Ejemplo n.º 1
0
int32_t psHmacMd5(const unsigned char *key, uint16_t keyLen,
                  const unsigned char *buf, uint32_t len,
                  unsigned char hash[MD5_HASHLEN], unsigned char *hmacKey,
                  uint16_t *hmacKeyLen)
{
    psMd5_t	md;
    /*
     Support for keys larger than 64 bytes.  In this case, we take the
     hash of the key itself and use that instead.  Inform the caller by
     updating the hmacKey and hmacKeyLen outputs
     */
    if (keyLen > 64) {
        psMd5Init(&md);
        psMd5Update(&md, key, keyLen);
        psMd5Final(&md, hash);
        *hmacKeyLen = MD5_HASHLEN;
        memcpy(hmacKey, hash, *hmacKeyLen);
    } else {
        hmacKey = (unsigned char*)key;
        *hmacKeyLen = keyLen;
    }
    if (HMAC(EVP_md5(), hmacKey, *hmacKeyLen, buf, len, hash, NULL) != NULL) {
        return PS_SUCCESS;
    }
    return PS_FAIL;
}
Ejemplo n.º 2
0
Archivo: hmac.c Proyecto: Deadolus/ecc
int32_t psHmacMd5Init(psHmacMd5_t *ctx,
				const unsigned char *key, uint16_t keyLen)
{
	int32_t		rc, i;

#ifdef CRYPTO_ASSERT
	psAssert(keyLen <= 64);
#endif
	for (i = 0; (uint32)i < keyLen; i++) {
		ctx->pad[i] = key[i] ^ 0x36;
	}
	for (i = keyLen; i < 64; i++) {
		ctx->pad[i] = 0x36;
	}
	if ((rc = psMd5Init(&ctx->md5)) < 0) {
		return rc;
	}
	psMd5Update(&ctx->md5, ctx->pad, 64);
	for (i = 0; (uint32)i < keyLen; i++) {
		ctx->pad[i] = key[i] ^ 0x5c;
	}
	for (i = keyLen; i < 64; i++) {
		ctx->pad[i] = 0x5c;
	}
	return PS_SUCCESS;
}
Ejemplo n.º 3
0
/*
	HMAC-MD5
	http://www.faqs.org/rfcs/rfc2104.html

	the HMAC_MD5 transform looks like:

		MD5(K XOR opad, MD5(K XOR ipad, text))
       
		where K is an n byte key
		ipad is the byte 0x36 repeated 64 times

		opad is the byte 0x5c repeated 64 times
		and text is the data being protected

	If the keyLen is > 64 bytes, we hash the key and use it instead
*/
int32 psHmacMd5(unsigned char *key, uint32 keyLen, 
				const unsigned char *buf, uint32 len, unsigned char *hash,
				unsigned char *hmacKey, uint32 *hmacKeyLen)
{
	psHmacContext_t		ctx;
	psDigestContext_t	md;
/*
	Support for keys larger than 64 bytes.  In this case, we take the
	hash of the key itself and use that instead.  Inform the caller by
	updating the hmacKey and hmacKeyLen outputs
*/
	if (keyLen > 64) {
		psMd5Init(&md);
		psMd5Update(&md, key, keyLen);
		*hmacKeyLen = psMd5Final(&md, hash);
		memcpy(hmacKey, hash, *hmacKeyLen);
	} else {
		hmacKey = key;
		*hmacKeyLen = keyLen;
	}

	psHmacMd5Init(&ctx, hmacKey, *hmacKeyLen);
	psHmacMd5Update(&ctx, buf, len);
	return psHmacMd5Final(&ctx, hash);
}
Ejemplo n.º 4
0
/*
 *	Generates all key material.
 */
int32 sslDeriveKeys(ssl_t *ssl)
{
	psDigestContext_t	md5Ctx, sha1Ctx;
	unsigned char		buf[MD5_HASH_SIZE + SHA1_HASH_SIZE];
	unsigned char		*tmp;
	uint32				i;

