Ejemplo n.º 1
0
rtx
nds32_expand_store_multiple (int base_regno, int count,
			     rtx base_addr, rtx basemem,
			     bool update_base_reg_p,
			     rtx *update_base_reg)
{
  int par_index;
  int offset;
  int start_idx;
  rtx result;
  rtx new_addr, mem, reg;

  if (count == 1)
    {
      reg = gen_rtx_REG (SImode, base_regno);
      if (update_base_reg_p)
	{
	  *update_base_reg = gen_reg_rtx (SImode);
	  return gen_unaligned_store_update_base_w (*update_base_reg, base_addr, reg);
	}
      else
	return gen_unaligned_store_w (gen_rtx_MEM (SImode, base_addr), reg);
    }

  /* Create the pattern that is presented in nds32-multiple.md.  */

  if (update_base_reg_p)
    {
      result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + 1));
      start_idx = 1;
    }
  else
    {
      result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
      start_idx = 0;
    }

  if (update_base_reg_p)
    {
      offset           = count * 4;
      new_addr         = plus_constant (Pmode, base_addr, offset);
      *update_base_reg = gen_reg_rtx (SImode);

      XVECEXP (result, 0, 0) = gen_rtx_SET (*update_base_reg, new_addr);
    }

  for (par_index = 0; par_index < count; par_index++)
    {
      offset   = par_index * 4;
      /* 4-byte for storing data to memory.  */
      new_addr = plus_constant (Pmode, base_addr, offset);
      mem      = adjust_automodify_address_nv (basemem, SImode,
					       new_addr, offset);
      reg      = gen_rtx_REG (SImode, base_regno + par_index);

      XVECEXP (result, 0, par_index + start_idx) = gen_rtx_SET (mem, reg);
    }

  return result;
}
Ejemplo n.º 2
0
static rtx
moxie_static_chain (const_tree ARG_UNUSED (fndecl_or_type), bool incoming_p)
{
  rtx addr, mem;

  if (incoming_p)
    addr = plus_constant (Pmode, arg_pointer_rtx, 2 * UNITS_PER_WORD);
  else
    addr = plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD);

  mem = gen_rtx_MEM (Pmode, addr);
  MEM_NOTRAP_P (mem) = 1;

  return mem;
}
Ejemplo n.º 3
0
static rtx
gen_speculative_prefetch (rtx address, gcov_type delta, int write)
{
  rtx tmp;
  rtx sequence;

  /* TODO: we do the prefetching for just one iteration ahead, which
     often is not enough.  */
  start_sequence ();
  if (offsettable_address_p (0, VOIDmode, address))
    tmp = plus_constant (copy_rtx (address), delta);
  else
    {
      tmp = simplify_gen_binary (PLUS, Pmode,
				 copy_rtx (address), GEN_INT (delta));
      tmp = force_operand (tmp, NULL);
    }
  if (! (*insn_data[(int)CODE_FOR_prefetch].operand[0].predicate)
      (tmp, insn_data[(int)CODE_FOR_prefetch].operand[0].mode))
    tmp = force_reg (Pmode, tmp);
  emit_insn (gen_prefetch (tmp, GEN_INT (write), GEN_INT (3)));
  sequence = get_insns ();
  end_sequence ();

  return sequence;
}
static int
try_apply_stack_adjustment (rtx insn, struct csa_memlist *memlist, HOST_WIDE_INT new_adjust,
			    HOST_WIDE_INT delta)
{
  struct csa_memlist *ml;
  rtx set;

  set = single_set_for_csa (insn);
  validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);

  for (ml = memlist; ml ; ml = ml->next)
    validate_change
      (ml->insn, ml->mem,
       replace_equiv_address_nv (*ml->mem,
				 plus_constant (stack_pointer_rtx,
						ml->sp_offset - delta)), 1);

  if (apply_change_group ())
    {
      /* Succeeded.  Update our knowledge of the memory references.  */
      for (ml = memlist; ml ; ml = ml->next)
	ml->sp_offset -= delta;

      return 1;
    }
  else
    return 0;
}
Ejemplo n.º 5
0
rtx
nds32_expand_store_multiple (int base_regno, int count,
			     rtx base_addr, rtx basemem)
{
  int par_index;
  int offset;
  rtx result;
  rtx new_addr, mem, reg;

  /* Create the pattern that is presented in nds32-multiple.md.  */

  result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));

  for (par_index = 0; par_index < count; par_index++)
    {
      offset   = par_index * 4;
      /* 4-byte for storing data to memory.  */
      new_addr = plus_constant (Pmode, base_addr, offset);
      mem      = adjust_automodify_address_nv (basemem, SImode,
					       new_addr, offset);
      reg      = gen_rtx_REG (SImode, base_regno + par_index);

      XVECEXP (result, 0, par_index) = gen_rtx_SET (mem, reg);
    }

  return result;
}
void crx_expand_movmem_single (rtx src, rtx srcbase, rtx dst, rtx dstbase,
			       rtx tmp_reg, unsigned HOST_WIDE_INT *offset_p)
{
  rtx addr, mem;
  unsigned HOST_WIDE_INT offset = *offset_p;

  /* Load */
  addr = plus_constant (src, offset);
  mem = adjust_automodify_address (srcbase, SImode, addr, offset);
  emit_move_insn (tmp_reg, mem);

  /* Store */
  addr = plus_constant (dst, offset);
  mem = adjust_automodify_address (dstbase, SImode, addr, offset);
  emit_move_insn (mem, tmp_reg);

  *offset_p = offset + 4;
}
Ejemplo n.º 7
0
static rtx
moxie_static_chain (const_tree fndecl, bool incoming_p)
{
    rtx addr, mem;

    if (!DECL_STATIC_CHAIN (fndecl))
        return NULL;

    if (incoming_p)
        addr = plus_constant (arg_pointer_rtx, 2 * UNITS_PER_WORD);
    else
        addr = plus_constant (stack_pointer_rtx, -UNITS_PER_WORD);

    mem = gen_rtx_MEM (Pmode, addr);
    MEM_NOTRAP_P (mem) = 1;

    return mem;
}
Ejemplo n.º 8
0
/* Compute the sum of X and Y, making canonicalizations assumed in an
   address, namely: sum constant integers, surround the sum of two
   constants with a CONST, put the constant as the second operand, and
   group the constant on the outermost sum.

