Ejemplo n.º 1
0
/*
 * refclock_transmit - simulate the transmit procedure
 *
 * This routine implements the NTP transmit procedure for a reference
 * clock. This provides a mechanism to call the driver at the NTP poll
 * interval, as well as provides a reachability mechanism to detect a
 * broken radio or other madness.
 */
void
refclock_transmit(
	struct peer *peer	/* peer structure pointer */
	)
{
	u_char clktype;
	int unit;

	clktype = peer->refclktype;
	unit = peer->refclkunit;
	peer->sent++;
	get_systime(&peer->xmt);

	/*
	 * This is a ripoff of the peer transmit routine, but
	 * specialized for reference clocks. We do a little less
	 * protocol here and call the driver-specific transmit routine.
	 */
	if (peer->burst == 0) {
		u_char oreach;
#ifdef DEBUG
		if (debug)
			printf("refclock_transmit: at %ld %s\n",
			    current_time, stoa(&(peer->srcadr)));
#endif

		/*
		 * Update reachability and poll variables like the
		 * network code.
		 */
		oreach = peer->reach;
		peer->reach <<= 1;
		peer->outdate = current_time;
		if (!peer->reach) {
			if (oreach) {
				report_event(EVNT_UNREACH, peer);
				peer->timereachable = current_time;
			}
		} else {
			if (!(oreach & 0x07)) {
				clock_filter(peer, 0., 0., MAXDISPERSE);
				clock_select();
			}
			if (peer->flags & FLAG_BURST)
				peer->burst = NSTAGE;
		}
	} else {
		peer->burst--;
	}
	if (refclock_conf[clktype]->clock_poll != noentry)
		(refclock_conf[clktype]->clock_poll)(unit, peer);
	poll_update(peer, peer->hpoll);
}
Ejemplo n.º 2
0
/*
 * local_clock - the NTP logical clock loop filter.
 *
 * Return codes:
 * -1	update ignored: exceeds panic threshold
 * 0	update ignored: popcorn or exceeds step threshold
 * 1	clock was slewed
 * 2	clock was stepped
 *
 * LOCKCLOCK: The only thing this routine does is set the
 * sys_rootdisp variable equal to the peer dispersion.
 */
int
local_clock(
	struct	peer *peer,	/* synch source peer structure */
	double	fp_offset	/* clock offset (s) */
	)
{
	int	rval;		/* return code */
	int	osys_poll;	/* old system poll */
	int	ntp_adj_ret;	/* returned by ntp_adjtime */
	double	mu;		/* interval since last update */
	double	clock_frequency; /* clock frequency */
	double	dtemp, etemp;	/* double temps */
	char	tbuf[80];	/* report buffer */

	/*
	 * If the loop is opened or the NIST LOCKCLOCK is in use,
	 * monitor and record the offsets anyway in order to determine
	 * the open-loop response and then go home.
	 */
#ifdef LOCKCLOCK
	{
#else
	if (!ntp_enable) {
#endif /* LOCKCLOCK */
		record_loop_stats(fp_offset, drift_comp, clock_jitter,
		    clock_stability, sys_poll);
		return (0);
	}

#ifndef LOCKCLOCK
	/*
	 * If the clock is way off, panic is declared. The clock_panic
	 * defaults to 1000 s; if set to zero, the panic will never
	 * occur. The allow_panic defaults to FALSE, so the first panic
	 * will exit. It can be set TRUE by a command line option, in
	 * which case the clock will be set anyway and time marches on.
	 * But, allow_panic will be set FALSE when the update is less
	 * than the step threshold; so, subsequent panics will exit.
	 */
	if (fabs(fp_offset) > clock_panic && clock_panic > 0 &&
	    !allow_panic) {
		snprintf(tbuf, sizeof(tbuf),
		    "%+.0f s; set clock manually within %.0f s.",
		    fp_offset, clock_panic);
		report_event(EVNT_SYSFAULT, NULL, tbuf);
		return (-1);
	}

