Ejemplo n.º 1
0
  arma::vec polynomial(
      const arma::vec& parameter,
      const arma::uword highestDegree) {
    if (parameter.n_elem == 0 || highestDegree == 0) {
      // By definition, the constant term is 1.
      return {1.0};
    }

    arma::vec polynomial(polynomialSize(parameter.n_elem, highestDegree));
    arma::uword n = 0;
    // Generates all terms for degree > 1
    for (arma::uword degree = highestDegree; degree >= 2; --degree) {
      for (const auto& multicombination : multicombinations(parameter.n_elem, degree)) {
        const arma::vec& partialParameter = parameter.elem(multicombination);

        polynomial(n++) = arma::prod(partialParameter);
      }
    }
    // Linear term
    polynomial.subvec(n, n + parameter.n_elem - 1) = parameter;
    // By definition, the constant term is 1.
    polynomial(polynomial.n_elem - 1) = 1;

    return polynomial;
  }
Ejemplo n.º 2
0
//*****************************************************************************
//  METHOD: ossimRpcProjection::worldToLineSample()
//  
//  Overrides base class implementation. Directly computes line-sample from
//  the polynomials.
//*****************************************************************************
void ossimRpcProjection::worldToLineSample(const ossimGpt& ground_point,
                                      ossimDpt&       imgPt) const
{
   if (traceExec())  ossimNotify(ossimNotifyLevel_DEBUG) << "DEBUG ossimRpcProjection::worldToLineSample(): entering..." << std::endl;

   if(ground_point.isLatNan() ||
      ground_point.isLonNan() )
     {
       imgPt.makeNan();
       return;
     }
         
   //*
   // Normalize the lat, lon, hgt:
   //*
   double nlat = (ground_point.lat - theLatOffset) / theLatScale;
   double nlon = (ground_point.lon - theLonOffset) / theLonScale;
   double nhgt;

   if(ossim::isnan(ground_point.hgt))
   {
      nhgt = (theHgtScale - theHgtOffset) / theHgtScale;
   }
   else
   {
      nhgt = (ground_point.hgt - theHgtOffset) / theHgtScale;
   }

   
   //***
   // Compute the adjusted, normalized line (U) and sample (V):
   //***
   double Pu = polynomial(nlat, nlon, nhgt, theLineNumCoef);
   double Qu = polynomial(nlat, nlon, nhgt, theLineDenCoef);
   double Pv = polynomial(nlat, nlon, nhgt, theSampNumCoef);
   double Qv = polynomial(nlat, nlon, nhgt, theSampDenCoef);
   double U_rot  = Pu / Qu;
   double V_rot  = Pv / Qv;

   //***
   // U, V are normalized quantities. Need now to establish the image file
   // line and sample. First, back out the adjustable parameter effects
   // starting with rotation:
   //***
   double U = U_rot*theCosMapRot + V_rot*theSinMapRot;
   double V = V_rot*theCosMapRot - U_rot*theSinMapRot;

   //***
   // Now back out skew, scale, and offset adjustments:
   //***
   imgPt.line = U*(theLineScale+theIntrackScale) + theLineOffset + theIntrackOffset;
   imgPt.samp = V*(theSampScale+theCrtrackScale) + theSampOffset + theCrtrackOffset;


   if (traceExec())  ossimNotify(ossimNotifyLevel_DEBUG) << "DEBUG ossimRpcProjection::worldToLineSample(): returning..." << std::endl;

   return;
}
Ejemplo n.º 3
0
int main(int argc, char *argv[]) {
  const int test_size = 4096 * 2;
  std::normal_distribution<float> dist(0.5f, 0.5f);
  rng.seed(0);
  float *r_values = nullptr;
  float *ret = nullptr;
  float *ret2 = nullptr;
  double sum = 0.0f;
  std::function<float()> rnd = std::bind(dist, rng);

  r_values = static_cast<float*>(_mm_malloc(sizeof(float) * test_size, 32));

  ret = static_cast<float*>(_mm_malloc(sizeof(float) * test_size, 32));
  ret2 = static_cast<float*>(_mm_malloc(sizeof(float) * test_size, 32));

  if (!(r_values && ret && ret2))
    goto exit;

  std::generate_n(r_values, test_size, rnd);
  for (int i = 0; i < 100000; ++i) {
    polynomial(ret, r_values, test_size);
    // polynomial(ret2, ret, test_size);
    sum = std::accumulate(ret, ret + test_size, sum);
  }
  std::cout << sum << std::endl;


exit:
  _mm_free(r_values);
  _mm_free(ret);
  _mm_free(ret2);
}
Ejemplo n.º 4
0
int main(void)
{
    /*Repeating the main function*/
    while (1)
    {
        int i;
        /*User input 1*/
        printf("Please enter the maximum degree of the polynomial: ");
        scanf("%d", &max);
        a = (int*) calloc(max+1, sizeof(int));
        