   This routine assumes both inputs are already in canonical form.  */
static rtx
form_sum (rtx x, rtx y)
{
  machine_mode mode = GET_MODE (x);

  if (mode == VOIDmode)
    mode = GET_MODE (y);

  if (mode == VOIDmode)
    mode = Pmode;

  if (CONST_INT_P (x))
    return plus_constant (mode, y, INTVAL (x));
  else if (CONST_INT_P (y))
    return plus_constant (mode, x, INTVAL (y));
  else if (CONSTANT_P (x))
    std::swap (x, y);

  if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
    return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));

  /* Note that if the operands of Y are specified in the opposite
     order in the recursive calls below, infinite recursion will
     occur.  */
  if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
    return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));

  /* If both constant, encapsulate sum.	 Otherwise, just form sum.  A
     constant will have been placed second.  */
  if (CONSTANT_P (x) && CONSTANT_P (y))
    {
      if (GET_CODE (x) == CONST)
	x = XEXP (x, 0);
      if (GET_CODE (y) == CONST)
	y = XEXP (y, 0);

      return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
    }

  return gen_rtx_PLUS (mode, x, y);
}
Ejemplo n.º 9
0
static void
lm32_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
                             tree type, int *pretend_size, int no_rtl)
{
    int first_anon_arg;
    tree fntype;
    int stdarg_p;

    fntype = TREE_TYPE (current_function_decl);
    stdarg_p = (TYPE_ARG_TYPES (fntype) != 0
                && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
                    != void_type_node));

    if (stdarg_p)
        first_anon_arg = *cum + LM32_FIRST_ARG_REG;
    else
    {
        /* this is the common case, we have been passed details setup
           for the last named argument, we want to skip over the
           registers, if any used in passing this named paramter in
           order to determine which is the first registers used to pass
           anonymous arguments */
        int size;

        if (mode==BLKmode)
            size = int_size_in_bytes (type);
        else
            size = GET_MODE_SIZE (mode);

        first_anon_arg = *cum + LM32_FIRST_ARG_REG + ((size + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
    }

    if ((first_anon_arg < (LM32_FIRST_ARG_REG + LM32_NUM_ARG_REGS)) && !no_rtl)
    {
        int first_reg_offset = first_anon_arg;
        int size = LM32_FIRST_ARG_REG + LM32_NUM_ARG_REGS - first_anon_arg;
        rtx regblock;

        regblock = gen_rtx_MEM (BLKmode,
                                plus_constant (arg_pointer_rtx,
                                               FIRST_PARM_OFFSET (0)));
        move_block_from_reg (first_reg_offset, regblock, size);

        *pretend_size = size * UNITS_PER_WORD;
    }
}
Ejemplo n.º 10
0
static int
try_apply_stack_adjustment (rtx insn, struct csa_reflist *reflist,
			    HOST_WIDE_INT new_adjust, HOST_WIDE_INT delta)
{
  struct csa_reflist *ml;
  rtx set;

  set = single_set_for_csa (insn);
  if (MEM_P (SET_DEST (set)))
    validate_change (insn, &SET_DEST (set),
		     replace_equiv_address (SET_DEST (set), stack_pointer_rtx),
		     1);
  else
    validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);

  for (ml = reflist; ml ; ml = ml->next)
    {
      rtx new_addr = plus_constant (Pmode, stack_pointer_rtx,
				    ml->sp_offset - delta);
      rtx new_val;

      if (MEM_P (*ml->ref))
	new_val = replace_equiv_address_nv (*ml->ref, new_addr);
      else if (GET_MODE (*ml->ref) == GET_MODE (stack_pointer_rtx))
	new_val = new_addr;
      else
	new_val = lowpart_subreg (GET_MODE (*ml->ref), new_addr,
				  GET_MODE (new_addr));
      validate_change (ml->insn, ml->ref, new_val, 1);
    }

  if (apply_change_group ())
    {
      /* Succeeded.  Update our knowledge of the stack references.  */
      for (ml = reflist; ml ; ml = ml->next)
	ml->sp_offset -= delta;

      return 1;
    }
  else
    return 0;
}
Ejemplo n.º 11
0
static void
nds32_emit_post_inc_load_store (rtx reg, rtx base_reg,
				enum machine_mode mode,
				bool load_p)
{
  gcc_assert (GET_MODE (reg) == mode);
  gcc_assert (GET_MODE (base_reg) == Pmode);

  /* Do not gen (set (reg) (mem (post_inc (reg)))) directly here since it may
     not recognize by gcc, so let gcc combine it at auto_inc_dec pass.  */
  if (load_p)
    emit_move_insn (reg,
		    gen_rtx_MEM (mode,
				 base_reg));
  else
    emit_move_insn (gen_rtx_MEM (mode,
				 base_reg),
		    reg);

  emit_move_insn (base_reg,
		  plus_constant(Pmode, base_reg, GET_MODE_SIZE (mode)));
}
Ejemplo n.º 12
0
static void
expand_one_stack_var_at (tree decl, HOST_WIDE_INT offset)
{
  HOST_WIDE_INT align;
  rtx x;
  
  /* If this fails, we've overflowed the stack frame.  Error nicely?  */
  gcc_assert (offset == trunc_int_for_mode (offset, Pmode));

  x = plus_constant (virtual_stack_vars_rtx, offset);
  x = gen_rtx_MEM (DECL_MODE (decl), x);

  /* Set alignment we actually gave this decl.  */
  offset -= frame_phase;
  align = offset & -offset;
  align *= BITS_PER_UNIT;
  if (align > STACK_BOUNDARY || align == 0)
    align = STACK_BOUNDARY;
  DECL_ALIGN (decl) = align;
  DECL_USER_ALIGN (decl) = 0;

  set_mem_attributes (x, decl, true);
  SET_DECL_RTL (decl, x);
}
Ejemplo n.º 13
0
rtx
fr30_move_double (rtx * operands)
{
  rtx src  = operands[1];
  rtx dest = operands[0];
  enum rtx_code src_code = GET_CODE (src);
  enum rtx_code dest_code = GET_CODE (dest);
  enum machine_mode mode = GET_MODE (dest);
  rtx val;

  start_sequence ();

  if (dest_code == REG)
    {
      if (src_code == REG)
	{
	  int reverse = (REGNO (dest) == REGNO (src) + 1);
	  
