Ejemplo n.º 1
0
/*!
 *  dewarpApplyDisparity()
 *
 *      Input:  dew
 *              pixs (image to be modified; can be 1, 8 or 32 bpp)
 *              debugflag
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This applies the vertical disparity array to the specified
 *          image.  For src pixels above the image, we use the pixels
 *          in the first raster line.
 *      (2) This works with stripped models.  If the full resolution
 *          disparity array(s) are missing, they are remade.
 */
l_int32
dewarpApplyDisparity(L_DEWARP  *dew,
                     PIX       *pixs,
                     l_int32    debugflag)
{
PIX  *pixv, *pixd;

    PROCNAME("dewarpApplyDisparity");

    if (!dew)
        return ERROR_INT("dew not defined", procName, 1);
    if (dew->success == 0)
        return ERROR_INT("model failed to build", procName, 1);
    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 1);

        /* Generate the full res disparity arrays if they don't exist;
         * e.g., if they've been minimized or read from file.  */
    dewarpPopulateFullRes(dew);
    pixDestroy(&dew->pixd);  /* remove any previous one */

    if ((pixv = pixApplyVerticalDisparity(pixs, dew->fullvdispar)) == NULL)
        return ERROR_INT("pixv not made", procName, 1);
    if (debugflag) {
        pixDisplayWithTitle(pixv, 300, 0, "pixv", 1);
        pixWriteTempfile("/tmp", "pixv.png", pixv, IFF_PNG, NULL);
    }

    if (dew->applyhoriz) {
        if ((pixd = pixApplyHorizontalDisparity(pixv, dew->fullhdispar,
                                                dew->extraw)) == NULL)
            return ERROR_INT("pixd not made", procName, 1);
        pixDestroy(&pixv);
        dew->pixd = pixd;
        if (debugflag) {
            pixDisplayWithTitle(pixd, 600, 0, "pixd", 1);
            pixWriteTempfile("/tmp", "pixd.png", pixd, IFF_PNG, NULL);
        }
    }
    else
        dew->pixd = pixv;
    return 0;
}
Ejemplo n.º 2
0
/*!
 *  selaAddTJunctions()
 *
 *      Input:  sela (<optional>)
 *              hlsize (length of each line of hits from origin)
 *              mdist (distance of misses from the origin)
 *              norient (number of orientations; max of 8)
 *              debugflag (1 for debug output)
 *      Return: sela with additional sels, or null on error
 *
 *  Notes:
 *      (1) Adds hitmiss Sels for the T-junction of two lines.
 *          If the lines are very thin, they must be nearly orthogonal
 *          to register.
 *      (2) The number of Sels generated is 4 * @norient.
 *      (3) It is suggested that @hlsize be chosen at least 1 greater
 *          than @mdist.  Try values of (@hlsize, @mdist) such as
 *          (6,5), (7,6), (8,7), (9,7), etc.
 */
SELA *
selaAddTJunctions(SELA      *sela,
                  l_float32  hlsize,
                  l_float32  mdist,
                  l_int32    norient,
                  l_int32    debugflag)
{
char       name[L_BUF_SIZE];
l_int32    i, j, k, w, xc, yc;
l_float64  pi, halfpi, radincr, jang, radang;
l_float64  angle[3], dist[3];
PIX       *pixc, *pixm, *pixt;
PIXA      *pixa;
PTA       *pta1, *pta2, *pta3;
SEL       *sel;

    PROCNAME("selaAddTJunctions");

    if (hlsize <= 2)
        return (SELA *)ERROR_PTR("hlsizel not > 1", procName, NULL);
    if (norient < 1 || norient > 8)
        return (SELA *)ERROR_PTR("norient not in [1, ... 8]", procName, NULL);

    if (!sela) {
        if ((sela = selaCreate(0)) == NULL)
            return (SELA *)ERROR_PTR("sela not made", procName, NULL);
    }

    pi = 3.1415926535;
    halfpi = 3.1415926535 / 2.0;
    radincr = halfpi / (l_float32)norient;
    w = (l_int32)(2.4 * (L_MAX(hlsize, mdist) + 0.5));
    if (w % 2 == 0)
        w++;
    xc = w / 2;
    yc = w / 2;

    pixa = pixaCreate(4 * norient);
    for (i = 0; i < norient; i++) {
        for (j = 0; j < 4; j++) {  /* 4 orthogonal orientations */
            jang = (l_float32)j * halfpi;

                /* Set the don't cares */
            pixc = pixCreate(w, w, 32);
            pixSetAll(pixc);