        /*Terminate if a negative number*/
        if(max < 0)
        {
            return 0;
        }
        
        /*User input 2*/
        printf("Please enter the coefficients: ");
        /*Input max+1 numbers*/
        for (i=0; i <= max; i++)
        {
            scanf("%d", &a[i]);
        }
        
        power = max;
        polynomial();
        
        power = max;
        derivative();
        
        free(a);
    }
}
Ejemplo n.º 5
0
int main(void)
{
	int degree; //there will be a valiable called degree that will be an integor 
	int a[10]; //creates an array, a, and assigns 10 values that are integors
	int i; //there will be an variable called i that will be an integor

	degree=1;
	while(degree>0)
	{
		printf("Please enter the maximum degree of the polynomial: "); //asks user to imput the degree of polynomial
		scanf("%d", &degree);
		if(degree<0)
		{ 
			return 0;
		}
   		printf("Please enter the coefficients: "); //asks user to imput the coefficients
		for(i=0; i<=degree; i++) //creates a loop that repeats untill the array number is equal to the degree
		scanf("%d", &a[i]); //calls the coefficients of the array 
		printf("The polynomial is "); 
		polynomial(a, degree); //calls function polynomial 
		printf("\nIts derivative is ");
		calculatederivative(a, degree);
		
		printf("\n\n");

	}
	
}
Ejemplo n.º 6
0
int main(void)
{
	while(1)				// the program will anew as long as this loop remains true
	{
		int deg;			// degree
		int i;
		int * coeff;		// array to store the coefficients as input by the user

		printf("Please enter the maximum degree of the polynomial: ");
		scanf("%d", &deg);
		coeff = (int*)calloc(deg+1, sizeof(int));

		if(deg >= 0)											// check and carry out actions only if input is correct (degree is positive)
		{
			printf("Please enter the coefficients: ");

			for(i=0; i<=deg ;i++)								// allow the user to input coefficients as many times as required
				scanf("%d", &coeff[i]);

			printf("The polynomial is ");
			polynomial(coeff, deg);								// send the stored information to polynomial funtion
			printf("\n");

			printf("Its derivative is ");
			derivative(coeff, deg);								// send the stored information to derivative function
			printf("\n\n");

			free(coeff);										// always free the memory for next usage after anewing the program
		} else break;											// breaks the operation, and hence terminates the program
	}
	return 0;
}
Ejemplo n.º 7
0
  bool ArModel::check_stationary(const Vec &phi){
    // The process is stationary if the roots of the polynomial
    //
    // 1 - phi[0]*z - ... - phi[p-1]*z^p.
    //
    // all lie outside the unit circle.  We can do that by explicitly
    // finding and checking the roots, but that's kind of expensive.
    // Before doing that we can do a quick check to see if the
    // coefficients are within a loose bound.
    //
    // Based on Rouche's theorem:
    // http://en.wikipedia.org/wiki/Properties_of_polynomial_roots#Based_on_the_Rouch.C3.A9_theorem
    // All the roots will be at least 1 in absolute value as long as
    // sum(abs(phi)) < 1.
    if(phi.abs_norm() < 1) return true;

    // If that didn't work then we're stuck finding roots.
    // TODO(stevescott): Really we just need to check the smallest
    // root.  If we had a cheap way of finding just the smallest root
    // then that would be more efficient than finding them all.
    Vector coefficients = concat(1, -1 * phi);
    Polynomial polynomial(coefficients);
    std::vector<std::complex<double> > roots(polynomial.roots());
    for (int i = 0; i < roots.size(); ++i) {
      if (abs(roots[i]) <= 1) return false;
    }
    return true;
  }
Ejemplo n.º 8
0
int main(){
int question;
	printf("This is ece177 lab2 solving 4 questions.\nPlease enter\n1 for temperature,\n2 for polynomial,\n3 for solution,\n4 for freefalldistance.\n0 for exit.\n");
	scanf("%d",&question);
	while(question!=0){
		switch (question){
			case 1:
			temperature();
			break;
			case 2:
			polynomial();
			break;
			case 3:
			solution();
			break;
			case 4:
			freefalldistance();
			break;
			default:
			printf("Sorry, your choice did not match any of the four. Please try again.\n");
			break;
		}
	printf("This is ece177 lab2 solving 4 questions.\nPlease enter\n1 for temperature,\n2 for polynomial,\n3 for solution,\n4 for freefalldistance.\n0 for exit.\n");
	scanf("%d",&question);
	}
return 0;
}
Ejemplo n.º 9
0
double zonal_pressure(double rho_value, double theta_value)
{
  /*
  printf("Zonal Pressure %lf %lf\n", rho_value, theta_value);
  */
  return(polynomial(p_poly, 2, rho_table, theta_table, rho_value, theta_value));
  