	  /* We normally copy the low-numbered register first.  However, if
	     the first register of operand 0 is the same as the second register
	     of operand 1, we must copy in the opposite order.  */
	  emit_insn (gen_rtx_SET (VOIDmode,
				  operand_subword (dest, reverse, TRUE, mode),
				  operand_subword (src,  reverse, TRUE, mode)));
	  
	  emit_insn (gen_rtx_SET (VOIDmode,
			      operand_subword (dest, !reverse, TRUE, mode),
			      operand_subword (src,  !reverse, TRUE, mode)));
	}
      else if (src_code == MEM)
	{
	  rtx addr = XEXP (src, 0);
	  int dregno = REGNO (dest);
	  rtx dest0 = operand_subword (dest, 0, TRUE, mode);;
	  rtx dest1 = operand_subword (dest, 1, TRUE, mode);;
	  rtx new_mem;
	  
	  gcc_assert (GET_CODE (addr) == REG);
	  
	  /* Copy the address before clobbering it.  See PR 34174.  */
	  emit_insn (gen_rtx_SET (SImode, dest1, addr));
	  emit_insn (gen_rtx_SET (VOIDmode, dest0,
				  adjust_address (src, SImode, 0)));
	  emit_insn (gen_rtx_SET (SImode, dest1,
				  plus_constant (dest1, UNITS_PER_WORD)));

	  new_mem = gen_rtx_MEM (SImode, dest1);
	  MEM_COPY_ATTRIBUTES (new_mem, src);
	      
	  emit_insn (gen_rtx_SET (VOIDmode, dest1, new_mem));
	}
      else if (src_code == CONST_INT || src_code == CONST_DOUBLE)
	{
	  rtx words[2];
	  split_double (src, &words[0], &words[1]);
	  emit_insn (gen_rtx_SET (VOIDmode,
				  operand_subword (dest, 0, TRUE, mode),
				  words[0]));
      
	  emit_insn (gen_rtx_SET (VOIDmode,
				  operand_subword (dest, 1, TRUE, mode),
				  words[1]));
	}
    }
  else if (src_code == REG && dest_code == MEM)
    {
      rtx addr = XEXP (dest, 0);
      rtx src0;
      rtx src1;

      gcc_assert (GET_CODE (addr) == REG);

      src0 = operand_subword (src, 0, TRUE, mode);
      src1 = operand_subword (src, 1, TRUE, mode);

      emit_move_insn (adjust_address (dest, SImode, 0), src0);

      if (REGNO (addr) == STACK_POINTER_REGNUM
	  || REGNO (addr) == FRAME_POINTER_REGNUM)
	emit_insn (gen_rtx_SET (VOIDmode,
				adjust_address (dest, SImode, UNITS_PER_WORD),
				src1));
      else
	{
	  rtx new_mem;
	  rtx scratch_reg_r0 = gen_rtx_REG (SImode, 0);

	  /* We need a scratch register to hold the value of 'address + 4'.
	     We use r0 for this purpose. It is used for example for long
	     jumps and is already marked to not be used by normal register
	     allocation.  */
	  emit_insn (gen_movsi_internal (scratch_reg_r0, addr));
	  emit_insn (gen_addsi_small_int (scratch_reg_r0, scratch_reg_r0,
					  GEN_INT (UNITS_PER_WORD)));
	  new_mem = gen_rtx_MEM (SImode, scratch_reg_r0);
	  MEM_COPY_ATTRIBUTES (new_mem, dest);
	  emit_move_insn (new_mem, src1);
	  emit_insn (gen_blockage ());
	}
    }
  else
    /* This should have been prevented by the constraints on movdi_insn.  */
    gcc_unreachable ();

  val = get_insns ();
  end_sequence ();

  return val;
}
Ejemplo n.º 14
0
rtx
fr30_move_double (rtx * operands)
{
  rtx src  = operands[1];
  rtx dest = operands[0];
  enum rtx_code src_code = GET_CODE (src);
  enum rtx_code dest_code = GET_CODE (dest);
  enum machine_mode mode = GET_MODE (dest);
  rtx val;

  start_sequence ();

  if (dest_code == REG)
    {
      if (src_code == REG)
	{
	  int reverse = (REGNO (dest) == REGNO (src) + 1);
	  
	  /* We normally copy the low-numbered register first.  However, if
	     the first register of operand 0 is the same as the second register
	     of operand 1, we must copy in the opposite order.  */
	  emit_insn (gen_rtx_SET (VOIDmode,
				  operand_subword (dest, reverse, TRUE, mode),
				  operand_subword (src,  reverse, TRUE, mode)));
	  
	  emit_insn (gen_rtx_SET (VOIDmode,
			      operand_subword (dest, !reverse, TRUE, mode),
			      operand_subword (src,  !reverse, TRUE, mode)));
	}
      else if (src_code == MEM)
	{
	  rtx addr = XEXP (src, 0);
	  int dregno = REGNO (dest);
	  rtx dest0;
	  rtx dest1;
	  rtx new_mem;
	  
	  /* If the high-address word is used in the address, we
	     must load it last.  Otherwise, load it first.  */
	  int reverse = (refers_to_regno_p (dregno, dregno + 1, addr, 0) != 0);

	  gcc_assert (GET_CODE (addr) == REG);
	  
	  dest0 = operand_subword (dest, reverse, TRUE, mode);
	  dest1 = operand_subword (dest, !reverse, TRUE, mode);

	  if (reverse)
	    {
	      emit_insn (gen_rtx_SET (VOIDmode, dest1,
				      adjust_address (src, SImode, 0)));
	      emit_insn (gen_rtx_SET (SImode, dest0,
				      gen_rtx_REG (SImode, REGNO (addr))));
	      emit_insn (gen_rtx_SET (SImode, dest0,
				      plus_constant (dest0, UNITS_PER_WORD)));

	      new_mem = gen_rtx_MEM (SImode, dest0);
	      MEM_COPY_ATTRIBUTES (new_mem, src);
	      
	      emit_insn (gen_rtx_SET (VOIDmode, dest0, new_mem));
	    }
	  else
	    {
	      emit_insn (gen_rtx_SET (VOIDmode, dest0,
				      adjust_address (src, SImode, 0)));
	      emit_insn (gen_rtx_SET (SImode, dest1,
				      gen_rtx_REG (SImode, REGNO (addr))));
	      emit_insn (gen_rtx_SET (SImode, dest1,
				      plus_constant (dest1, UNITS_PER_WORD)));

	      new_mem = gen_rtx_MEM (SImode, dest1);
	      MEM_COPY_ATTRIBUTES (new_mem, src);
	      
	      emit_insn (gen_rtx_SET (VOIDmode, dest1, new_mem));
	    }
	}
      else if (src_code == CONST_INT || src_code == CONST_DOUBLE)
	{
	  rtx words[2];
	  split_double (src, &words[0], &words[1]);
	  emit_insn (gen_rtx_SET (VOIDmode,
				  operand_subword (dest, 0, TRUE, mode),
				  words[0]));
      