	/*
	 * This section simulates ntpdate. If the offset exceeds the
	 * step threshold (128 ms), step the clock to that time and
	 * exit. Otherwise, slew the clock to that time and exit. Note
	 * that the slew will persist and eventually complete beyond the
	 * life of this program. Note that while ntpdate is active, the
	 * terminal does not detach, so the termination message prints
	 * directly to the terminal.
	 */
	if (mode_ntpdate) {
		if (  ( fp_offset > clock_max_fwd  && clock_max_fwd  > 0)
		   || (-fp_offset > clock_max_back && clock_max_back > 0)) {
			step_systime(fp_offset);
			msyslog(LOG_NOTICE, "ntpd: time set %+.6f s",
			    fp_offset);
			printf("ntpd: time set %+.6fs\n", fp_offset);
		} else {
			adj_systime(fp_offset);
			msyslog(LOG_NOTICE, "ntpd: time slew %+.6f s",
			    fp_offset);
			printf("ntpd: time slew %+.6fs\n", fp_offset);
		}
		record_loop_stats(fp_offset, drift_comp, clock_jitter,
		    clock_stability, sys_poll);
		exit (0);
	}

	/*
	 * The huff-n'-puff filter finds the lowest delay in the recent
	 * interval. This is used to correct the offset by one-half the
	 * difference between the sample delay and minimum delay. This
	 * is most effective if the delays are highly assymetric and
	 * clockhopping is avoided and the clock frequency wander is
	 * relatively small.
	 */
	if (sys_huffpuff != NULL) {
		if (peer->delay < sys_huffpuff[sys_huffptr])
			sys_huffpuff[sys_huffptr] = peer->delay;
		if (peer->delay < sys_mindly)
			sys_mindly = peer->delay;
		if (fp_offset > 0)
			dtemp = -(peer->delay - sys_mindly) / 2;
		else
			dtemp = (peer->delay - sys_mindly) / 2;
		fp_offset += dtemp;
#ifdef DEBUG
		if (debug)
			printf(
		    "local_clock: size %d mindly %.6f huffpuff %.6f\n",
			    sys_hufflen, sys_mindly, dtemp);
#endif
	}

	/*
	 * Clock state machine transition function which defines how the
	 * system reacts to large phase and frequency excursion. There
	 * are two main regimes: when the offset exceeds the step
	 * threshold (128 ms) and when it does not. Under certain
	 * conditions updates are suspended until the stepout theshold
	 * (900 s) is exceeded. See the documentation on how these
	 * thresholds interact with commands and command line options.
	 *
	 * Note the kernel is disabled if step is disabled or greater
	 * than 0.5 s or in ntpdate mode.
	 */
	osys_poll = sys_poll;
	if (sys_poll < peer->minpoll)
		sys_poll = peer->minpoll;
	if (sys_poll > peer->maxpoll)
		sys_poll = peer->maxpoll;
	mu = current_time - clock_epoch;
	clock_frequency = drift_comp;
	rval = 1;
	if (  ( fp_offset > clock_max_fwd  && clock_max_fwd  > 0)
	   || (-fp_offset > clock_max_back && clock_max_back > 0)
	   || force_step_once ) {
		if (force_step_once) {
			force_step_once = FALSE;  /* we want this only once after startup */
			msyslog(LOG_NOTICE, "Doing intital time step" );
		}

		switch (state) {

		/*
		 * In SYNC state we ignore the first outlyer and switch
		 * to SPIK state.
		 */
		case EVNT_SYNC:
			snprintf(tbuf, sizeof(tbuf), "%+.6f s",
			    fp_offset);
			report_event(EVNT_SPIK, NULL, tbuf);
			state = EVNT_SPIK;
			return (0);

		/*
		 * In FREQ state we ignore outlyers and inlyers. At the
		 * first outlyer after the stepout threshold, compute
		 * the apparent frequency correction and step the phase.
		 */
		case EVNT_FREQ:
			if (mu < clock_minstep)
				return (0);

			clock_frequency = direct_freq(fp_offset);

			/* fall through to EVNT_SPIK */

		/*
		 * In SPIK state we ignore succeeding outlyers until
		 * either an inlyer is found or the stepout threshold is
		 * exceeded.
		 */
		case EVNT_SPIK:
			if (mu < clock_minstep)
				return (0);