}
Ejemplo n.º 10
0
double zonal_energy(double rho_value, double theta_value)
{
  /*
  printf("Zonal Energy %lf %lf\n", rho_value, theta_value);
  */

  return(polynomial(e_poly, 2, rho_table, theta_table, rho_value, theta_value));
}
Ejemplo n.º 11
0
void deriv708a (const range &r, char *task, char answ[][BUFSZ], char *src)
{
    char buf[20][BUFSZ];
    int a, b, p, c;
    do {
        a = rndr(r);
        b = rndr(r);
        p = rndr(r);
        c = rndr(r);
    } while (!(a>0 && b>0));

    char ax2b[BUFSZ];
    polynomial(ax2b,2, a,"x^2", b,"");
    char lnax2b[BUFSZ];
    sprintf(lnax2b, "ln(%s)", ax2b);

    strcpy(task, "");
    catprintf(task, "String(\"Найдите производную указанной функции:\")");
    catprintf(task, "\ny(x)=((%s)/sqrt(%s))*cos(%d)",
        polynomial(buf[0],2, 1,lnax2b, c,""),
        ax2b,
        p
    );
    sprintf(src, "y(x)=((ln(a*x^2+b)+c)/sqrt(a*x^2+b))*cos(p)");

    sprintf(answ[0], "y(x)`=((%s)/sqrt((%s)^3))*cos(%d)",
        polynomial(buf[0],1, a,chprintf(buf[1],"x*(%s)", polynomial(buf[2],2, 2-c,"", -1,lnax2b))),
        ax2b,
        p
    );
    sprintf(answ[1], "y(x)`=((%s)/sqrt((%s)^3))*cos(%d)",
        polynomial(buf[0],1, a,chprintf(buf[1],"x^2*(%s)", polynomial(buf[2],2, 1-c,"", -1,lnax2b))),
        ax2b,
        p
    );
    sprintf(answ[2], "y(x)`=((%s)/sqrt((%s)^3))*sin(%d)",
        polynomial(buf[0],1, a,chprintf(buf[1],"x*(%s)", polynomial(buf[2],2, c-2,"", 1,lnax2b))),
        ax2b,
        p
    );
    sprintf(answ[3], "y(x)`=((%s)/(%s))*sin(%d)",
        polynomial(buf[0],1, a,chprintf(buf[1],"x^2*(%s)", polynomial(buf[2],2, 1,lnax2b, -2+c,""))),
        ax2b,
        p
    );
}
Ejemplo n.º 12
0
int main (void)
{
 int i,j;
 int power;
 
printf("Please enter the maximum degree of polynomial: ");
 scanf("%d", &degree);
 
 if (degree<0)
 {
	 exit(0);
 }

/* Enter the coefficient */
 printf("\nPlease enter the coefficient: ");
 for (i = 0; i<= degree; i++)
 {
 scanf("%d",&coefficient[i]);
 }
 
/* Print the polynomial */ 
power = degree;
 printf("\nThe polynomial is");
 for (i = 0; i <= degree; i++)
 {
 printf(" %d ", coefficient[i]);
 polynomial(power); /* Print the degree */ 
power--;
 }