                /* Add the green lines of hits */
            pixm = pixCreate(w, w, 1);
            radang = (l_float32)i * radincr;
            pta1 = generatePtaLineFromPt(xc, yc, hlsize + 1, jang + radang);
            pta2 = generatePtaLineFromPt(xc, yc, hlsize + 1,
                                         jang + radang + halfpi);
            pta3 = generatePtaLineFromPt(xc, yc, hlsize + 1,
                                         jang + radang + pi);
            ptaJoin(pta1, pta2, 0, -1);
            ptaJoin(pta1, pta3, 0, -1);
            pixRenderPta(pixm, pta1, L_SET_PIXELS);
            pixPaintThroughMask(pixc, pixm, 0, 0, 0x00ff0000);
            ptaDestroy(&pta1);
            ptaDestroy(&pta2);
            ptaDestroy(&pta3);

                /* Add red misses between the lines */
            angle[0] = radang + jang - halfpi;
            angle[1] = radang + jang + 0.5 * halfpi;
            angle[2] = radang + jang + 1.5 * halfpi;
            dist[0] = 0.8 * mdist;
            dist[1] = dist[2] = mdist;
            for (k = 0; k < 3; k++) {
                pixSetPixel(pixc, xc + (l_int32)(dist[k] * cos(angle[k])),
                            yc + (l_int32)(dist[k] * sin(angle[k])),
                            0xff000000);
            }

                /* Add dark green for origin */
            pixSetPixel(pixc, xc, yc, 0x00550000);

                /* Generate the sel */
            sel = selCreateFromColorPix(pixc, NULL);
            sprintf(name, "sel_cross_%d", 4 * i + j);
            selaAddSel(sela, sel, name, 0);

            if (debugflag) {
                pixt = pixScaleBySampling(pixc, 10.0, 10.0);
                pixaAddPix(pixa, pixt, L_INSERT);
            }
            pixDestroy(&pixm);
            pixDestroy(&pixc);
        }
    }

    if (debugflag) {
        l_int32  w;
        pixaGetPixDimensions(pixa, 0, &w, NULL, NULL);
        pixt = pixaDisplayTiledAndScaled(pixa, 32, w, 4, 0, 10, 2);
        pixWriteTempfile("/tmp", "tsel1.png", pixt, IFF_PNG, 0);
        pixDisplay(pixt, 0, 100);
        pixDestroy(&pixt);
        pixt = selaDisplayInPix(sela, 15, 2, 20, 4);
        pixWriteTempfile("/tmp", "tsel2.png", pixt, IFF_PNG, 0);
        pixDisplay(pixt, 500, 100);
        pixDestroy(&pixt);
        selaWriteStream(stderr, sela);
    }
    pixaDestroy(&pixa);

    return sela;
}
Ejemplo n.º 3
0
/*!
 *  dewarpBuildModel()
 *
 *      Input:  dew
 *              debugflag (1 for debugging output)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This is the basic function that builds the vertical
 *          disparity array, which allows determination of the
 *          src pixel in the input image corresponding to each
 *          dest pixel in the dewarped image.
 *      (2) The method is as follows:
 *          * Estimate the centers of all the long textlines and
 *            fit a LS quadratic to each one.  This smooths the curves.
 *          * Sample each curve at a regular interval, find the y-value
 *            of the flat point on each curve, and subtract the sampled
 *            curve value from this value.  This is the vertical
 *            disparity.
 *          * Fit a LS quadratic to each set of vertically aligned
 *            disparity samples.  This smooths the disparity values
 *            in the vertical direction.  Then resample at the same
 *            regular interval,  We now have a regular grid of smoothed
 *            vertical disparity valuels.
 *          * Interpolate this grid to get a full resolution disparity
 *            map.  This can be applied directly to the src image
 *            pixels to dewarp the image in the vertical direction,
 *            making all textlines horizontal.
 */
l_int32
dewarpBuildModel(L_DEWARP  *dew,
                 l_int32    debugflag)
{
char       *tempname;
l_int32     i, j, nlines, nx, ny, sampling;
l_float32   c0, c1, c2, x, y, flaty, val;
l_float32  *faflats;
NUMA       *nax, *nafit, *nacurve, *nacurves, *naflat, *naflats, *naflatsi;
PIX        *pixs, *pixt1, *pixt2;
PTA        *pta, *ptad;
PTAA       *ptaa1, *ptaa2, *ptaa3, *ptaa4, *ptaa5, *ptaa6, *ptaa7;
FPIX       *fpix1, *fpix2, *fpix3;

    PROCNAME("dewarpBuildModel");

    if (!dew)
        return ERROR_INT("dew not defined", procName, 1);

    pixs = dew->pixs;
    if (debugflag) {
        pixDisplayWithTitle(pixs, 0, 0, "pixs", 1);
        pixWriteTempfile("/tmp", "pixs.png", pixs, IFF_PNG, NULL);
    }