	  emit_insn (gen_rtx_SET (VOIDmode,
				  operand_subword (dest, 1, TRUE, mode),
				  words[1]));
	}
    }
  else if (src_code == REG && dest_code == MEM)
    {
      rtx addr = XEXP (dest, 0);
      rtx src0;
      rtx src1;

      gcc_assert (GET_CODE (addr) == REG);
      
      src0 = operand_subword (src, 0, TRUE, mode);
      src1 = operand_subword (src, 1, TRUE, mode);
      
      emit_insn (gen_rtx_SET (VOIDmode, adjust_address (dest, SImode, 0),
			      src0));

      if (REGNO (addr) == STACK_POINTER_REGNUM
	  || REGNO (addr) == FRAME_POINTER_REGNUM)
	emit_insn (gen_rtx_SET (VOIDmode,
				adjust_address (dest, SImode, UNITS_PER_WORD),
				src1));
      else
	{
	  rtx new_mem;
	  
	  /* We need a scratch register to hold the value of 'address + 4'.
	     We ought to allow gcc to find one for us, but for now, just
	     push one of the source registers.  */
	  emit_insn (gen_movsi_push (src0));
	  emit_insn (gen_movsi_internal (src0, addr));
	  emit_insn (gen_addsi_small_int (src0, src0, GEN_INT (UNITS_PER_WORD)));
	  
	  new_mem = gen_rtx_MEM (SImode, src0);
	  MEM_COPY_ATTRIBUTES (new_mem, dest);
	  
	  emit_insn (gen_rtx_SET (VOIDmode, new_mem, src1));
	  emit_insn (gen_movsi_pop (src0));
	}
    }
  else
    /* This should have been prevented by the constraints on movdi_insn.  */
    gcc_unreachable ();
  
  val = get_insns ();
  end_sequence ();

  return val;
}
Ejemplo n.º 15
0
void
expand_builtin_cilk_detach (tree exp)
{
  rtx_insn *insn;
  tree fptr = get_frame_arg (exp);

  if (fptr == NULL_TREE)
    return;

  tree parent = cilk_dot (fptr, CILK_TI_FRAME_PARENT, 0);
  tree worker = cilk_dot (fptr, CILK_TI_FRAME_WORKER, 0);
  tree tail = cilk_arrow (worker, CILK_TI_WORKER_TAIL, 1);

  rtx wreg = expand_expr (worker, NULL_RTX, Pmode, EXPAND_NORMAL);
  if (GET_CODE (wreg) != REG)
    wreg = copy_to_reg (wreg);
  rtx preg = expand_expr (parent, NULL_RTX, Pmode, EXPAND_NORMAL);

  /* TMP <- WORKER.TAIL
    *TMP <- PARENT
     TMP <- TMP + 1
     WORKER.TAIL <- TMP   */

  HOST_WIDE_INT worker_tail_offset =
    tree_to_shwi (DECL_FIELD_OFFSET (cilk_trees[CILK_TI_WORKER_TAIL])) +
    tree_to_shwi (DECL_FIELD_BIT_OFFSET (cilk_trees[CILK_TI_WORKER_TAIL])) /
    BITS_PER_UNIT;
  rtx tmem0 = gen_rtx_MEM (Pmode,
			   plus_constant (Pmode, wreg, worker_tail_offset));
  set_mem_attributes (tmem0, tail, 0);
  MEM_NOTRAP_P (tmem0) = 1;
  gcc_assert (MEM_VOLATILE_P (tmem0));
  rtx treg = copy_to_mode_reg (Pmode, tmem0);
  rtx tmem1 = gen_rtx_MEM (Pmode, treg);
  set_mem_attributes (tmem1, TREE_TYPE (TREE_TYPE (tail)), 0);
  MEM_NOTRAP_P (tmem1) = 1;
  emit_move_insn (tmem1, preg);
  emit_move_insn (treg, plus_constant (Pmode, treg, GET_MODE_SIZE (Pmode)));

  /* There is a release barrier (st8.rel, membar #StoreStore,
     sfence, lwsync, etc.) between the two stores.  On x86
     normal volatile stores have proper semantics; the sfence
     would only be needed for nontemporal stores (which we
     could generate using the storent optab, for no benefit
     in this case).

     The predicate may return false even for a REG if this is
     the limited release operation that only stores 0.  */
  enum insn_code icode = direct_optab_handler (sync_lock_release_optab, Pmode); 
  if (icode != CODE_FOR_nothing
      && insn_data[icode].operand[1].predicate (treg, Pmode)
      && (insn = GEN_FCN (icode) (tmem0, treg)) != NULL_RTX)
    emit_insn (insn);
  else
    emit_move_insn (tmem0, treg);

  /* The memory barrier inserted above should not prevent
     the load of flags from being moved before the stores,
     but in practice it does because it is implemented with
     unspec_volatile.  In-order RISC machines should
     explicitly load flags earlier.  */

  tree flags = cilk_dot (fptr, CILK_TI_FRAME_FLAGS, 0);
  expand_expr (build2 (MODIFY_EXPR, void_type_node, flags,
		       build2 (BIT_IOR_EXPR, TREE_TYPE (flags), flags,
			       build_int_cst (TREE_TYPE (flags),
					      CILK_FRAME_DETACHED))),
	       const0_rtx, VOIDmode, EXPAND_NORMAL);
}
Ejemplo n.º 16
0
void
print_operand_address (FILE * file, rtx addr)
{
  rtx reg1, breg, ireg;
  rtx offset;

 retry:
  switch (GET_CODE (addr))
    {
    case MEM:
      fprintf (file, "*");
      addr = XEXP (addr, 0);
      goto retry;

    case REG:
      fprintf (file, "(%s)", reg_names[REGNO (addr)]);
      break;

    case PRE_DEC:
      fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
      break;

    case POST_INC:
      fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
      break;

    case PLUS:
      /* There can be either two or three things added here.  One must be a
	 REG.  One can be either a REG or a MULT of a REG and an appropriate
	 constant, and the third can only be a constant or a MEM.