 /* Print the reciprocal */
 power = degree;
 j = i;
 printf("\nThe reciprocal is");
 for (j = degree; j >= 0; j--) 
{
 printf(" %d", coefficient[j]);
 polynomial(power); /* Print the degree */ 
power--;
 }
 
check_equality(i,j);
 

return 0;
}
Ejemplo n.º 13
0
void deriv413a (const range &r, char *task, char answ[][BUFSZ], char *src)
{
    char buf[20][BUFSZ];
    int a, b, c;
    do {
        a = rndr(r);
        b = rndr(r);
        c = rndr(r);
    } while (!(a>1 && b!=0));

    strcpy(task, "");
    catprintf(task, "String(\"Найдите производную указанной функции:\")");
    catprintf(task, "\ny(x)=sin(log(%d,%s))+cos(%d)", a,polynomial(buf[0],1,b,"x"),c);

    sprintf(answ[0], "y(x)`=cos(log(%d,%d))/(x*ln(%d))",a,b,a);
    sprintf(answ[1], "y(x)`=(cos(log(%d,%d))/((%s)*ln(%d)))+sin(%d)",a,b,polynomial(buf[0],1,b,"x"),a,c);
    sprintf(answ[2], "y(x)`=%s", polynomial(buf[0],1,b,chprintf(buf[1],"cos(1/((%s)*ln(%d)))", polynomial(buf[2],1,b,"x"),a)));
    sprintf(answ[3], "y(x)`=(cos(log(%d,%d))/(x*ln(%d)))-sin(%d)", a,b,a,c);
}
Ejemplo n.º 14
0
void deriv415a (const range &r, char *task, char answ[][BUFSZ], char *src)
{
    char buf[20][BUFSZ];
    int a, b, c;
    do {
        a = rndr(r);
        b = rndr(r);
        c = rndr(r);
    } while (!(a>1 && b>0));

    strcpy(task, "");
    catprintf(task, "String(\"Найдите производную указанной функции:\")");
    catprintf(task, "\ny(x)=arcsin(sqrt(%d/x))+arctg(%d)", b,c);

    sprintf(answ[0], "y(x)`=-(%s/(2*x*sqrt(%s)))",fraction(buf[0],1,b,1),polynomial(buf[1],2,1,"x",-b,""));
    sprintf(answ[1], "y(x)`=(%s)/(2*sqrt(%s))",polynomial(buf[0],1,b,"x"),polynomial(buf[1],2,1,"x",-b,""));
    sprintf(answ[2], "y(x)`=(%d)/(2*x^2*sqrt(1-(%d)/x))+arctg(%d)",-b,b,c);
    sprintf(answ[0], "y(x)`=-(%s/(2*x*sqrt(%s)))+(%s)",fraction(buf[0],1,b,1),polynomial(buf[1],2,1,"x",-b,""), fraction(buf[2],1,1,1+c*c));
}
Ejemplo n.º 15
0
int main(void)
{
	/*Intialising the variables*/
	int degree;
	int coefficient[11];
	int i;
	void polynomial(int degree, int coefficient[11]);

	do
	{

	/*Asking the user to input values for the polynomial*/
	printf("Please enter the maximum degree of the polynomial: ");
	scanf("%d", &degree);

	/*This while loop checks if the degree is below 0 i.e minus and terminates the program if its true*/
	while(degree<0)
	{
		return 0;
	}

	/*Asking the user to input the coefficients*/
	printf("Please enter the coefficients: ");

	for (i=0; i <= degree; i++)
	{
  
    /*This for loop repeats the scanf the required number of times depending on the input of the degree*/      
	scanf("%d", &coefficient[i]);

	}

	/*The results of the program*/
	printf("The polynomial is ");
	polynomial(degree, coefficient);
	printf("\n");

	printf("The reciprocal is ");
	reciprocal(degree, coefficient);
	printf("\n");

	/*Checks whether the polynomial is self-reciprocal and prints the result*/
	if(selfreciprocal(degree, coefficient)==1)
	printf("The polynomial is self-reciprocal \n");
	if(selfreciprocal(degree, coefficient)==0)
	printf("The polynomial is not self-reciprocal \n");
	printf("\n\n");
	
	}
	while(selfreciprocal(degree, coefficient)==0); /*Will terminate the loop if the polynomial is self-reciprocal*/

	return 0;
}
Ejemplo n.º 16
0
int main(void)
{
	int degree; //there will be a valiable called degree that will be an integor 
	int a[10]; //creates an array, a, and assigns 10 values that are integors
	int i; //there will be an variable called i that will be an integor
	int j; //there will be a variable called j that will be an integor 
	
	degree=1;
	while(degree>0)
	{
		printf("Please enter the maximum degree of the polynomial: "); //asks user to imput the degree of polynomial
		scanf("%d", &degree);
		if(degree<0)
		{ 
			return 0;
		}
   		printf("Please enter the coefficients: "); //asks user to imput the coefficients
		for(i=0; i<=degree; i++) //creates a loop that repeats untill the array number is equal to the degree
		scanf("%d", &a[i]); //calls the coefficients of the array 
		printf("The polynomial is: "); 
		polynomial(a, degree); //calls function polynomial 
		printf("\nThe reciprocal is: ");
		reciprical(a, degree); //calls function reciprical 

		int isreciprocal = 1; //ture
		j=degree;
		for(i=0; i<= degree; i++)
	