			/* fall through to default */

		/*
		 * We get here by default in NSET and FSET states and
		 * from above in FREQ or SPIK states.
		 *
		 * In NSET state an initial frequency correction is not
		 * available, usually because the frequency file has not
		 * yet been written. Since the time is outside the step
		 * threshold, the clock is stepped. The frequency will
		 * be set directly following the stepout interval.
		 *
		 * In FSET state the initial frequency has been set from
		 * the frequency file. Since the time is outside the
		 * step threshold, the clock is stepped immediately,
		 * rather than after the stepout interval. Guys get
		 * nervous if it takes 15 minutes to set the clock for
		 * the first time.
		 *
		 * In FREQ and SPIK states the stepout threshold has
		 * expired and the phase is still above the step
		 * threshold. Note that a single spike greater than the
		 * step threshold is always suppressed, even with a
		 * long time constant.
		 */
		default:
			snprintf(tbuf, sizeof(tbuf), "%+.6f s",
			    fp_offset);
			report_event(EVNT_CLOCKRESET, NULL, tbuf);
			step_systime(fp_offset);
			reinit_timer();
			tc_counter = 0;
			clock_jitter = LOGTOD(sys_precision);
			rval = 2;
			if (state == EVNT_NSET) {
				rstclock(EVNT_FREQ, 0);
				return (rval);
			}
			break;
		}
		rstclock(EVNT_SYNC, 0);
	} else {
		/*
		 * The offset is less than the step threshold. Calculate
		 * the jitter as the exponentially weighted offset
		 * differences.
		 */
		etemp = SQUARE(clock_jitter);
		dtemp = SQUARE(max(fabs(fp_offset - last_offset),
		    LOGTOD(sys_precision)));
		clock_jitter = SQRT(etemp + (dtemp - etemp) /
		    CLOCK_AVG);
		switch (state) {

		/*
		 * In NSET state this is the first update received and
		 * the frequency has not been initialized. Adjust the
		 * phase, but do not adjust the frequency until after
		 * the stepout threshold.
		 */
		case EVNT_NSET:
			adj_systime(fp_offset);
			rstclock(EVNT_FREQ, fp_offset);
			break;

		/*
		 * In FREQ state ignore updates until the stepout
		 * threshold. After that, compute the new frequency, but
		 * do not adjust the frequency until the holdoff counter
		 * decrements to zero.
		 */
		case EVNT_FREQ:
			if (mu < clock_minstep)
				return (0);

			clock_frequency = direct_freq(fp_offset);
			/* fall through */

		/*
		 * We get here by default in FSET, SPIK and SYNC states.
		 * Here compute the frequency update due to PLL and FLL
		 * contributions. Note, we avoid frequency discipline at
		 * startup until the initial transient has subsided.
		 */
		default:
			allow_panic = FALSE;
			if (freq_cnt == 0) {

				/*
				 * The FLL and PLL frequency gain constants
				 * depend on the time constant and Allan
				 * intercept. The PLL is always used, but
				 * becomes ineffective above the Allan intercept
				 * where the FLL becomes effective.
				 */
				if (sys_poll >= allan_xpt)
					clock_frequency += (fp_offset -
					    clock_offset) / max(ULOGTOD(sys_poll),
					    mu) * CLOCK_FLL;

				/*
				 * The PLL frequency gain (numerator) depends on
				 * the minimum of the update interval and Allan
				 * intercept. This reduces the PLL gain when the
				 * FLL becomes effective.
				 */
				etemp = min(ULOGTOD(allan_xpt), mu);
				dtemp = 4 * CLOCK_PLL * ULOGTOD(sys_poll);
				clock_frequency += fp_offset * etemp / (dtemp *
				    dtemp);
			}
			rstclock(EVNT_SYNC, fp_offset);
			if (fabs(fp_offset) < CLOCK_FLOOR)
				freq_cnt = 0;
			break;
		}
	}

#ifdef KERNEL_PLL
	/*
	 * This code segment works when clock adjustments are made using
	 * precision time kernel support and the ntp_adjtime() system
	 * call. This support is available in Solaris 2.6 and later,
	 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
	 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
	 * DECstation 5000/240 and Alpha AXP, additional kernel
	 * modifications provide a true microsecond clock and nanosecond
	 * clock, respectively.
	 *
	 * Important note: The kernel discipline is used only if the
	 * step threshold is less than 0.5 s, as anything higher can
	 * lead to overflow problems. This might occur if some misguided
	 * lad set the step threshold to something ridiculous.
	 */
	if (pll_control && kern_enable && freq_cnt == 0) {