	 We get these two or three things and put the constant or MEM in
	 OFFSET, the MULT or REG in IREG, and the REG in BREG.  If we have
	 a register and can't tell yet if it is a base or index register,
	 put it into REG1.  */

      reg1 = 0; ireg = 0; breg = 0; offset = 0;

      if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
	  || GET_CODE (XEXP (addr, 0)) == MEM)
	{
	  offset = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
	       || GET_CODE (XEXP (addr, 1)) == MEM)
	{
	  offset = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      else if (GET_CODE (XEXP (addr, 1)) == MULT)
	{
	  ireg = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      else if (GET_CODE (XEXP (addr, 0)) == MULT)
	{
	  ireg = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else if (GET_CODE (XEXP (addr, 1)) == REG)
	{
	  reg1 = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      else if (GET_CODE (XEXP (addr, 0)) == REG)
	{
	  reg1 = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else
	gcc_unreachable ();

      if (GET_CODE (addr) == REG)
	{
	  if (reg1)
	    ireg = addr;
	  else
	    reg1 = addr;
	}
      else if (GET_CODE (addr) == MULT)
	ireg = addr;
      else
	{
	  gcc_assert (GET_CODE (addr) == PLUS);
	  if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
	      || GET_CODE (XEXP (addr, 0)) == MEM)
	    {
	      if (offset)
		{
		  if (GET_CODE (offset) == CONST_INT)
		    offset = plus_constant (XEXP (addr, 0), INTVAL (offset));
		  else
		    {
		      gcc_assert (GET_CODE (XEXP (addr, 0)) == CONST_INT);
		      offset = plus_constant (offset, INTVAL (XEXP (addr, 0)));
		    }
		}
	      offset = XEXP (addr, 0);
	    }
	  else if (GET_CODE (XEXP (addr, 0)) == REG)
	    {
	      if (reg1)
		ireg = reg1, breg = XEXP (addr, 0), reg1 = 0;
	      else
		reg1 = XEXP (addr, 0);
	    }
	  else
	    {
	      gcc_assert (GET_CODE (XEXP (addr, 0)) == MULT);
	      gcc_assert (!ireg);
	      ireg = XEXP (addr, 0);
	    }

	  if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
	      || GET_CODE (XEXP (addr, 1)) == MEM)
	    {
	      if (offset)
		{
		  if (GET_CODE (offset) == CONST_INT)
		    offset = plus_constant (XEXP (addr, 1), INTVAL (offset));
		  else
		    {
		      gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);
		      offset = plus_constant (offset, INTVAL (XEXP (addr, 1)));
		    }
		}
	      offset = XEXP (addr, 1);
	    }
	  else if (GET_CODE (XEXP (addr, 1)) == REG)
	    {
	      if (reg1)
		ireg = reg1, breg = XEXP (addr, 1), reg1 = 0;
	      else
		reg1 = XEXP (addr, 1);
	    }
	  else
	    {
	      gcc_assert (GET_CODE (XEXP (addr, 1)) == MULT);
	      gcc_assert (!ireg);
	      ireg = XEXP (addr, 1);
	    }
	}

      /* If REG1 is nonzero, figure out if it is a base or index register.  */
      if (reg1)
	{
	  if (breg != 0 || (offset && GET_CODE (offset) == MEM))
	    {
	      gcc_assert (!ireg);
	      ireg = reg1;
	    }
	  else
	    breg = reg1;
	}

      if (offset != 0)
	output_address (offset);

      if (breg != 0)
	fprintf (file, "(%s)", reg_names[REGNO (breg)]);

      if (ireg != 0)
	{
	  if (GET_CODE (ireg) == MULT)
	    ireg = XEXP (ireg, 0);
	  gcc_assert (GET_CODE (ireg) == REG);
	  fprintf (file, "[%s]", reg_names[REGNO (ireg)]);
	}
      break;

    default:
      output_addr_const (file, addr);
    }
}
Ejemplo n.º 17
0
void
eliminate_regs_in_insn (rtx_insn *insn, bool replace_p, bool first_p,
			HOST_WIDE_INT update_sp_offset)
{
  int icode = recog_memoized (insn);
  rtx old_set = single_set (insn);
  bool validate_p;
  int i;
  rtx substed_operand[MAX_RECOG_OPERANDS];
  rtx orig_operand[MAX_RECOG_OPERANDS];
  struct lra_elim_table *ep;
  rtx plus_src, plus_cst_src;
  lra_insn_recog_data_t id;
  struct lra_static_insn_data *static_id;

  if (icode < 0 && asm_noperands (PATTERN (insn)) < 0 && ! DEBUG_INSN_P (insn))
    {
      lra_assert (GET_CODE (PATTERN (insn)) == USE
		  || GET_CODE (PATTERN (insn)) == CLOBBER
		  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
      return;
    }

  /* Check for setting an eliminable register.	*/
  if (old_set != 0 && REG_P (SET_DEST (old_set))
      && (ep = get_elimination (SET_DEST (old_set))) != NULL)
    {
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
	if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
	  {
	    bool delete_p = replace_p;
	    
#ifdef HARD_FRAME_POINTER_REGNUM
	    if (ep->from == FRAME_POINTER_REGNUM
		&& ep->to == HARD_FRAME_POINTER_REGNUM)
	      /* If this is setting the frame pointer register to the
		 hardware frame pointer register and this is an
		 elimination that will be done (tested above), this
		 insn is really adjusting the frame pointer downward
		 to compensate for the adjustment done before a
		 nonlocal goto.  */
	      {
		rtx src = SET_SRC (old_set);
		rtx off = remove_reg_equal_offset_note (insn, ep->to_rtx);
		
		/* We should never process such insn with non-zero
		   UPDATE_SP_OFFSET.  */
		lra_assert (update_sp_offset == 0);
		
		if (off != NULL_RTX
		    || src == ep->to_rtx
		    || (GET_CODE (src) == PLUS
			&& XEXP (src, 0) == ep->to_rtx
			&& CONST_INT_P (XEXP (src, 1))))
		  {
		    HOST_WIDE_INT offset;
		    
		    if (replace_p)
		      {
			SET_DEST (old_set) = ep->to_rtx;
			lra_update_insn_recog_data (insn);
			return;
		      }
		    offset = (off != NULL_RTX ? INTVAL (off)
			      : src == ep->to_rtx ? 0 : INTVAL (XEXP (src, 1)));
		    offset -= (ep->offset - ep->previous_offset);
		    src = plus_constant (Pmode, ep->to_rtx, offset);
		    