		{
			if(a[i] != a[j])
			isreciprocal = 0;
			j--;
		}
		
			if(isreciprocal == 1)
		{ 
			printf("\nThe polynomial is self-reciprocal");
		}
		else
		{ 
			printf("\nThe polynomial is not self-reciprocal");
		}
	



		printf("\n\n");

	}
	
}
Ejemplo n.º 17
0
void deriv414a (const range &r, char *task, char answ[][BUFSZ], char *src)
{
    char buf[20][BUFSZ];
    int a, b, c;
    do {
        a = rndr(r);
        b = rndr(r);
        c = rndr(r);
    } while (!(a>1 && b!=0));

    strcpy(task, "");
    catprintf(task, "String(\"Найдите производную указанной функции:\")");
    catprintf(task, "\ny(x)=cos((%d)^(%s))^2+tg(%d)", a,polynomial(buf[0],1,b,"x"),c);

    char blna[BUFSZ]; polynomial(blna,1, b,chprintf(buf[0],"ln(%d)",a));
    char abx[BUFSZ]; sprintf(abx,"(%d)^(%s)", a, polynomial(buf[0],1,b,"x"));
    
    sprintf(answ[0], "y(x)`=(-sin(2*%s))*.(%s)*.(%s)",abx,abx,blna);
    sprintf(answ[1], "y(x)`=2*(cos(%s))*.(%s)+tg(%d)",abx,blna,c);
    sprintf(answ[2], "y(x)`=(sin(%s)^2)*.(%s)+1/cos(%d)^2",abx,blna,c);
    sprintf(answ[3], "y(x)`=2*(cos(%s))*.(sin(%s)^2)*.(%s)",abx,abx,blna);
}
Ejemplo n.º 18
0
void deriv412a (const range &r, char *task, char answ[][BUFSZ], char *src)
{
    char buf[20][BUFSZ];
    int a, b, c;
    do {
        a = rndr(r);
        b = rndr(r);
        c = rndr(r);
    } while (!(a>1 && b!=0));

    char bx[BUFSZ];
    polynomial(bx,1, b,"x");

    strcpy(task, "");
    catprintf(task, "String(\"Найдите производную указанной функции:\")");
    catprintf(task, "\ny(x)=(%d)^arctg(%s)+tg(%d)^2", a,bx,c);
    sprintf(src, "y(x)=a^arctg(b*x)+tg(c)^2");

    sprintf(answ[0], "y(x)`=(%d)^arctg(%s)*.!(ln(%d))*.(%d/(%s))", a,bx,a,b,polynomial(buf[0],2,1,"",b*b,"x^2"));
    sprintf(answ[1], "y(x)`=(%d)^arctg(%s)*.!(ln(%d))+tg(%d)^2", a,bx,a,c);
    sprintf(answ[2], "y(x)`=(%d)^(%d/(%s))*.!(ln(%d))+(2*tg(%d))/(cos(%d)^2)", a,b,polynomial(buf[0],2,1,"",b*b,"x^2"),a,c,c);
    sprintf(answ[3], "y(x)`=arctg(%s)*(%d)^(arctg(%s)-1)*.(%d/(%s))", bx,a,bx,b,polynomial(buf[0],2,1,"",b*b,"x^2"));
}
Ejemplo n.º 19
0
void deriv409a (const range &r, char *task, char answ[][BUFSZ], char *src)
{
    char buf[20][BUFSZ];
    int a, b, c;
    do {
        a = rndr(r);
        b = rndr(r);
        c = rndr(r);
    } while (!(a>1 && b!=0 && c>1));

    char bx[BUFSZ];
    polynomial(bx,1, b,"x");

    strcpy(task, "");
    catprintf(task, "String(\"Найдите производную указанной функции:\")");
    catprintf(task, "\ny(x)=(%d)^tg(%s)+1/ln(%d)", a,bx,c);
    sprintf(src, "y(x)=a^tg(b*x)+1/ln(c)");