		/*
		 * We initialize the structure for the ntp_adjtime()
		 * system call. We have to convert everything to
		 * microseconds or nanoseconds first. Do not update the
		 * system variables if the ext_enable flag is set. In
		 * this case, the external clock driver will update the
		 * variables, which will be read later by the local
		 * clock driver. Afterwards, remember the time and
		 * frequency offsets for jitter and stability values and
		 * to update the frequency file.
		 */
		ZERO(ntv);
		if (ext_enable) {
			ntv.modes = MOD_STATUS;
		} else {
#ifdef STA_NANO
			ntv.modes = MOD_BITS | MOD_NANO;
#else /* STA_NANO */
			ntv.modes = MOD_BITS;
#endif /* STA_NANO */
			if (clock_offset < 0)
				dtemp = -.5;
			else
				dtemp = .5;
#ifdef STA_NANO
			ntv.offset = (int32)(clock_offset * 1e9 +
			    dtemp);
			ntv.constant = sys_poll;
#else /* STA_NANO */
			ntv.offset = (int32)(clock_offset * 1e6 +
			    dtemp);
			ntv.constant = sys_poll - 4;
#endif /* STA_NANO */
			if (ntv.constant < 0)
				ntv.constant = 0;

			ntv.esterror = (u_int32)(clock_jitter * 1e6);
			ntv.maxerror = (u_int32)((sys_rootdelay / 2 +
			    sys_rootdisp) * 1e6);
			ntv.status = STA_PLL;

			/*
			 * Enable/disable the PPS if requested.
			 */
			if (hardpps_enable) {
				ntv.status |= (STA_PPSTIME | STA_PPSFREQ);
				if (!(pll_status & STA_PPSTIME))
					sync_status("PPS enabled",
						pll_status,
						ntv.status);
			} else {
				ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
				if (pll_status & STA_PPSTIME)
					sync_status("PPS disabled",
						pll_status,
						ntv.status);
			}
			if (sys_leap == LEAP_ADDSECOND)
				ntv.status |= STA_INS;
			else if (sys_leap == LEAP_DELSECOND)
				ntv.status |= STA_DEL;
		}

		/*
		 * Pass the stuff to the kernel. If it squeals, turn off
		 * the pps. In any case, fetch the kernel offset,
		 * frequency and jitter.
		 */
		ntp_adj_ret = ntp_adjtime(&ntv);
		/*
		 * A squeal is a return status < 0, or a state change.
		 */
		if ((0 > ntp_adj_ret) || (ntp_adj_ret != kernel_status)) {
			kernel_status = ntp_adj_ret;
			ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, hardpps_enable, 0, __LINE__ - 1);
		}
		pll_status = ntv.status;
#ifdef STA_NANO
		clock_offset = ntv.offset / 1e9;
#else /* STA_NANO */
		clock_offset = ntv.offset / 1e6;
#endif /* STA_NANO */
		clock_frequency = FREQTOD(ntv.freq);

		/*
		 * If the kernel PPS is lit, monitor its performance.
		 */
		if (ntv.status & STA_PPSTIME) {
#ifdef STA_NANO
			clock_jitter = ntv.jitter / 1e9;
#else /* STA_NANO */
			clock_jitter = ntv.jitter / 1e6;
#endif /* STA_NANO */
		}

#if defined(STA_NANO) && NTP_API == 4
		/*
		 * If the TAI changes, update the kernel TAI.
		 */
		if (loop_tai != sys_tai) {
			loop_tai = sys_tai;
			ntv.modes = MOD_TAI;
			ntv.constant = sys_tai;
			if ((ntp_adj_ret = ntp_adjtime(&ntv)) != 0) {
			    ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, 0, 1, __LINE__ - 1);
			}
		}
#endif /* STA_NANO */
	}
#endif /* KERNEL_PLL */

	/*
	 * Clamp the frequency within the tolerance range and calculate
	 * the frequency difference since the last update.
	 */
	if (fabs(clock_frequency) > NTP_MAXFREQ)
		msyslog(LOG_NOTICE,
		    "frequency error %.0f PPM exceeds tolerance %.0f PPM",
		    clock_frequency * 1e6, NTP_MAXFREQ * 1e6);
	dtemp = SQUARE(clock_frequency - drift_comp);
	if (clock_frequency > NTP_MAXFREQ)
		drift_comp = NTP_MAXFREQ;
	else if (clock_frequency < -NTP_MAXFREQ)
		drift_comp = -NTP_MAXFREQ;
	else
		drift_comp = clock_frequency;

	/*
	 * Calculate the wander as the exponentially weighted RMS
	 * frequency differences. Record the change for the frequency
	 * file update.
	 */
	etemp = SQUARE(clock_stability);
	clock_stability = SQRT(etemp + (dtemp - etemp) / CLOCK_AVG);

