static int uncrypt(const char* input_path, const char* map_file, int status_fd) {

    ALOGI("update package is \"%s\"", input_path);

    // Turn the name of the file we're supposed to convert into an
    // absolute path, so we can find what filesystem it's on.
    char path[PATH_MAX+1];
    if (realpath(input_path, path) == NULL) {
        ALOGE("failed to convert \"%s\" to absolute path: %s", input_path, strerror(errno));
        return 1;
    }

    if (read_fstab() == NULL) {
        return 1;
    }

    bool encryptable;
    bool encrypted;
    const char* blk_dev = find_block_device(path, &encryptable, &encrypted);
    if (blk_dev == NULL) {
        ALOGE("failed to find block device for %s", path);
        return 1;
    }

    // If the filesystem it's on isn't encrypted, we only produce the
    // block map, we don't rewrite the file contents (it would be
    // pointless to do so).
    ALOGI("encryptable: %s", encryptable ? "yes" : "no");
    ALOGI("  encrypted: %s", encrypted ? "yes" : "no");

    // Recovery supports installing packages from 3 paths: /cache,
    // /data, and /sdcard.  (On a particular device, other locations
    // may work, but those are three we actually expect.)
    //
    // On /data we want to convert the file to a block map so that we
    // can read the package without mounting the partition.  On /cache
    // and /sdcard we leave the file alone.
    if (strncmp(path, "/data/", 6) == 0) {
        ALOGI("writing block map %s", map_file);
        if (produce_block_map(path, map_file, blk_dev, encrypted, status_fd) != 0) {
            return 1;
        }
    }

    return 0;
}
Ejemplo n.º 2
0
static int uncrypt(const char* input_path, const char* map_file, const int socket) {
    LOG(INFO) << "update package is \"" << input_path << "\"";

    // Turn the name of the file we're supposed to convert into an absolute path, so we can find
    // what filesystem it's on.
    char path[PATH_MAX+1];
    if (realpath(input_path, path) == nullptr) {
        PLOG(ERROR) << "failed to convert \"" << input_path << "\" to absolute path";
        return kUncryptRealpathFindError;
    }

    bool encryptable;
    bool encrypted;
    bool f2fs_fs;
    const char* blk_dev = find_block_device(path, &encryptable, &encrypted, &f2fs_fs);
    if (blk_dev == nullptr) {
        LOG(ERROR) << "failed to find block device for " << path;
        return kUncryptBlockDeviceFindError;
    }

    // If the filesystem it's on isn't encrypted, we only produce the
    // block map, we don't rewrite the file contents (it would be
    // pointless to do so).
    LOG(INFO) << "encryptable: " << (encryptable ? "yes" : "no");
    LOG(INFO) << "  encrypted: " << (encrypted ? "yes" : "no");

    // Recovery supports installing packages from 3 paths: /cache,
    // /data, and /sdcard.  (On a particular device, other locations
    // may work, but those are three we actually expect.)
    //
    // On /data we want to convert the file to a block map so that we
    // can read the package without mounting the partition.  On /cache
    // and /sdcard we leave the file alone.
    if (strncmp(path, "/data/", 6) == 0) {
        LOG(INFO) << "writing block map " << map_file;
        return produce_block_map(path, map_file, blk_dev, encrypted, f2fs_fs, socket);
    }

    return 0;
}
Ejemplo n.º 3
0
int main(int argc, char** argv)
{
    const char* input_path;
    const char* map_file;
    int do_reboot = 1;

    if (argc != 1 && argc != 3) {
        fprintf(stderr, "usage: %s [<transform_path> <map_file>]\n", argv[0]);
        return 2;
    }

    if (argc == 3) {
        // when command-line args are given this binary is being used
        // for debugging; don't reboot to recovery at the end.
        input_path = argv[1];
        map_file = argv[2];
        do_reboot = 0;
    } else {
        input_path = parse_recovery_command_file();
        if (input_path == NULL) {
            // if we're rebooting to recovery without a package (say,
            // to wipe data), then we don't need to do anything before
            // going to recovery.
            ALOGI("no recovery command file or no update package arg");
            reboot_to_recovery();
            return 1;
        }
        map_file = CACHE_BLOCK_MAP;
    }

    ALOGI("update package is %s", input_path);

    // Turn the name of the file we're supposed to convert into an
    // absolute path, so we can find what filesystem it's on.
    char path[PATH_MAX+1];
    if (realpath(input_path, path) == NULL) {
        ALOGE("failed to convert %s to absolute path: %s", input_path, strerror(errno));
        return 1;
    }

    int encryptable;
    int encrypted;
    if (read_fstab() == NULL) {
        return 1;
    }
    const char* blk_dev = find_block_device(path, &encryptable, &encrypted);
    if (blk_dev == NULL) {
        ALOGE("failed to find block device for %s", path);
        return 1;
    }

    // If the filesystem it's on isn't encrypted, we only produce the
    // block map, we don't rewrite the file contents (it would be
    // pointless to do so).
    ALOGI("encryptable: %s\n", encryptable ? "yes" : "no");
    ALOGI("  encrypted: %s\n", encrypted ? "yes" : "no");

    // Recovery supports installing packages from 3 paths: /cache,
    // /data, and /sdcard.  (On a particular device, other locations
    // may work, but those are three we actually expect.)
    //
    // On /data we want to convert the file to a block map so that we
    // can read the package without mounting the partition.  On /cache
    // and /sdcard we leave the file alone.
    if (strncmp(path, "/data/", 6) != 0) {
        // path does not start with "/data/"; leave it alone.
        unlink(RECOVERY_COMMAND_FILE_TMP);
    } else {
        ALOGI("writing block map %s", map_file);
        if (produce_block_map(path, map_file, blk_dev, encrypted) != 0) {
            return 1;
        }
    }

    wipe_misc();
    rename(RECOVERY_COMMAND_FILE_TMP, RECOVERY_COMMAND_FILE);
    if (do_reboot) reboot_to_recovery();
    return 0;
}