        /* Make initial estimate of centers of textlines */
    ptaa1 = pixGetTextlineCenters(pixs, DEBUG_TEXTLINE_CENTERS);
    if (debugflag) {
        pixt1 = pixConvertTo32(pixs);
        pixt2 = pixDisplayPtaa(pixt1, ptaa1);
        pixWriteTempfile("/tmp", "lines1.png", pixt2, IFF_PNG, NULL);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
    }

        /* Remove all lines that are not near the length
         * of the longest line. */
    ptaa2 = ptaaRemoveShortLines(pixs, ptaa1, 0.8, DEBUG_SHORT_LINES);
    if (debugflag) {
        pixt1 = pixConvertTo32(pixs);
        pixt2 = pixDisplayPtaa(pixt1, ptaa2);
        pixWriteTempfile("/tmp", "lines2.png", pixt2, IFF_PNG, NULL);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
    }
    nlines = ptaaGetCount(ptaa2);
    if (nlines < dew->minlines)
        return ERROR_INT("insufficient lines to build model", procName, 1);

        /* Do quadratic fit to smooth each line.  A single quadratic
         * over the entire width of the line appears to be sufficient.
         * Quartics tend to overfit to noise.  Each line is thus
         * represented by three coefficients: c2 * x^2 + c1 * x + c0.
         * Using the coefficients, sample each fitted curve uniformly
         * across the full width of the image.  */
    sampling = dew->sampling;
    nx = dew->nx;
    ny = dew->ny;
    ptaa3 = ptaaCreate(nlines);
    nacurve = numaCreate(nlines);  /* stores curvature coeff c2 */
    for (i = 0; i < nlines; i++) {  /* for each line */
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetQuadraticLSF(pta, &c2, &c1, &c0, NULL);
        numaAddNumber(nacurve, c2);
        ptad = ptaCreate(nx);
        for (j = 0; j < nx; j++) {  /* uniformly sampled in x */
             x = j * sampling;
             applyQuadraticFit(c2, c1, c0, x, &y);
             ptaAddPt(ptad, x, y);
        }
        ptaaAddPta(ptaa3, ptad, L_INSERT);
        ptaDestroy(&pta);
    }
    if (debugflag) {
        ptaa4 = ptaaCreate(nlines);
        for (i = 0; i < nlines; i++) {
            pta = ptaaGetPta(ptaa2, i, L_CLONE);
            ptaGetArrays(pta, &nax, NULL);
            ptaGetQuadraticLSF(pta, NULL, NULL, NULL, &nafit);
            ptad = ptaCreateFromNuma(nax, nafit);
            ptaaAddPta(ptaa4, ptad, L_INSERT);
            ptaDestroy(&pta);
            numaDestroy(&nax);
            numaDestroy(&nafit);
        }
        pixt1 = pixConvertTo32(pixs);
        pixt2 = pixDisplayPtaa(pixt1, ptaa4);
        pixWriteTempfile("/tmp", "lines3.png", pixt2, IFF_PNG, NULL);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
        ptaaDestroy(&ptaa4);
    }

        /* Find and save the flat points in each curve. */
    naflat = numaCreate(nlines);
    for (i = 0; i < nlines; i++) {
        pta = ptaaGetPta(ptaa3, i, L_CLONE);
        numaGetFValue(nacurve, i, &c2);
        if (c2 <= 0)  /* flat point at bottom; max value of y in curve */
            ptaGetRange(pta, NULL, NULL, NULL, &flaty);
        else  /* flat point at top; min value of y in curve */
            ptaGetRange(pta, NULL, NULL, &flaty, NULL);
        numaAddNumber(naflat, flaty);
        ptaDestroy(&pta);
    }

        /* Sort the lines in ptaa3 by their position */
    naflatsi = numaGetSortIndex(naflat, L_SORT_INCREASING);
    naflats = numaSortByIndex(naflat, naflatsi);
    nacurves = numaSortByIndex(nacurve, naflatsi);
    dew->naflats = naflats;
    dew->nacurves = nacurves;
    ptaa4 = ptaaSortByIndex(ptaa3, naflatsi);
    numaDestroy(&naflat);
    numaDestroy(&nacurve);
    numaDestroy(&naflatsi);
    if (debugflag) {
        tempname = genTempFilename("/tmp", "naflats.na", 0);
        numaWrite(tempname, naflats);
        FREE(tempname);
    }