/*
	If this session is resumed, we want to reuse the master secret to 
	regenerate the key block with the new random values.
*/
	if (ssl->flags & SSL_FLAGS_RESUMED) {
		goto skipPremaster;
	}
/*
	master_secret =
		MD5(pre_master_secret + SHA('A' + pre_master_secret +
			ClientHello.random + ServerHello.random)) +
		MD5(pre_master_secret + SHA('BB' + pre_master_secret +
			ClientHello.random + ServerHello.random)) +
		MD5(pre_master_secret + SHA('CCC' + pre_master_secret +
			ClientHello.random + ServerHello.random));
*/
	tmp = ssl->sec.masterSecret;
	for (i = 0; i < 3; i++) {
		psSha1Init(&sha1Ctx);
		psSha1Update(&sha1Ctx, salt[i], i + 1);
		psSha1Update(&sha1Ctx, ssl->sec.premaster, ssl->sec.premasterSize);
		psSha1Update(&sha1Ctx, ssl->sec.clientRandom, SSL_HS_RANDOM_SIZE);
		psSha1Update(&sha1Ctx, ssl->sec.serverRandom, SSL_HS_RANDOM_SIZE);
		psSha1Final(&sha1Ctx, buf);
		
		psMd5Init(&md5Ctx);
		psMd5Update(&md5Ctx, ssl->sec.premaster, ssl->sec.premasterSize);
		psMd5Update(&md5Ctx, buf, SHA1_HASH_SIZE);
		psMd5Final(&md5Ctx, tmp);
		tmp += MD5_HASH_SIZE;
	}
	memset(buf, 0x0, MD5_HASH_SIZE + SHA1_HASH_SIZE);
/*
	premaster is now allocated for DH reasons.  Can free here
*/
	psFree(ssl->sec.premaster);
	ssl->sec.premaster = NULL;
	ssl->sec.premasterSize = 0;

skipPremaster:
	if (createKeyBlock(ssl, ssl->sec.clientRandom, ssl->sec.serverRandom, 
			ssl->sec.masterSecret, SSL_HS_MASTER_SIZE) < 0) {
		psTraceInfo("Unable to create key block\n");
		return PS_FAILURE;
	}
	
	return SSL_HS_MASTER_SIZE;
}
/*
	Initialize the SHA1 and MD5 hash contexts for the handshake messages
*/
int32 sslInitHSHash(ssl_t *ssl)
{
#ifndef USE_ONLY_TLS_1_2
	psSha1Init(&ssl->sec.msgHashSha1);
	psMd5Init(&ssl->sec.msgHashMd5);
#endif
#ifdef USE_TLS_1_2
	psSha256Init(&ssl->sec.msgHashSha256);
#ifdef USE_SHA384
	psSha384Init(&ssl->sec.msgHashSha384);
#endif
#endif
	return 0;
}
Ejemplo n.º 6
0
/**
	Maintain MD5 and SHA1 hashes of the same data.
	@note This could be done more optimally, give the use of this in TLS.
		Some state is shared between the two contexts, and some paralellism
		could be used in calculation.
*/
int32_t psMd5Sha1Init(psMd5Sha1_t *md)
{
	int32_t		rc;
#ifdef CRYPTO_ASSERT
	psAssert(md);
#endif
	if ((rc = psMd5Init(&md->md5)) < 0) {
		return rc;
	}
	if ((rc = psSha1Init(&md->sha1)) < 0) {
		/* We call Final to clear the state, ignoring the output */
		psMd5Final(&md->md5, NULL);
		return rc;
	}
	return PS_SUCCESS;
}
Ejemplo n.º 7
0
/*
	Combine the running hash of the handshake mesages with some constants
	and mix them up a bit more.  Output the result to the given buffer.
	This data will be part of the Finished handshake message.
*/
int32 sslGenerateFinishedHash(psDigestContext_t *md5, psDigestContext_t *sha1, 
								unsigned char *masterSecret,
								unsigned char *out, int32 sender)
{
	psDigestContext_t	omd5,osha1;
	unsigned char		ihash[SHA1_HASH_SIZE];