    sprintf(answ[0], "y(x)`=(%d)^tg(%s)*.(%d/cos(%s)^2)*.ln(%d)", a,bx,b,bx,a);
    sprintf(answ[1], "y(x)`=(%d)^tg(%s)*.(%d/sin(%s)^2)*.ln(%d)", a,bx,-b,bx,a);
    sprintf(answ[2], "y(x)`=(%d)^tg(%s)*.(%d/cos(%s)^2)-1/(%s)", a,bx,b,bx,polynomial(buf[0],1,c,chprintf(buf[1],"ln(%d)^2",c)));
    sprintf(answ[3], "y(x)`=tg(%s)*.(%d)^(tg(%s)-1)*.(1/cos(%s)^2)+1/ln(%d)", bx, a, bx, bx, c);
}
float getRoots(float possibleRoots[],int possibleRootCounter)
{
	int j=0;
	for (int i=0;i<possibleRootCounter;i++)
	{
           if (polynomial((float)possibleRoots[i]) == 0)
	   {
			Roots[j++]=possibleRoots[i];
			printf("Roots[%d]=%f\n",j-1,Roots[j-1]);
			rootsCounter++;
		}
	}
	return rootsCounter;
}
Ejemplo n.º 21
0
void deriv706a (const range &r, char *task, char answ[][BUFSZ], char *src)
{
    char buf[20][BUFSZ];
    int a, n;
    do {
        a = rndr(r);
        n = rndr(r);
    } while (!(a!=0 && n>0));

    strcpy(task, "");
    catprintf(task, "String(\"Найдите производную указанной функции:\")");
    catprintf(task, "\ny(x)=arctg(%s)/(%s)",
        memb(buf[0], 1,a,1,1,"x", false),
        memb(buf[1], 1,1,n,1, polynomial(buf[2],2, a*a,"",1,"x^2"), false)
    );
    sprintf(src, "y(x)=arctg(x/a)/(a^2+x^2)^n");

    char xarctg[BUFSZ];
    sprintf(xarctg, "x*arctg(%s)", memb(buf[0], 1,a,1,1, "x", false));
    sprintf(answ[0], "y(x)`=(%s)/(%s)",
        polynomial(buf[0],2, a,"", -2*n,xarctg),
        memb(buf[1], 1,1,n+1,1, polynomial(buf[2],2, a*a,"", 1,"x^2"), false)
    );
    sprintf(answ[1], "y(x)`=(%s)/(%s)",
        polynomial(buf[0],2, a*a,"", -4*n,xarctg),
        memb(buf[1], 1,1,n+1,1, polynomial(buf[2],2, a*a,"", 1,"x^2"), false)
    );
    sprintf(answ[2], "y(x)`=(%s)/(%s)",
        polynomial(buf[0],2, a,polynomial(buf[1],2, a*a,"", 1,"x^2"), -2*n,xarctg),
        memb(buf[2], 1,1,n,1, polynomial(buf[3],2, a*a,"", 1,"x^2"), false)
    );
    sprintf(answ[3], "y(x)`=(%s)/(%s)",
        polynomial(buf[0],2, a*a,"", -2*n,xarctg),
        memb(buf[1], 1,1,n,1, polynomial(buf[2],2, a*a,"", 1,"x^2"), false)
    );
}
Ejemplo n.º 22
0
int main()
{
	while(1){
		int i;        /* Give values to array by the order of i*/
		int co[11];   /* The array to store the coefficients of polynomial*/
		int n;        /* The maximum degree of polynomial*/
		int k=0;      /* The variable to check reprocical*/
		/* Prompt the user for maximum degree */
		printf("Please enter the maximum degree of the polynomial:");
		scanf("%d", &n);

		/* Check whether the maximum degree is negative number
		If so, terminate here. Otherwise continue the program*/
		if(n<0){
			return 0;}
		else{
			printf("Please enter the coefficients:");

			for(i=0;i<=n;i++){
				scanf("%d", &co[i]);}
			/* Print two polynomials*/
			polynomial(n,co);
			reciprocal(n,co);

			/* Check whether it is self-reciprocal or not.If coefficient is equal to that 
			after changingposition, K will get 1 increment. Otherwise 0 increment.
			If k=n+1, that means p(x) = p*(x) and terminate the program*/


			for(i=0;i<=n;i++){
				if(co[i]==co[n-i]){
					k = k+1;}
				else{k = k;}}

			if(k==(n+1)){
				printf("The polynomial is self-reciprocal\n");
				return 0;}

			else{
				printf("The polynomial is not self-reciprocal\n");
				printf("\n");
			}
		}
	}
}
Ejemplo n.º 23
0
int main(void){




	int coefficient[SIZE];
	int K, N, Power;
	int count3 = 0;