        /* Convert the sampled points in ptaa3 to a sampled disparity with
         * with respect to the flat point in the curve. */
    ptaa5 = ptaaCreate(nlines);
    for (i = 0; i < nlines; i++) {
        pta = ptaaGetPta(ptaa4, i, L_CLONE);
        numaGetFValue(naflats, i, &flaty);
        ptad = ptaCreate(nx);
        for (j = 0; j < nx; j++) {
            ptaGetPt(pta, j, &x, &y);
            ptaAddPt(ptad, x, flaty - y);
        }
        ptaaAddPta(ptaa5, ptad, L_INSERT);
        ptaDestroy(&pta);
    }
    if (debugflag) {
        tempname = genTempFilename("/tmp", "ptaa5.ptaa", 0);
        ptaaWrite(tempname, ptaa5, 0);
        FREE(tempname);
    }

        /* Generate a ptaa taking vertical 'columns' from ptaa5.
         * We want to fit the vertical disparity on the column to the
         * vertical position of the line, which we call 'y' here and
         * obtain from naflats. */
    ptaa6 = ptaaCreate(nx);
    faflats = numaGetFArray(naflats, L_NOCOPY);
    for (j = 0; j < nx; j++) {
        pta = ptaCreate(nlines);
        for (i = 0; i < nlines; i++) {
            y = faflats[i];
            ptaaGetPt(ptaa5, i, j, NULL, &val);  /* disparity value */
            ptaAddPt(pta, y, val);
        }
        ptaaAddPta(ptaa6, pta, L_INSERT);
    }
    if (debugflag) {
        tempname = genTempFilename("/tmp", "ptaa6.ptaa", 0);
        ptaaWrite(tempname, ptaa6, 0);
        FREE(tempname);
    }

        /* Do quadratic fit vertically on a subset of pixel columns
         * for the vertical displacement, which identifies the
         * src pixel(s) for each dest pixel.  Sample the displacement
         * on a regular grid in the vertical direction.   */
    ptaa7 = ptaaCreate(nx);  /* uniformly sampled across full height of image */
    for (j = 0; j < nx; j++) {  /* for each column */
        pta = ptaaGetPta(ptaa6, j, L_CLONE);
        ptaGetQuadraticLSF(pta, &c2, &c1, &c0, NULL);
        ptad = ptaCreate(ny);
        for (i = 0; i < ny; i++) {  /* uniformly sampled in y */
             y = i * sampling;
             applyQuadraticFit(c2, c1, c0, y, &val);
             ptaAddPt(ptad, y, val);
        }
        ptaaAddPta(ptaa7, ptad, L_INSERT);
        ptaDestroy(&pta);
    }
    if (debugflag) {
        tempname = genTempFilename("/tmp", "ptaa7.ptaa", 0);
        ptaaWrite(tempname, ptaa7, 0);
        FREE(tempname);
    }

        /* Save the result in a fpix at the specified subsampling  */
    fpix1 = fpixCreate(nx, ny);
    for (i = 0; i < ny; i++) {
        for (j = 0; j < nx; j++) {
            ptaaGetPt(ptaa7, j, i, NULL, &val);
            fpixSetPixel(fpix1, j, i, val);
        }
    }
    dew->sampvdispar = fpix1;

        /* Generate a full res fpix for vertical dewarping.  We require that
         * the size of this fpix is at least as big as the input image. */
    fpix2 = fpixScaleByInteger(fpix1, sampling);
    dew->fullvdispar = fpix2;
    if (debugflag) {
        pixt1 = fpixRenderContours(fpix2, -2., 2.0, 0.2);
        pixWriteTempfile("/tmp", "vert-contours.png", pixt1, IFF_PNG, NULL);
        pixDisplay(pixt1, 1000, 0);
        pixDestroy(&pixt1);
    }

        /* Generate full res and sampled fpix for horizontal dewarping.  This
         * works to the extent that the line curvature is due to bending
         * out of the plane normal to the camera, and not wide-angle
         * "fishbowl" distortion.  Also generate the sampled horizontal
         * disparity array. */
    if (dew->applyhoriz) {
        fpix3 = fpixBuildHorizontalDisparity(fpix2, 0, &dew->extraw);
        dew->fullhdispar = fpix3;
        dew->samphdispar = fpixSampledDisparity(fpix3, dew->sampling);
        if (debugflag) {
            pixt1 = fpixRenderContours(fpix3, -2., 2.0, 0.2);
            pixWriteTempfile("/tmp", "horiz-contours.png", pixt1,
                             IFF_PNG, NULL);
            pixDisplay(pixt1, 1000, 0);
            pixDestroy(&pixt1);
        }
    }

    dew->success = 1;

    ptaaDestroy(&ptaa1);
    ptaaDestroy(&ptaa2);
    ptaaDestroy(&ptaa3);
    ptaaDestroy(&ptaa4);
    ptaaDestroy(&ptaa5);
    ptaaDestroy(&ptaa6);
    ptaaDestroy(&ptaa7);
    return 0;
}