/*
	md5Hash = MD5(master_secret + pad2 + 
		MD5(handshake_messages + sender + master_secret + pad1));
*/
	if (sender >= 0) {
		psMd5Update(md5,
			(sender & SSL_FLAGS_SERVER) ? SENDER_SERVER : SENDER_CLIENT, 4);
	}
	psMd5Update(md5, masterSecret, SSL_HS_MASTER_SIZE);
	psMd5Update(md5, pad1, sizeof(pad1));
	psMd5Final(md5, ihash);

	psMd5Init(&omd5);
	psMd5Update(&omd5, masterSecret, SSL_HS_MASTER_SIZE);
	psMd5Update(&omd5, pad2, sizeof(pad2));
	psMd5Update(&omd5, ihash, MD5_HASH_SIZE);
	psMd5Final(&omd5, out);
/*
	The SHA1 hash is generated in the same way, except only 40 bytes
	of pad1 and pad2 are used.
	sha1Hash = SHA1(master_secret + pad2 + 
		SHA1(handshake_messages + sender + master_secret + pad1));
*/
	if (sender >= 0) {
		psSha1Update(sha1, 
			(sender & SSL_FLAGS_SERVER) ? SENDER_SERVER : SENDER_CLIENT, 4);
	}
	psSha1Update(sha1, masterSecret, SSL_HS_MASTER_SIZE);
	psSha1Update(sha1, pad1, 40);
	psSha1Final(sha1, ihash);

	psSha1Init(&osha1);
	psSha1Update(&osha1, masterSecret, SSL_HS_MASTER_SIZE);
	psSha1Update(&osha1, pad2, 40);
	psSha1Update(&osha1, ihash, SHA1_HASH_SIZE);
	psSha1Final(&osha1, out + MD5_HASH_SIZE);

	return MD5_HASH_SIZE + SHA1_HASH_SIZE;
}
Ejemplo n.º 8
0
int32 psHmacMd5Final(psHmacContext_t *ctx, unsigned char *hash)
{
	psAssert(ctx != NULL);
	if (hash == NULL) {
		psTraceCrypto("NULL hash storage passed to psHmacMd5Final\n");
		return PS_ARG_FAIL;
	}
	psMd5Final(&ctx->u.md5, hash);

	psMd5Init(&ctx->u.md5);
	psMd5Update(&ctx->u.md5, ctx->pad, 64);
	psMd5Update(&ctx->u.md5, hash, MD5_HASH_SIZE);
	psMd5Final(&ctx->u.md5, hash);

	memset(ctx->pad, 0x0, 64);
	return MD5_HASH_SIZE;
}
Ejemplo n.º 9
0
int32 psMd5Test(void)
{
	psDigestContext_t	ctx;
#if defined(USE_MATRIX_MD5) && !defined(PS_MD5_IMPROVE_PERF_INCREASE_CODESIZE)
	_psTrace("##########\n#\n# ");
	_psTrace("MD5 speeds can be improved by enabling\n# ");
	_psTrace("PS_MD5_IMPROVE_PERF_INCREASE_CODESIZE in cryptoConfig.h\n");
	_psTrace("#\n#\n#########\n");
#endif

	psMd5Init(&ctx.md5);
	runDigestTime(&ctx, TINY_CHUNKS, MD5_ALG);
	runDigestTime(&ctx, SMALL_CHUNKS, MD5_ALG);
	runDigestTime(&ctx, MEDIUM_CHUNKS, MD5_ALG);
	runDigestTime(&ctx, LARGE_CHUNKS, MD5_ALG);
	runDigestTime(&ctx, HUGE_CHUNKS, MD5_ALG);

	return PS_SUCCESS;
}
Ejemplo n.º 10
0
void psHmacMd5Init(psHmacContext_t *ctx, unsigned char *key, uint32 keyLen)
{
	int32				i;

	psAssert(keyLen <= 64);