	/* Below while loop basically creat repeatatinon of Entering the polynomial */
	N=1;
	while (N>0){

		/* asking the user to the maximum degree of polynomai, which is then taken by scanf*/
		printf("Please enter the maximum degree of the polynomial:");
		scanf("%d", &N);

		if(N<0){

			exit(0);
		}
		/*asking the user the input the coeff*/
		printf("Please enter the coefficients:");

		for(K=0; K<=N; K++)
		{


			scanf("%d", &coefficient[K]);

		}
		Power = N;
		/*Here the functions are called in the main*/
		polynomial(coefficient, Power, N);
		reciprocal(coefficient, Power , N);


		printf("\n");

	}

	exit(0);


}
Ejemplo n.º 24
0
void deriv707a (const range &r, char *task, char answ[][BUFSZ], char *src)
{
    char buf[20][BUFSZ];
    int a, b, c;
    do {
        a = rndr(r);
        b = rndr(r);
        c = rndr(r);
    } while (!(a!=0 && b>1));

    char arctgxac[BUFSZ];
    polynomial(arctgxac,2,
        1,chprintf(buf[0],"arctg(%s)", memb(buf[1], 1,a,1,1, "x", false)),
        c,""
    );

    char xarctgxac[BUFSZ];
    sprintf(xarctgxac, "x*(%s)", arctgxac);

    char a2x2[BUFSZ];
    polynomial(a2x2,2, a*a,"",1,"x^2");

    strcpy(task, "");
    catprintf(task, "String(\"Найдите производную указанной функции:\")");
    catprintf(task, "\ny(x)=((%s)/sqrt(%s))*ln(%d)", arctgxac, a2x2, b);
    sprintf(src, "y(x)=((arctg(x/a)+c)/sqrt(a*x^2+b))*ln(b)");

    sprintf(answ[0], "y(x)`=((%s)/sqrt((%s)^3))*ln(%d)",
        polynomial(buf[0],2, a,"", -1,xarctgxac),
        a2x2,
        b
    );
    sprintf(answ[1], "y(x)`=((%s)/sqrt((%s)^3))*ln(%d)",
        polynomial(buf[0],2, a,"", -2,xarctgxac),
        a2x2,
        b
    );
    sprintf(answ[2], "y(x)`=((%s)/(%s))*ln(%d)",
        polynomial(buf[0],2, a,"", -1,xarctgxac),
        a2x2,
        b
    );
    sprintf(answ[3], "y(x)`=((%s)/(%s))",
        polynomial(buf[0],2, a,"", -1,xarctgxac),
        polynomial(buf[1],1, b,a2x2)
    );
}
Ejemplo n.º 25
0
// Check for identically zero polynomials using randomized polynomial identity testing
template<class R,class PerturbedT> static void
assert_last_nonzero(void(*const polynomial)(R,RawArray<const Vector<Exact<1>,PerturbedT::m>>),
                    R result, RawArray<const PerturbedT> X, const char* message) {

  typedef Vector<Exact<1>,PerturbedT::m> EV;
  const int n = X.size();
  const auto Z = GEODE_RAW_ALLOCA(n,EV);
  for (const int k : range(20)) {
    for (int i=0;i<n;i++)
      Z[i] = EV(perturbation<PerturbedT::m>(k<<10,X[i].seed()));
    polynomial(result,Z);
    if (last_nonzero(result)) // Even a single nonzero means we're all good
      return;
  }
  // If we reach this point, the chance of a nonzero nonmalicious polynomial is something like (1e-5)^20 = 1e-100.  Thus, we can safely assume that for the lifetime
  // of this code, we will never treat a nonzero polynomial as zero.  If this comes up, we can easily bump the threshold a bit further.
  throw AssertionError(format("%s (there is likely a bug in the calling code), X = %s",message,str(X)));
}
Ejemplo n.º 26
0
int main(void)

{/*Declaring variables*/
	int b;
	int degree;
	int coefficient[11];
    int reciprocal1[11];
	
    do/*Allows the program loop*/
    {
        printf("Please enter the maximum degree of the polynomial :");/*prompting user for input of maximum degree*/
		scanf("%d" , &degree);
		
		/*makes the program terminate when a negative integer is inputed*/
        if(degree<0)
		{
			return 0;
		}
        printf("Please enter the coefficients:");/*prompting user for input of coefficients*/
        
		for (b=0; b <= degree; b++)/*A for loop that repeats scanf the required number of times depending on the degree of the polynomoial*/
        {
            scanf("%d", &coefficient[b]);
        }
		printf("The polynomial is  ");/*printing the polynomial*/
        
		polynomial(degree,coefficient);
        
		printf("Its reciprocal is  ");/*Printitng the Reciprocal*/
		reciprocal(degree,coefficient);


