("depth=%d ", parser.rule_stack_top); for (int j = 0; j < parser.rule_stack_top; ++j) { printf(" "); } printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack); */ switch (rule->act & RULE_ACT_KIND_MASK) { case RULE_ACT_OR: if (i > 0 && !backtrack) { goto next_rule; } else { backtrack = false; } for (; i < n; ++i) { uint16_t kind = rule->arg[i] & RULE_ARG_KIND_MASK; if (kind == RULE_ARG_TOK) { if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(&parser, rule); mp_lexer_to_next(lex); goto next_rule; } } else { assert(kind == RULE_ARG_RULE); if (i + 1 < n) { push_rule(&parser, rule_src_line, rule, i + 1); // save this or-rule } push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule goto next_rule; } } backtrack = true; break; case RULE_ACT_AND: { // failed, backtrack if we can, else syntax error if (backtrack) { assert(i > 0); if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { // an optional rule that failed, so continue with next arg push_result_node(&parser, MP_PARSE_NODE_NULL); backtrack = false; } else { // a mandatory rule that failed, so propagate backtrack if (i > 1) { // already eaten tokens so can't backtrack goto syntax_error; } else { goto next_rule; } } } // progress through the rule for (; i < n; ++i) { if ((rule->arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { // need to match a token mp_token_kind_t tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK; if (lex->tok_kind == tok_kind) { // matched token if (tok_kind == MP_TOKEN_NAME) { push_result_token(&parser, rule); } mp_lexer_to_next(lex); } else { // failed to match token if (i > 0) { // already eaten tokens so can't backtrack goto syntax_error; } else { // this rule failed, so backtrack backtrack = true; goto next_rule; } } } else { push_rule(&parser, rule_src_line, rule, i + 1); // save this and-rule push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule goto next_rule; } } assert(i == n); // matched the rule, so now build the corresponding parse_node #if !MICROPY_ENABLE_DOC_STRING // this code discards lonely statements, such as doc strings if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { mp_parse_node_t p = peek_result(&parser, 1); if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) { pop_result(&parser); // MP_PARSE_NODE_NULL pop_result(&parser); // const expression (leaf or RULE_const_object) // Pushing the "pass" rule here will overwrite any RULE_const_object // entry that was on the result stack, allowing the GC to reclaim // the memory from the const object when needed. push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0); break; } } #endif // count number of arguments for the parse node i = 0; size_t num_not_nil = 0; for (size_t x = n; x > 0;) { --x; if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK; if (tok_kind == MP_TOKEN_NAME) { // only tokens which were names are pushed to stack i += 1; num_not_nil += 1; } } else { // rules are always pushed if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) { num_not_nil += 1; } i += 1; } } if (num_not_nil == 1 && (rule->act & RULE_ACT_ALLOW_IDENT)) { // this rule has only 1 argument and should not be emitted mp_parse_node_t pn = MP_PARSE_NODE_NULL; for (size_t x = 0; x < i; ++x) { mp_parse_node_t pn2 = pop_result(&parser); if (pn2 != MP_PARSE_NODE_NULL) { pn = pn2; } } push_result_node(&parser, pn); } else { // this rule must be emitted if (rule->act & RULE_ACT_ADD_BLANK) { // and add an extra blank node at the end (used by the compiler to store data) push_result_node(&parser, MP_PARSE_NODE_NULL); i += 1; } push_result_rule(&parser, rule_src_line, rule, i); } break; } default: { assert((rule->act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST); // n=2 is: item item* // n=1 is: item (sep item)* // n=3 is: item (sep item)* [sep] bool had_trailing_sep; if (backtrack) { list_backtrack: had_trailing_sep = false; if (n == 2) { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else { // fail on item, in later rounds; finish with this rule backtrack = false; } } else { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else if ((i & 1) == 1) { // fail on item, in later rounds; have eaten tokens so can't backtrack if (n == 3) { // list allows trailing separator; finish parsing list had_trailing_sep = true; backtrack = false; } else { // list doesn't allowing trailing separator; fail goto syntax_error; } } else { // fail on separator; finish parsing list backtrack = false; } } } else { for (;;) { size_t arg = rule->arg[i & 1 & n]; if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) { if (i & 1 & n) { // separators which are tokens