	for (i = 0; (uint32)i < keyLen; i++) {
		ctx->pad[i] = key[i] ^ 0x36;
	}
	for (i = keyLen; i < 64; i++) {
		ctx->pad[i] = 0x36;
	}
	psMd5Init(&ctx->u.md5);
	psMd5Update(&ctx->u.md5, ctx->pad, 64);
	for (i = 0; (uint32)i < keyLen; i++) {
		ctx->pad[i] = key[i] ^ 0x5c;
	}
	for (i = keyLen; i < 64; i++) {
		ctx->pad[i] = 0x5c;
	}
}
Ejemplo n.º 11
0
char *websMD5binary(unsigned char *buf, int length)
{
    const char		*hex = "0123456789abcdef";
    psDigestContext_t	md5ctx;
    unsigned char	hash[HASH_SIZE];
    char			*r, *strReturn;
	char			result[(HASH_SIZE * 2) + 1];
    int				i;

/*
 *	Take the MD5 hash of the string argument.
 */
	psMd5Init(&md5ctx);
	psMd5Update(&md5ctx, buf, (unsigned int)length);
	psMd5Final(&md5ctx, hash);

/*
 *	Prepare the resulting hash string
 */
    for (i = 0, r = result; i < 16; i++) {
		*r++ = hex[hash[i] >> 4];
		*r++ = hex[hash[i] & 0xF];
    }

/*
 *	Zero terminate the hash string
 */
    *r = '\0';

/*
 *	Allocate a new copy of the hash string
 */
	i = elementsof(result);
	strReturn = balloc(B_L, i);
	strncpy(strReturn, result, i);

    return strReturn;
}
Ejemplo n.º 12
0
Archivo: hmac.c Proyecto: Deadolus/ecc
void psHmacMd5Final(psHmacMd5_t *ctx, unsigned char hash[MD5_HASHLEN])
{
	int32_t		rc;
#ifdef CRYPTO_ASSERT
	psAssert(ctx != NULL);
	if (hash == NULL) {
		psTraceCrypto("NULL hash storage passed to psHmacMd5Final\n");
		return;
	}
#endif
	psMd5Final(&ctx->md5, hash);

	/* This Init should succeed, even if it allocates memory since an 
		psMd5_t was just Finalized the line above */
	if ((rc = psMd5Init(&ctx->md5)) < 0) {
		psAssert(rc >= 0);
		return;
	}
	psMd5Update(&ctx->md5, ctx->pad, 64);
	psMd5Update(&ctx->md5, hash, MD5_HASHLEN);
	psMd5Final(&ctx->md5, hash);

	memset(ctx->pad, 0x0, sizeof(ctx->pad));
}
Ejemplo n.º 13
0
Archivo: hmac.c Proyecto: Deadolus/ecc
int32_t psHmacMd5(const unsigned char *key, uint16_t keyLen,
				const unsigned char *buf, uint32_t len,
				unsigned char hash[MD5_HASHLEN],
				unsigned char *hmacKey, uint16_t *hmacKeyLen)
{
	int32_t				rc;
	union {
		psHmacMd5_t		mac;
		psMd5_t			md;
	} u;
	psHmacMd5_t			*mac = &u.mac;
	psMd5_t				*md = &u.md;
/*
	Support for keys larger than 64 bytes.  In this case, we take the
	hash of the key itself and use that instead.  Inform the caller by
	updating the hmacKey and hmacKeyLen outputs
*/
	if (keyLen > 64) {
		if ((rc = psMd5Init(md)) < 0) {
			return rc;
		}
		psMd5Update(md, key, keyLen);
		psMd5Final(md, hash);
		*hmacKeyLen = MD5_HASHLEN;
		memcpy(hmacKey, hash, *hmacKeyLen);
	} else {
		hmacKey = (unsigned char *)key; /* @note typecasting from const */
		*hmacKeyLen = keyLen;
	}
	if ((rc = psHmacMd5Init(mac, hmacKey, *hmacKeyLen)) < 0) {
		return rc;
	}
	psHmacMd5Update(mac, buf, len);
	psHmacMd5Final(mac, hash);
	return PS_SUCCESS;
}
Ejemplo n.º 14
0
/*
	Generate the key block as follows.  '+' indicates concatination.  
	key_block =
		MD5(master_secret + SHA(`A' + master_secret +
			ServerHello.random + ClientHello.random)) +
		MD5(master_secret + SHA(`BB' + master_secret +
			ServerHello.random + ClientHello.random)) +
		MD5(master_secret + SHA(`CCC' + master_secret +
			ServerHello.random + ClientHello.random)) + 
		[...];
*/
static int32 createKeyBlock(ssl_t *ssl, unsigned char *clientRandom,
						  unsigned char *serverRandom,
						  unsigned char *masterSecret, uint32 secretLen)
{
	psDigestContext_t	md5Ctx, sha1Ctx;
	unsigned char		buf[MD5_HASH_SIZE + SHA1_HASH_SIZE];
	unsigned char		*tmp;
	int32				ret = 0;
	uint32				i, keyIter, reqKeyLen;