        /*Determining if the polynomial is self reciprocal or not*/
       if (determination(b, degree, reciprocal1, coefficient)==1)
       {
           printf("This not self reciprocal \n\n");
       }
        if (determination(b, degree, reciprocal1, coefficient)==0)
        {
            printf("This is self reciprocal \n\n");
        }
    }
        while (determination(b, degree, reciprocal1, coefficient)==1);
               }
Ejemplo n.º 27
0
int main()
{
    int i,j;    //update varible
    int exponent;      //prompt exponent by user
    int *arr;          //prompt coefficients by user

   arr = (int *)malloc(Max_Length );      //define the max array length

   if( arr == NULL )                       //test whether the pointer of array points empty or not
   {
	   return 0;
   }
   else
   {
/* user input the exponent and coefficients which are stored in corresponding
varible and array. print the whole program. */
	   for (j=0;j<5;j++)                                                   
	   {
		   printf("Please enter the maximum degree of the polynomial ");
		   scanf("%d",&exponent);    //prompt the exponent by user
		   if (exponent>=0)
		   {
		       printf("Please enter the coefficients ");
/* print the terms of expression */
		       for (i=0;i<=exponent;i++)                                      
		       {                                                               
			   scanf("%d",&arr[i]);   //prompt coefficients by use                                        
		       }
		       polynomial(exponent,arr);    //print the polynomial expression
		       derivative(exponent,arr);    //print the derivative expression
		       printf("\n\n\n");
	       }
		   else
		   {
			   printf("\n\n\n");
		   }
	   }
	   free( arr );    //release the storage
   }
   return 0;
}
Ejemplo n.º 28
0
int main(void)
{
	while(1){ //loop forever
		printf("Please enter the maximum degree of the polynomial: ");
		scanf("%d",&degree);  //input maximum degree.
		if (degree < 0 ){
			break;
			//the program will exit when input less then 0.
		}
		printf("Please enter the coefficients: ");
			for (i=0;i<=degree;i++){	
			scanf("%d",&coef[i]);
			//input all coefficients from coef[1] to coef[i].
				}
		polynomial();  //output all polynomial.
		printf("\n");
		reciprocal();  //output all reciprocal.
		printf("\n");
		selfreciprocal();  //output if it is self-reciprocal or not.
	}
}
Ejemplo n.º 29
0
int main(void)
{
	
	int i, loop, poldegree, size;
	
	for(loop=1; loop!=0;) //												loop=1 --> the program keeps on running asking for new values, loop=0 --> the program terminates
	{
		printf("Please enter the maximum degree of the polynomial: ");
		scanf("%d", &poldegree);
		if (poldegree<0) //													if the polynomial degree (poldegree) entered is negative then loop=0 and the program terminates
			loop=0;
		else
		{
			size = poldegree +1 ;
			int * coefficients = new int[size]; //			        		we define the size of our array which depends on the polynomial degree entered by the user
			printf("Please enter the coefficients: ");
			for(i=0; i<=poldegree; i++)
				scanf("%d", &coefficients[i]); //						    it reads tha values of the coefficients which are placed into an array
			polynomial(coefficients, poldegree);
			printf("\n");
			reciprocal_calc(coefficients, poldegree);
			printf("\n");
			if(poldegree!=0)
				loop=reciprocal_check(coefficients, poldegree);
			else if(poldegree==0)
			{
				printf("The polynomial is self-reciprocal \n\n");
				loop=0;
			}
			if (loop==1) //													if the polynomial is not self-reciprocal then the array's values should be deleted sp that the next coefficients can be entered
			{
				free(coefficients);
				printf("\n\n\n");
			}
		}
	}
	
return 0;

}
Ejemplo n.º 30
0
int main(void)
{
	while(1){ //loop forever
		printf("Please enter the maximum degree of the polynomial: ");
		scanf("%d",&degree);  //input maximum degree.
		if (degree < 0 ){
			break;
			//the program will exit when input less then 0.
		}
		printf("Please enter the coefficients: ");
			for (i=0;i<=degree;i++){	
				scanf("%d",&*(coef+i));
			//input all coefficients from coef[1] to coef[i].
				}
		polynomial();  //output all polynomial.
		if (coef !=NULL){
			free(coef);
		}
		printf("\n");

	}
}