	/*
	 * Here we adjust the time constant by comparing the current
	 * offset with the clock jitter. If the offset is less than the
	 * clock jitter times a constant, then the averaging interval is
	 * increased, otherwise it is decreased. A bit of hysteresis
	 * helps calm the dance. Works best using burst mode. Don't
	 * fiddle with the poll during the startup clamp period.
	 */
	if (freq_cnt > 0) {
		tc_counter = 0;
	} else if (fabs(clock_offset) < CLOCK_PGATE * clock_jitter) {
		tc_counter += sys_poll;
		if (tc_counter > CLOCK_LIMIT) {
			tc_counter = CLOCK_LIMIT;
			if (sys_poll < peer->maxpoll) {
				tc_counter = 0;
				sys_poll++;
			}
		}
	} else {
		tc_counter -= sys_poll << 1;
		if (tc_counter < -CLOCK_LIMIT) {
			tc_counter = -CLOCK_LIMIT;
			if (sys_poll > peer->minpoll) {
				tc_counter = 0;
				sys_poll--;
			}
		}
	}

	/*
	 * If the time constant has changed, update the poll variables.
	 */
	if (osys_poll != sys_poll)
		poll_update(peer, sys_poll);

	/*
	 * Yibbidy, yibbbidy, yibbidy; that'h all folks.
	 */
	record_loop_stats(clock_offset, drift_comp, clock_jitter,
	    clock_stability, sys_poll);
#ifdef DEBUG
	if (debug)
		printf(
		    "local_clock: offset %.9f jit %.9f freq %.3f stab %.3f poll %d\n",
		    clock_offset, clock_jitter, drift_comp * 1e6,
		    clock_stability * 1e6, sys_poll);
#endif /* DEBUG */
	return (rval);
#endif /* LOCKCLOCK */
}


/*
 * adj_host_clock - Called once every second to update the local clock.
 *
 * LOCKCLOCK: The only thing this routine does is increment the
 * sys_rootdisp variable.
 */
void
adj_host_clock(
	void
	)
{
	double	offset_adj;
	double	freq_adj;

	/*
	 * Update the dispersion since the last update. In contrast to
	 * NTPv3, NTPv4 does not declare unsynchronized after one day,
	 * since the dispersion check serves this function. Also,
	 * since the poll interval can exceed one day, the old test
	 * would be counterproductive. During the startup clamp period, the
	 * time constant is clamped at 2.
	 */
	sys_rootdisp += clock_phi;
#ifndef LOCKCLOCK
	if (!ntp_enable || mode_ntpdate)
		return;
	/*
	 * Determine the phase adjustment. The gain factor (denominator)
	 * increases with poll interval, so is dominated by the FLL
	 * above the Allan intercept. Note the reduced time constant at
	 * startup.
	 */
	if (state != EVNT_SYNC) {
		offset_adj = 0.;
	} else if (freq_cnt > 0) {
		offset_adj = clock_offset / (CLOCK_PLL * ULOGTOD(1));
		freq_cnt--;
#ifdef KERNEL_PLL
	} else if (pll_control && kern_enable) {
		offset_adj = 0.;
#endif /* KERNEL_PLL */
	} else {
		offset_adj = clock_offset / (CLOCK_PLL * ULOGTOD(sys_poll));
	}

	/*
	 * If the kernel discipline is enabled the frequency correction
	 * drift_comp has already been engaged via ntp_adjtime() in
	 * set_freq().  Otherwise it is a component of the adj_systime()
	 * offset.
	 */
#ifdef KERNEL_PLL
	if (pll_control && kern_enable)
		freq_adj = 0.;
	else
#endif /* KERNEL_PLL */
		freq_adj = drift_comp;

	/* Bound absolute value of total adjustment to NTP_MAXFREQ. */
	if (offset_adj + freq_adj > NTP_MAXFREQ)
		offset_adj = NTP_MAXFREQ - freq_adj;
	else if (offset_adj + freq_adj < -NTP_MAXFREQ)
		offset_adj = -NTP_MAXFREQ - freq_adj;

	clock_offset -= offset_adj;
	/*
	 * Windows port adj_systime() must be called each second,
	 * even if the argument is zero, to ease emulation of
	 * adjtime() using Windows' slew API which controls the rate
	 * but does not automatically stop slewing when an offset
	 * has decayed to zero.
	 */
	adj_systime(offset_adj + freq_adj);
#endif /* LOCKCLOCK */
}