are not pushed to result stack } else { push_result_token(&parser, rule); } mp_lexer_to_next(lex); // got element of list, so continue parsing list i += 1; } else { // couldn't get element of list i += 1; backtrack = true; goto list_backtrack; } } else { assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE); push_rule(&parser, rule_src_line, rule, i + 1); // save this list-rule push_rule_from_arg(&parser, arg); // push child of list-rule goto next_rule; } } } assert(i >= 1); // compute number of elements in list, result in i i -= 1; if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { // don't count separators when they are tokens i = (i + 1) / 2; } if (i == 1) { // list matched single item if (had_trailing_sep) { // if there was a trailing separator, make a list of a single item push_result_rule(&parser, rule_src_line, rule, i); } else { // just leave single item on stack (ie don't wrap in a list) } } else { push_result_rule(&parser, rule_src_line, rule, i); } break; } } } #if MICROPY_COMP_CONST mp_map_deinit(&parser.consts); #endif // truncate final chunk and link into chain of chunks if (parser.cur_chunk != NULL) { (void)m_renew_maybe(byte, parser.cur_chunk, sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc, sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used, false); parser.cur_chunk->alloc = parser.cur_chunk->union_.used; parser.cur_chunk->union_.next = parser.tree.chunk; parser.tree.chunk = parser.cur_chunk; } if ( lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream || parser.result_stack_top == 0 // check that we got a node (can fail on empty input) ) { syntax_error:; mp_obj_t exc; if (lex->tok_kind == MP_TOKEN_INDENT) { exc = mp_obj_new_exception_msg(&mp_type_IndentationError, "unexpected indent"); } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) { exc = mp_obj_new_exception_msg(&mp_type_IndentationError, "unindent does not match any outer indentation level"); } else { exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, "invalid syntax"); } // add traceback to give info about file name and location // we don't have a 'block' name, so just pass the NULL qstr to indicate this mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL); nlr_raise(exc); } // get the root parse node that we created assert(parser.result_stack_top == 1); parser.tree.root = parser.result_stack[0]; // free the memory that we don't need anymore m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc); m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc); // we also free the lexer on behalf of the caller mp_lexer_free(lex); return parser.tree; }
STATIC bool fold_constants(parser_t *parser, const rule_t *rule, size_t num_args) { // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4 // it does not do partial folding, eg 1 + 2 + x -> 3 + x mp_obj_t arg0; if (rule->rule_id == RULE_expr || rule->rule_id == RULE_xor_expr || rule->rule_id == RULE_and_expr) { // folding for binary ops: | ^ & mp_parse_node_t pn = peek_result(parser, num_args - 1); if (!mp_parse_node_get_int_maybe(pn, &arg0)) { return false; } mp_binary_op_t op; if (rule->rule_id == RULE_expr) { op = MP_BINARY_OP_OR; } else if (rule->rule_id == RULE_xor_expr) { op = MP_BINARY_OP_XOR; } else { op = MP_BINARY_OP_AND; } for (ssize_t i = num_args - 2; i >= 0; --i) { pn = peek_result(parser, i); mp_obj_t arg1; if (!mp_parse_node_get_int_maybe(pn, &arg1)) { return false; } arg0 = mp_binary_op(op, arg0, arg1); } } else if (rule->rule_id == RULE_shift_expr || rule->rule_id == RULE_arith_expr || rule->rule_id == RULE_term) { // folding for binary ops: << >> + - * / % // mp_parse_node_t pn = peek_result(parser, num_args - 1); if (!mp_parse_node_get_int_maybe(pn, &arg0)) { return false; } for (ssize_t i = num_args - 2; i >= 1; i -= 2) { pn = peek_result(parser, i - 1); mp_obj_t arg1; if (!mp_parse_node_get_int_maybe(pn, &arg1)) { return false; } mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i)); static const uint8_t token_to_op[] = { MP_BINARY_OP_ADD, MP_BINARY_OP_SUBTRACT, MP_BINARY_OP_MULTIPLY, 255,//MP_BINARY_OP_POWER, 255,//MP_BINARY_OP_TRUE_DIVIDE, MP_BINARY_OP_FLOOR_DIVIDE, MP_BINARY_OP_MODULO, 255,//MP_BINARY_OP_LESS MP_BINARY_OP_LSHIFT, 255,//MP_BINARY_OP_MORE MP_BINARY_OP_RSHIFT, }; mp_binary_op_t op = token_to_op[tok - MP_TOKEN_OP_PLUS]; if (op == (mp_binary_op_t)255) { return false; } int rhs_sign = mp_obj_int_sign(arg1); if (op <= MP_BINARY_OP_RSHIFT) { // << and >> can't have negative rhs if (rhs_sign < 0) { return false; } } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) { // % and // can't have zero rhs if (rhs_sign == 0) { return