		    /* First see if this insn remains valid when we
		       make the change.  If not, keep the INSN_CODE
		       the same and let the constraint pass fit it
		       up.  */
		    validate_change (insn, &SET_SRC (old_set), src, 1);
		    validate_change (insn, &SET_DEST (old_set),
				     ep->from_rtx, 1);
		    if (! apply_change_group ())
		      {
			SET_SRC (old_set) = src;
			SET_DEST (old_set) = ep->from_rtx;
		      }
		    lra_update_insn_recog_data (insn);
		    /* Add offset note for future updates.  */
		    add_reg_note (insn, REG_EQUAL, src);
		    return;
		  }
	      }
#endif
	    
	    /* This insn isn't serving a useful purpose.  We delete it
	       when REPLACE is set.  */
	    if (delete_p)
	      lra_delete_dead_insn (insn);
	    return;
	  }
    }

  /* We allow one special case which happens to work on all machines we
     currently support: a single set with the source or a REG_EQUAL
     note being a PLUS of an eliminable register and a constant.  */
  plus_src = plus_cst_src = 0;
  if (old_set && REG_P (SET_DEST (old_set)))
    {
      if (GET_CODE (SET_SRC (old_set)) == PLUS)
	plus_src = SET_SRC (old_set);
      /* First see if the source is of the form (plus (...) CST).  */
      if (plus_src
	  && CONST_INT_P (XEXP (plus_src, 1)))
	plus_cst_src = plus_src;
      /* Check that the first operand of the PLUS is a hard reg or
	 the lowpart subreg of one.  */
      if (plus_cst_src)
	{
	  rtx reg = XEXP (plus_cst_src, 0);

	  if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
	    reg = SUBREG_REG (reg);

	  if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
	    plus_cst_src = 0;
	}
    }
  if (plus_cst_src)
    {
      rtx reg = XEXP (plus_cst_src, 0);
      HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));

      if (GET_CODE (reg) == SUBREG)
	reg = SUBREG_REG (reg);

      if (REG_P (reg) && (ep = get_elimination (reg)) != NULL)
	{
	  rtx to_rtx = replace_p ? ep->to_rtx : ep->from_rtx;

	  if (! replace_p)
	    {
	      if (update_sp_offset == 0)
		offset += (ep->offset - ep->previous_offset);
	      if (ep->to_rtx == stack_pointer_rtx)
		{
		  if (first_p)
		    offset -= lra_get_insn_recog_data (insn)->sp_offset;
		  else
		    offset += update_sp_offset;
		}
	      offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
	    }

	  if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
	    to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), to_rtx);
	  /* If we have a nonzero offset, and the source is already a
	     simple REG, the following transformation would increase
	     the cost of the insn by replacing a simple REG with (plus
	     (reg sp) CST).  So try only when we already had a PLUS
	     before.  */
	  if (offset == 0 || plus_src)
	    {
	      rtx new_src = plus_constant (GET_MODE (to_rtx), to_rtx, offset);

	      old_set = single_set (insn);

	      /* First see if this insn remains valid when we make the
		 change.  If not, try to replace the whole pattern
		 with a simple set (this may help if the original insn
		 was a PARALLEL that was only recognized as single_set
		 due to REG_UNUSED notes).  If this isn't valid
		 either, keep the INSN_CODE the same and let the
		 constraint pass fix it up.  */
	      if (! validate_change (insn, &SET_SRC (old_set), new_src, 0))
		{
		  rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);

		  if (! validate_change (insn, &PATTERN (insn), new_pat, 0))
		    SET_SRC (old_set) = new_src;
		}
	      lra_update_insn_recog_data (insn);
	      /* This can't have an effect on elimination offsets, so skip
		 right to the end.  */
	      return;
	    }
	}
    }

  /* Eliminate all eliminable registers occurring in operands that
     can be handled by the constraint pass.  */
  id = lra_get_insn_recog_data (insn);
  static_id = id->insn_static_data;
  validate_p = false;
  for (i = 0; i < static_id->n_operands; i++)
    {
      orig_operand[i] = *id->operand_loc[i];
      substed_operand[i] = *id->operand_loc[i];

      /* For an asm statement, every operand is eliminable.  */
      if (icode < 0 || insn_data[icode].operand[i].eliminable)
	{
	  /* Check for setting a hard register that we know about.  */
	  if (static_id->operand[i].type != OP_IN
	      && REG_P (orig_operand[i]))
	    {
	      /* If we are assigning to a hard register that can be
		 eliminated, it must be as part of a PARALLEL, since
		 the code above handles single SETs.  This reg can not
		 be longer eliminated -- it is forced by
		 mark_not_eliminable.  */
	      for (ep = reg_eliminate;
		   ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
		   ep++)
		lra_assert (ep->from_rtx != orig_operand[i]
			    || ! ep->can_eliminate);
	    }

	  /* Companion to the above plus substitution, we can allow
	     invariants as the source of a plain move.	*/
	  substed_operand[i]
	    = lra_eliminate_regs_1 (insn, *id->operand_loc[i], VOIDmode,
				    replace_p, ! replace_p && ! first_p,
				    update_sp_offset, first_p);
	  if (substed_operand[i] != orig_operand[i])
	    validate_p = true;
	}
    }

  if (! validate_p)
    return;

  /* Substitute the operands; the new values are in the substed_operand
     array.  */
  for (i = 0; i < static_id->n_operands; i++)
    *id->operand_loc[i] = substed_operand[i];
  for (i = 0; i < static_id->n_dups; i++)
    *id->dup_loc[i] = substed_operand[(int) static_id->dup_num[i]];

  /* If we had a move insn but now we don't, re-recognize it.
     This will cause spurious re-recognition if the old move had a
     PARALLEL since the new one still will, but we can't call
     single_set without having put new body into the insn and the
     re-recognition won't hurt in this rare case.  */
  id = lra_update_insn_recog_data (insn);
  static_id = id->insn_static_data;
}
Ejemplo n.º 18
0
/* Scan X and replace any eliminable registers (such as fp) with a
   replacement (such as sp) if SUBST_P, plus an offset.  The offset is
   a change in the offset between the eliminable register and its
   substitution if UPDATE_P, or the full offset if FULL_P, or
   otherwise zero.  If FULL_P, we also use the SP offsets for
   elimination to SP.  If UPDATE_P, use UPDATE_SP_OFFSET for updating
   offsets of register elimnable to SP.  If UPDATE_SP_OFFSET is
   non-zero, don't use difference of the offset and the previous
   offset.

   MEM_MODE is the mode of an enclosing MEM.  We need this to know how
   much to adjust a register for, e.g., PRE_DEC.  Also, if we are
   inside a MEM, we are allowed to replace a sum of a hard register
   and the constant zero with the hard register, which we cannot do
   outside a MEM.  In addition, we need to record the fact that a
   hard register is referenced outside a MEM.