/*
	We must generate enough key material to fill the various keys
*/
	reqKeyLen = 2 * ssl->cipher->macSize + 
				2 * ssl->cipher->keySize + 
				2 * ssl->cipher->ivSize;
/*
	Find the right number of iterations to make the requested length key block
*/
	keyIter = 1;
	while (MD5_HASH_SIZE * keyIter < reqKeyLen) {
		keyIter++;
	}
	if (keyIter > sizeof(salt)/sizeof(char*)) {
		psTraceIntInfo("Error: Not enough salt for key length %d\n", reqKeyLen);
		return PS_FAILURE;
	}

	tmp = ssl->sec.keyBlock;
	for (i = 0; i < keyIter; i++) {
		psSha1Init(&sha1Ctx);
		psSha1Update(&sha1Ctx, salt[i], i + 1);
		psSha1Update(&sha1Ctx, masterSecret, secretLen);
		psSha1Update(&sha1Ctx, serverRandom, SSL_HS_RANDOM_SIZE);
		psSha1Update(&sha1Ctx, clientRandom, SSL_HS_RANDOM_SIZE);
		psSha1Final(&sha1Ctx, buf);
		
		psMd5Init(&md5Ctx);
		psMd5Update(&md5Ctx, masterSecret, secretLen);
		psMd5Update(&md5Ctx, buf, SHA1_HASH_SIZE);
		psMd5Final(&md5Ctx, tmp);
		tmp += MD5_HASH_SIZE;
		ret += MD5_HASH_SIZE;
	}
	memset(buf, 0x0, MD5_HASH_SIZE + SHA1_HASH_SIZE);
/*
	Client and server use different read/write values, with the Client 
	write value being the server read value.
*/
	if (ssl->flags & SSL_FLAGS_SERVER) {
		ssl->sec.rMACptr = ssl->sec.keyBlock;
		ssl->sec.wMACptr = ssl->sec.rMACptr + ssl->cipher->macSize;
		ssl->sec.rKeyptr = ssl->sec.wMACptr + ssl->cipher->macSize;
		ssl->sec.wKeyptr = ssl->sec.rKeyptr + ssl->cipher->keySize;
		ssl->sec.rIVptr = ssl->sec.wKeyptr + ssl->cipher->keySize;
		ssl->sec.wIVptr = ssl->sec.rIVptr + ssl->cipher->ivSize;
	} else {
		ssl->sec.wMACptr = ssl->sec.keyBlock;
		ssl->sec.rMACptr = ssl->sec.wMACptr + ssl->cipher->macSize;
		ssl->sec.wKeyptr = ssl->sec.rMACptr + ssl->cipher->macSize;
		ssl->sec.rKeyptr = ssl->sec.wKeyptr + ssl->cipher->keySize;
		ssl->sec.wIVptr = ssl->sec.rKeyptr + ssl->cipher->keySize;
		ssl->sec.rIVptr = ssl->sec.wIVptr + ssl->cipher->ivSize;
	}

	return ret;
}