false; } } arg0 = mp_binary_op(op, arg0, arg1); } } else if (rule->rule_id == RULE_factor_2) { // folding for unary ops: + - ~ mp_parse_node_t pn = peek_result(parser, 0); if (!mp_parse_node_get_int_maybe(pn, &arg0)) { return false; } mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1)); mp_unary_op_t op; if (tok == MP_TOKEN_OP_PLUS) { op = MP_UNARY_OP_POSITIVE; } else if (tok == MP_TOKEN_OP_MINUS) { op = MP_UNARY_OP_NEGATIVE; } else { assert(tok == MP_TOKEN_OP_TILDE); // should be op = MP_UNARY_OP_INVERT; } arg0 = mp_unary_op(op, arg0); #if MICROPY_COMP_CONST } else if (rule->rule_id == RULE_expr_stmt) { mp_parse_node_t pn1 = peek_result(parser, 0); if (!MP_PARSE_NODE_IS_NULL(pn1) && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign) || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) { // this node is of the form <x> = <y> mp_parse_node_t pn0 = peek_result(parser, 1); if (MP_PARSE_NODE_IS_ID(pn0) && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal) && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0]) && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren) ) { // code to assign dynamic constants: id = const(value) // get the id qstr id = MP_PARSE_NODE_LEAF_ARG(pn0); // get the value mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0]; mp_obj_t value; if (!mp_parse_node_get_int_maybe(pn_value, &value)) { mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, "constant must be an integer"); mp_obj_exception_add_traceback(exc, parser->lexer->source_name, ((mp_parse_node_struct_t*)pn1)->source_line, MP_QSTR_NULL); nlr_raise(exc); } // store the value in the table of dynamic constants mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); assert(elem->value == MP_OBJ_NULL); elem->value = value; // If the constant starts with an underscore then treat it as a private // variable and don't emit any code to store the value to the id. if (qstr_str(id)[0] == '_') { pop_result(parser); // pop const(value) pop_result(parser); // pop id push_result_rule(parser, 0, rules[RULE_pass_stmt], 0); // replace with "pass" return true; } // replace const(value) with value pop_result(parser); push_result_node(parser, pn_value); // finished folding this assignment, but we still want it to be part of the tree return false; } } return false; #endif #if MICROPY_COMP_MODULE_CONST } else if (rule->rule_id == RULE_atom_expr_normal) { mp_parse_node_t pn0 = peek_result(parser, 1); mp_parse_node_t pn1 = peek_result(parser, 0); if (!(MP_PARSE_NODE_IS_ID(pn0) && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) { return false; } // id1.id2 // look it up in constant table, see if it can be replaced with an integer mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1; assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0); qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP); if (elem == NULL) { return false; } mp_obj_t dest[2]; mp_load_method_maybe(elem->value, q_attr, dest); if (!(dest[0] != MP_OBJ_NULL && MP_OBJ_IS_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) { return false; } arg0 = dest[0]; #endif } else { return false; } // success folding this rule for (size_t i = num_args; i > 0; i--) { pop_result(parser); } if (MP_OBJ_IS_SMALL_INT(arg0)) { push_result_node(parser, mp_parse_node_new_small_int(MP_OBJ_SMALL_INT_VALUE(arg0))); } else { // TODO reuse memory for parse node struct? push_result_node(parser, make_node_const_object(parser, 0, arg0)); } return true; }
mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { // initialise parser and allocate memory for its stacks parser_t parser; parser.parse_error = PARSE_ERROR_NONE; parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; parser.rule_stack_top = 0; parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc); parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT; parser.result_stack_top = 0; parser.result_stack = m_new_maybe(mp_parse_node_t, parser.result_stack_alloc); parser.lexer = lex; parser.tree.chunk = NULL; parser.cur_chunk = NULL; #if MICROPY_COMP_CONST mp_map_init(&parser.consts, 0); #endif // check if we could allocate the stacks if (parser.rule_stack == NULL || parser.result_stack == NULL) { goto memory_error; } // work out the top-level rule to use, and push it on the stack size_t top_level_rule; switch (input_kind) { case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break; case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break; default: top_level_rule = RULE_file_input; } push_rule(&parser, lex->tok_line, rules[top_level_rule], 0); // parse! size_t n, i; // state for the current rule size_t