   If we make full substitution to SP for non-null INSN, add the insn
   sp offset.  */
rtx
lra_eliminate_regs_1 (rtx_insn *insn, rtx x, machine_mode mem_mode,
		      bool subst_p, bool update_p,
		      HOST_WIDE_INT update_sp_offset, bool full_p)
{
  enum rtx_code code = GET_CODE (x);
  struct lra_elim_table *ep;
  rtx new_rtx;
  int i, j;
  const char *fmt;
  int copied = 0;

  lra_assert (!update_p || !full_p);
  lra_assert (update_sp_offset == 0 || (!subst_p && update_p && !full_p));
  if (! current_function_decl)
    return x;

  switch (code)
    {
    CASE_CONST_ANY:
    case CONST:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case RETURN:
      return x;

    case REG:
      /* First handle the case where we encounter a bare hard register
	 that is eliminable.  Replace it with a PLUS.  */
      if ((ep = get_elimination (x)) != NULL)
	{
	  rtx to = subst_p ? ep->to_rtx : ep->from_rtx;

	  if (update_sp_offset != 0)
	    {
	      if (ep->to_rtx == stack_pointer_rtx)
		return plus_constant (Pmode, to, update_sp_offset);
	      return to;
	    }
	  else if (update_p)
	    return plus_constant (Pmode, to, ep->offset - ep->previous_offset);
	  else if (full_p)
	    return plus_constant (Pmode, to,
				  ep->offset
				  - (insn != NULL_RTX
				     && ep->to_rtx == stack_pointer_rtx
				     ? lra_get_insn_recog_data (insn)->sp_offset
				     : 0));
	  else
	    return to;
	}
      return x;

    case PLUS:
      /* If this is the sum of an eliminable register and a constant, rework
	 the sum.  */
      if (REG_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
	{
	  if ((ep = get_elimination (XEXP (x, 0))) != NULL)
	    {
	      HOST_WIDE_INT offset;
	      rtx to = subst_p ? ep->to_rtx : ep->from_rtx;

	      if (! update_p && ! full_p)
		return gen_rtx_PLUS (Pmode, to, XEXP (x, 1));
	      
	      if (update_sp_offset != 0)
		offset = ep->to_rtx == stack_pointer_rtx ? update_sp_offset : 0;
	      else
		offset = (update_p
			  ? ep->offset - ep->previous_offset : ep->offset);
	      if (full_p && insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
		offset -= lra_get_insn_recog_data (insn)->sp_offset;
	      if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) == -offset)
		return to;
	      else
		return gen_rtx_PLUS (Pmode, to,
				     plus_constant (Pmode,
						    XEXP (x, 1), offset));
	    }

	  /* If the hard register is not eliminable, we are done since
	     the other operand is a constant.  */
	  return x;
	}

      /* If this is part of an address, we want to bring any constant
	 to the outermost PLUS.  We will do this by doing hard
	 register replacement in our operands and seeing if a constant
	 shows up in one of them.

	 Note that there is no risk of modifying the structure of the
	 insn, since we only get called for its operands, thus we are
	 either modifying the address inside a MEM, or something like
	 an address operand of a load-address insn.  */

      {
	rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
					 subst_p, update_p,
					 update_sp_offset, full_p);
	rtx new1 = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
					 subst_p, update_p,
					 update_sp_offset, full_p);

	new0 = move_plus_up (new0);
	new1 = move_plus_up (new1);
	if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
	  return form_sum (new0, new1);
      }
      return x;

    case MULT:
      /* If this is the product of an eliminable hard register and a
	 constant, apply the distribute law and move the constant out
	 so that we have (plus (mult ..) ..).  This is needed in order
	 to keep load-address insns valid.  This case is pathological.
	 We ignore the possibility of overflow here.  */
      if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1))
	  && (ep = get_elimination (XEXP (x, 0))) != NULL)
	{
	  rtx to = subst_p ? ep->to_rtx : ep->from_rtx;

	  if (update_sp_offset != 0)
	    {
	      if (ep->to_rtx == stack_pointer_rtx)
		return plus_constant (Pmode,
				      gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
				      update_sp_offset * INTVAL (XEXP (x, 1)));
	      return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
	    }
	  else if (update_p)
	    return plus_constant (Pmode,
				  gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
				  (ep->offset - ep->previous_offset)
				  * INTVAL (XEXP (x, 1)));
	  else if (full_p)
	    {
	      HOST_WIDE_INT offset = ep->offset;

	      if (insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
		offset -= lra_get_insn_recog_data (insn)->sp_offset;
	      return
		plus_constant (Pmode,
			       gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
			       offset * INTVAL (XEXP (x, 1)));
	    }
	  else
	    return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
	}

      /* fall through */

    case CALL:
    case COMPARE:
    /* See comments before PLUS about handling MINUS.  */
    case MINUS:
    case DIV:	   case UDIV:
    case MOD:	   case UMOD:
    case AND:	   case IOR:	  case XOR:
    case ROTATERT: case ROTATE:
    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
    case NE:	   case EQ:
    case GE:	   case GT:	  case GEU:    case GTU:
    case LE:	   case LT:	  case LEU:    case LTU:
      {
	rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
					 subst_p, update_p, 
					 update_sp_offset, full_p);
	rtx new1 = XEXP (x, 1)
		   ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
					   subst_p, update_p,
					   update_sp_offset, full_p) : 0;

	if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
	  return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
      }
      return x;

    case EXPR_LIST:
      /* If we have something in XEXP (x, 0), the usual case,
	 eliminate it.	*/
      if (XEXP (x, 0))
	{
	  new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
					  subst_p, update_p,
					  update_sp_offset, full_p);
	  if (new_rtx != XEXP (x, 0))
	    {
	      /* If this is a REG_DEAD note, it is not valid anymore.
		 Using the eliminated version could result in creating a
		 REG_DEAD note for the stack or frame pointer.	*/
	      if (REG_NOTE_KIND (x) == REG_DEAD)
		return (XEXP (x, 1)
			? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
						subst_p, update_p,
						update_sp_offset, full_p)
			: NULL_RTX);

	      x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
	    }
	}

      /* fall through */

    case INSN_LIST:
    case INT_LIST:
      /* Now do eliminations in the rest of the chain.	If this was
	 an EXPR_LIST, this might result in allocating more memory than is
	 strictly needed, but it simplifies the code.  */
      if (XEXP (x, 1))
	{
	  new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
					  subst_p, update_p,
					  update_sp_offset, full_p);
	  if (new_rtx != XEXP (x, 1))
	    return
	      gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x),
			      XEXP (x, 0), new_rtx);
	}
      return x;