rule_src_line; // source line for the first token matched by the current rule bool backtrack = false; const rule_t *rule = NULL; for (;;) { next_rule: if (parser.rule_stack_top == 0 || parser.parse_error) { break; } pop_rule(&parser, &rule, &i, &rule_src_line); n = rule->act & RULE_ACT_ARG_MASK; /* // debugging printf("depth=%d ", parser.rule_stack_top); for (int j = 0; j < parser.rule_stack_top; ++j) { printf(" "); } printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack); */ switch (rule->act & RULE_ACT_KIND_MASK) { case RULE_ACT_OR: if (i > 0 && !backtrack) { goto next_rule; } else { backtrack = false; } for (; i < n; ++i) { uint16_t kind = rule->arg[i] & RULE_ARG_KIND_MASK; if (kind == RULE_ARG_TOK) { if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(&parser); mp_lexer_to_next(lex); goto next_rule; } } else { assert(kind == RULE_ARG_RULE); if (i + 1 < n) { push_rule(&parser, rule_src_line, rule, i + 1); // save this or-rule } push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule goto next_rule; } } backtrack = true; break; case RULE_ACT_AND: { // failed, backtrack if we can, else syntax error if (backtrack) { assert(i > 0); if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { // an optional rule that failed, so continue with next arg push_result_node(&parser, MP_PARSE_NODE_NULL); backtrack = false; } else { // a mandatory rule that failed, so propagate backtrack if (i > 1) { // already eaten tokens so can't backtrack goto syntax_error; } else { goto next_rule; } } } // progress through the rule for (; i < n; ++i) { switch (rule->arg[i] & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: { // need to match a token mp_token_kind_t tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK; if (lex->tok_kind == tok_kind) { // matched token if (tok_kind == MP_TOKEN_NAME) { push_result_token(&parser); } mp_lexer_to_next(lex); } else { // failed to match token if (i > 0) { // already eaten tokens so can't backtrack goto syntax_error; } else { // this rule failed, so backtrack backtrack = true; goto next_rule; } } break; } case RULE_ARG_RULE: case RULE_ARG_OPT_RULE: rule_and_no_other_choice: push_rule(&parser, rule_src_line, rule, i + 1); // save this and-rule push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule goto next_rule; default: assert(0); goto rule_and_no_other_choice; // to help flow control analysis } } assert(i == n); // matched the rule, so now build the corresponding parse_node #if !MICROPY_ENABLE_DOC_STRING // this code discards lonely statements, such as doc strings if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { mp_parse_node_t p = peek_result(&parser, 1); if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) { pop_result(&parser); // MP_PARSE_NODE_NULL mp_parse_node_t pn = pop_result(&parser); // possibly RULE_string if (MP_PARSE_NODE_IS_STRUCT(pn)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) { m_del(char, (char*)pns->nodes[0], (size_t)pns->nodes[1]); } } push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0); break; } } #endif // count number of arguments for the parse node i = 0; size_t num_not_nil = 0; for (size_t x = n; x > 0;) { --x; if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK; if (tok_kind == MP_TOKEN_NAME) { // only tokens which were names are pushed to stack i += 1; num_not_nil += 1; } } else { // rules are always pushed if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) { num_not_nil += 1; } i += 1; } } if (num_not_nil == 1 && (rule->act & RULE_ACT_ALLOW_IDENT)) { // this rule has only 1 argument and should not be emitted mp_parse_node_t pn = MP_PARSE_NODE_NULL; for (size_t x = 0; x < i; ++x) { mp_parse_node_t pn2 = pop_result(&parser); if (pn2 != MP_PARSE_NODE_NULL) { pn = pn2; } } push_result_node(&parser, pn); } else { // this rule must be emitted if (rule->act & RULE_ACT_ADD_BLANK) { // and add an extra blank node at the end (used by the compiler to store data) push_result_node(&parser, MP_PARSE_NODE_NULL); i += 1; } push_result_rule(&parser, rule_src_line, rule, i); } break; }