    case PRE_INC:
    case POST_INC:
    case PRE_DEC:
    case POST_DEC:
      /* We do not support elimination of a register that is modified.
	 elimination_effects has already make sure that this does not
	 happen.  */
      return x;

    case PRE_MODIFY:
    case POST_MODIFY:
      /* We do not support elimination of a hard register that is
	 modified.  LRA has already make sure that this does not
	 happen. The only remaining case we need to consider here is
	 that the increment value may be an eliminable register.  */
      if (GET_CODE (XEXP (x, 1)) == PLUS
	  && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
	{
	  rtx new_rtx = lra_eliminate_regs_1 (insn, XEXP (XEXP (x, 1), 1),
					      mem_mode, subst_p, update_p,
					      update_sp_offset, full_p);

	  if (new_rtx != XEXP (XEXP (x, 1), 1))
	    return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
				   gen_rtx_PLUS (GET_MODE (x),
						 XEXP (x, 0), new_rtx));
	}
      return x;

    case STRICT_LOW_PART:
    case NEG:	       case NOT:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case FLOAT:	       case FIX:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case ABS:
    case SQRT:
    case FFS:
    case CLZ:
    case CTZ:
    case POPCOUNT:
    case PARITY:
    case BSWAP:
      new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
				      subst_p, update_p,
				      update_sp_offset, full_p);
      if (new_rtx != XEXP (x, 0))
	return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
      return x;

    case SUBREG:
      new_rtx = lra_eliminate_regs_1 (insn, SUBREG_REG (x), mem_mode,
				      subst_p, update_p,
				      update_sp_offset, full_p);

      if (new_rtx != SUBREG_REG (x))
	{
	  int x_size = GET_MODE_SIZE (GET_MODE (x));
	  int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));

	  if (MEM_P (new_rtx) && x_size <= new_size)
	    {
	      SUBREG_REG (x) = new_rtx;
	      alter_subreg (&x, false);
	      return x;
	    }
	  else if (! subst_p)
	    {
	      /* LRA can transform subregs itself.  So don't call
		 simplify_gen_subreg until LRA transformations are
		 finished.  Function simplify_gen_subreg can do
		 non-trivial transformations (like truncation) which
		 might make LRA work to fail.  */
	      SUBREG_REG (x) = new_rtx;
	      return x;
	    }
	  else
	    return simplify_gen_subreg (GET_MODE (x), new_rtx,
					GET_MODE (new_rtx), SUBREG_BYTE (x));
	}

      return x;

    case MEM:
      /* Our only special processing is to pass the mode of the MEM to our
	 recursive call and copy the flags.  While we are here, handle this
	 case more efficiently.	 */
      return
	replace_equiv_address_nv
	(x,
	 lra_eliminate_regs_1 (insn, XEXP (x, 0), GET_MODE (x),
			       subst_p, update_p, update_sp_offset, full_p));

    case USE:
      /* Handle insn_list USE that a call to a pure function may generate.  */
      new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), VOIDmode,
				      subst_p, update_p, update_sp_offset, full_p);
      if (new_rtx != XEXP (x, 0))
	return gen_rtx_USE (GET_MODE (x), new_rtx);
      return x;

    case CLOBBER:
    case SET:
      gcc_unreachable ();

    default:
      break;
    }

  /* Process each of our operands recursively.	If any have changed, make a
     copy of the rtx.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	{
	  new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, i), mem_mode,
					  subst_p, update_p,
					  update_sp_offset, full_p);
	  if (new_rtx != XEXP (x, i) && ! copied)
	    {
	      x = shallow_copy_rtx (x);
	      copied = 1;
	    }
	  XEXP (x, i) = new_rtx;
	}
      else if (*fmt == 'E')
	{
	  int copied_vec = 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    {
	      new_rtx = lra_eliminate_regs_1 (insn, XVECEXP (x, i, j), mem_mode,
					      subst_p, update_p,
					      update_sp_offset, full_p);
	      if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
		{
		  rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
					     XVEC (x, i)->elem);
		  if (! copied)
		    {
		      x = shallow_copy_rtx (x);
		      copied = 1;
		    }
		  XVEC (x, i) = new_v;
		  copied_vec = 1;
		}
	      XVECEXP (x, i, j) = new_rtx;
	    }
	}
    }

  return x;
}
Ejemplo n.º 19
0
/* Functions to expand load_multiple and store_multiple.
   They are auxiliary extern functions to help create rtx template.
   Check nds32-multiple.md file for the patterns.  */
rtx
nds32_expand_load_multiple (int base_regno, int count,
			    rtx base_addr, rtx basemem,
			    bool update_base_reg_p,
			    rtx *update_base_reg)
{
  int par_index;
  int offset;
  int start_idx;
  rtx result;
  rtx new_addr, mem, reg;

  /* Generate a unaligned load to prevent load instruction pull out from
     parallel, and then it will generate lwi, and lose unaligned acces */
  if (count == 1)
    {
      reg = gen_rtx_REG (SImode, base_regno);
      if (update_base_reg_p)
	{
	  *update_base_reg = gen_reg_rtx (SImode);
	  return gen_unaligned_load_update_base_w (*update_base_reg, reg, base_addr);
	}
      else
	return gen_unaligned_load_w (reg, gen_rtx_MEM (SImode, base_addr));
    }

  /* Create the pattern that is presented in nds32-multiple.md.  */
  if (update_base_reg_p)
    {
      result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + 1));
      start_idx = 1;
    }
  else
    {
      result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
      start_idx = 0;
    }

  if (update_base_reg_p)
    {
      offset           = count * 4;
      new_addr         = plus_constant (Pmode, base_addr, offset);
      *update_base_reg = gen_reg_rtx (SImode);

      XVECEXP (result, 0, 0) = gen_rtx_SET (*update_base_reg, new_addr);
    }

  for (par_index = 0; par_index < count; par_index++)
    {
      offset   = par_index * 4;
      /* 4-byte for loading data to each register.  */
      new_addr = plus_constant (Pmode, base_addr, offset);
      mem      = adjust_automodify_address_nv (basemem, SImode,
					       new_addr, offset);
      reg      = gen_rtx_REG (SImode, base_regno + par_index);

      XVECEXP (result, 0, (par_index + start_idx)) = gen_rtx_SET (reg, mem);
    }

  return result;
}