mp_parse_node_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, mp_parse_error_kind_t *parse_error_kind_out) { // initialise parser and allocate memory for its stacks parser_t parser; parser.had_memory_error = false; parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; parser.rule_stack_top = 0; parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc); parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT; parser.result_stack_top = 0; parser.result_stack = m_new_maybe(mp_parse_node_t, parser.result_stack_alloc); parser.lexer = lex; // check if we could allocate the stacks if (parser.rule_stack == NULL || parser.result_stack == NULL) { goto memory_error; } // work out the top-level rule to use, and push it on the stack int top_level_rule; switch (input_kind) { case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break; case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break; default: top_level_rule = RULE_file_input; } push_rule(&parser, mp_lexer_cur(lex)->src_line, rules[top_level_rule], 0); // parse! uint n, i; // state for the current rule uint rule_src_line; // source line for the first token matched by the current rule bool backtrack = false; const rule_t *rule = NULL; mp_token_kind_t tok_kind; bool emit_rule; bool had_trailing_sep; for (;;) { next_rule: if (parser.rule_stack_top == 0 || parser.had_memory_error) { break; } pop_rule(&parser, &rule, &i, &rule_src_line); n = rule->act & RULE_ACT_ARG_MASK; /* // debugging printf("depth=%d ", parser.rule_stack_top); for (int j = 0; j < parser.rule_stack_top; ++j) { printf(" "); } printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack); */ switch (rule->act & RULE_ACT_KIND_MASK) { case RULE_ACT_OR: if (i > 0 && !backtrack) { goto next_rule; } else { backtrack = false; } for (; i < n - 1; ++i) { switch (rule->arg[i] & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(&parser, lex); mp_lexer_to_next(lex); goto next_rule; } break; case RULE_ARG_RULE: push_rule(&parser, rule_src_line, rule, i + 1); // save this or-rule push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule goto next_rule; default: assert(0); } } if ((rule->arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { if (mp_lexer_is_kind(lex, rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(&parser, lex); mp_lexer_to_next(lex); } else { backtrack = true; goto next_rule; } } else { push_rule_from_arg(&parser, rule->arg[i]); } break; case RULE_ACT_AND: // failed, backtrack if we can, else syntax error if (backtrack) { assert(i > 0); if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { // an optional rule that failed, so continue with next arg push_result_node(&parser, MP_PARSE_NODE_NULL); backtrack = false; } else { // a mandatory rule that failed, so propagate backtrack if (i > 1) { // already eaten tokens so can't backtrack goto syntax_error; } else { goto next_rule; } } } // progress through the rule for (; i < n; ++i) { switch (rule->arg[i] & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: // need to match a token tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK; if (mp_lexer_is_kind(lex, tok_kind)) { // matched token if (tok_kind == MP_TOKEN_NAME) { push_result_token(&parser, lex); } mp_lexer_to_next(lex); } else { // failed to match token if (i > 0) { // already eaten tokens so can't backtrack goto syntax_error; } else { // this rule failed, so backtrack backtrack = true; goto next_rule; } } break; case RULE_ARG_RULE: case RULE_ARG_OPT_RULE: push_rule(&parser, rule_src_line, rule, i + 1); // save this and-rule push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule goto next_rule; default: assert(0); } } assert(i == n); // matched the rule, so now build the corresponding parse_node // count number of arguments for the parse_node i = 0; emit_rule = false; for (int x = 0; x < n; ++x) { if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK; if (tok_kind >= MP_TOKEN_NAME) { emit_rule = true; } if (tok_kind == MP_TOKEN_NAME) { // only tokens which were names are pushed to stack i += 1; } } else { // rules are always pushed i += 1; } } #if !MICROPY_EMIT_CPYTHON && !MICROPY_ENABLE_DOC_STRING // this code discards lonely statements, such as doc strings if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { mp_parse_node_t p = peek_result(&parser, 1); if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) { pop_result(&parser); pop_result(&parser); push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0); break; } } #endif // always emit these rules, even if they have only 1 argument if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) { emit_rule = true; } // never emit these rules if they have only 1 argument // NOTE: can't put atom_paren here because we need it to distinguisg, for example, [a,b] from [(a,b)] // TODO possibly put varargslist_name, varargslist_equal here as well if (rule->rule_id == RULE_else_stmt || rule->rule_id == RULE_testlist_comp_3b || rule->rule_id == RULE_import_as_names_paren || rule->rule_id == RULE_typedargslist_name || rule->rule_id == RULE_typedargslist_colon || rule->rule_id == RULE_typedargslist_equal || rule->rule_id == RULE_dictorsetmaker_colon || rule->rule_id == RULE_classdef_2 || rule->rule_id == RULE_with_item_as || rule->rule_id == RULE_assert_stmt_extra || rule->rule_id == RULE_as_name || rule->rule_id == RULE_raise_stmt_from || rule->rule_id == RULE_vfpdef) { emit_rule = false; } // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data) if (ADD_BLANK_NODE(rule->rule_id)) { emit_rule = true; push_result_node(&parser, MP_PARSE_NODE_NULL); i += 1; } int num_not_nil = 0; for (int x = 0; x < i; ++x) { if (peek_result(&parser, x) != MP_PARSE_NODE_NULL) { num_not_nil += 1; } } //printf("done and %s n=%d i=%d notnil=%d\n", rule->rule_name, n, i, num_not_nil); if (emit_rule) { push_result_rule(&parser, rule_src_line, rule, i); } else if (num_not_nil == 0) { push_result_rule(&parser, rule_src_line, rule, i); // needed for, eg, atom_paren, testlist_comp_3b //result_stack_show(parser); //assert(0); } else if (num_not_nil == 1) { // single result, leave it on stack mp_parse_node_t pn = MP_PARSE_NODE_NULL; for (int x = 0; x < i; ++x) { mp_parse_node_t pn2 = pop_result(&parser); if (pn2 != MP_PARSE_NODE_NULL) { pn = pn2; } } push_result_node(&parser, pn); } else { push_result_rule(&parser, rule_src_line, rule, i); } break; case RULE_ACT_LIST: // n=2 is: item item* // n=1 is: item (sep item)* // n=3 is: item (sep item)* [sep] if (backtrack) { list_backtrack: had_trailing_sep = false; if (n == 2) { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else { // fail on item, in later rounds; finish with this rule backtrack = false; } } else { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else if ((i & 1) == 1) { // fail on item, in later rounds; have eaten tokens so can't backtrack if (n == 3) { // list allows trailing separator; finish parsing list had_trailing_sep = true; backtrack = false; } else { // list doesn't allowing trailing separator; fail goto syntax_error; } } else { // fail on separator; finish parsing list backtrack = false; } } } else { for (;;) { uint arg = rule->arg[i & 1 & n]; switch (arg & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: if (mp_lexer_is_kind(lex, arg & RULE_ARG_ARG_MASK)) { if (i & 1 & n) { // separators which are tokens are not pushed to result stack } else { push_result_token(&parser, lex); } mp_lexer_to_next(lex); // got element of list, so continue parsing list i += 1; } else { // couldn't get element of list i += 1; backtrack = true; goto list_backtrack; } break; case RULE_ARG_RULE: push_rule(&parser, rule_src_line, rule, i + 1); // save this list-rule push_rule_from_arg(&parser, arg); // push child of list-rule goto next_rule; default: assert(0); } } } assert(i >= 1); // compute number of elements in list, result in i i -= 1; if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { // don't count separators when they are tokens i = (i + 1) / 2; } if (i == 1) { // list matched single item if (had_trailing_sep) { // if there was a trailing separator, make a list of a single item push_result_rule(&parser, rule_src_line, rule, i); } else { // just leave single item on stack (ie don't wrap in a list) } } else { //printf("done list %s %d %d\n", rule->rule_name, n, i); push_result_rule(&parser, rule_src_line, rule, i); } break; default: assert(0); } } mp_parse_node_t result; // check if we had a memory error if (parser.had_memory_error) { memory_error: *parse_error_kind_out = MP_PARSE_ERROR_MEMORY; result = MP_PARSE_NODE_NULL; goto finished; } // check we are at the end of the token stream if (!mp_lexer_is_kind(lex, MP_TOKEN_END)) { goto syntax_error; } //printf("--------------\n"); //result_stack_show(parser); //printf("rule stack alloc: %d\n", parser.rule_stack_alloc); //printf("result stack alloc: %d\n", parser.result_stack_alloc); //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated); // get the root parse node that we created assert(parser.result_stack_top == 1); result = parser.result_stack[0]; finished: // free the memory that we don't need anymore m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc); m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc); // return the result return result; syntax_error: if (mp_lexer_is_kind(lex, MP_TOKEN_INDENT)) { *parse_error_kind_out = MP_PARSE_ERROR_UNEXPECTED_INDENT; } else if (mp_lexer_is_kind(lex, MP_TOKEN_DEDENT_MISMATCH)) { *parse_error_kind_out = MP_PARSE_ERROR_UNMATCHED_UNINDENT; } else { *parse_error_kind_out = MP_PARSE_ERROR_INVALID_SYNTAX; #ifdef USE_RULE_NAME // debugging: print the rule name that failed and the token printf("rule: %s\n", rule->rule_name); #if MICROPY_DEBUG_PRINTERS mp_token_show(mp_lexer_cur(lex)); #endif #endif } result = MP_PARSE_NODE_NULL; goto finished; }