Ejemplo n.º 1
0
static void __dma_free_remap(void *cpu_addr, size_t size)
{
    struct arm_vmregion *c;
    unsigned long addr;
    pte_t *ptep;
    int idx;
    u32 off;

    c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
    if (!c) {
        printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
               __func__, cpu_addr);
        dump_stack();
        return;
    }

    if ((c->vm_end - c->vm_start) != size) {
        printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
               __func__, c->vm_end - c->vm_start, size);
        dump_stack();
        size = c->vm_end - c->vm_start;
    }

    idx = CONSISTENT_PTE_INDEX(c->vm_start);
    off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
    ptep = consistent_pte[idx] + off;
    addr = c->vm_start;
    do {
        pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);

        ptep++;
        addr += PAGE_SIZE;
        off++;
        if (off >= PTRS_PER_PTE) {
            off = 0;
            ptep = consistent_pte[++idx];
        }

        if (pte_none(pte) || !pte_present(pte))
            printk(KERN_CRIT "%s: bad page in kernel page table\n",
                   __func__);
    } while (size -= PAGE_SIZE);

    flush_tlb_kernel_range(c->vm_start, c->vm_end);

    arm_vmregion_free(&consistent_head, c);
}
Ejemplo n.º 2
0
static inline void zeromap_pte_range(pte_t * pte, unsigned long address,
                                     unsigned long size, pgprot_t prot)
{
	unsigned long end;

	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	do {
		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
		pte_t oldpage = ptep_get_and_clear(pte);
		set_pte(pte, zero_pte);
		forget_pte(oldpage);
		address += PAGE_SIZE;
		pte++;
	} while (address && (address < end));
}
Ejemplo n.º 3
0
static inline void zeromap_pte_range(struct mm_struct *mm, pte_t * pte,
				     unsigned long address, unsigned long size,
				     pgprot_t prot)
{
	unsigned long end;

	debug_lock_break(1);
	break_spin_lock(&mm->page_table_lock);

	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	do {
		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
		pte_t oldpage = ptep_get_and_clear(pte);
		set_pte(pte, zero_pte);
		forget_pte(oldpage);
		address += PAGE_SIZE;
		pte++;
	} while (address && (address < end));
}
Ejemplo n.º 4
0
/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
	unsigned long phys_addr, pgprot_t prot)
{
	unsigned long end;

	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	do {
		struct page *page;
		pte_t oldpage;
		oldpage = ptep_get_and_clear(pte);

		page = virt_to_page(__va(phys_addr));
		if ((!VALID_PAGE(page)) || PageReserved(page))
 			set_pte(pte, mk_pte_phys(phys_addr, prot));
		forget_pte(oldpage);
		address += PAGE_SIZE;
		phys_addr += PAGE_SIZE;
		pte++;
	} while (address && (address < end));
}
Ejemplo n.º 5
0
/* mm->page_table_lock is held. mmap_sem is not held */
static inline int try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, struct page *page, zone_t * classzone)
{
	pte_t pte;
	swp_entry_t entry;

	/* Don't look at this pte if it's been accessed recently. */
	if ((vma->vm_flags & VM_LOCKED) || ptep_test_and_clear_young(page_table)) {
		mark_page_accessed(page);
		return 0;
	}

	/* Don't bother unmapping pages that are active */
	if (PageActive(page))
		return 0;

	/* Don't bother replenishing zones not under pressure.. */
	if (!memclass(page->zone, classzone))
		return 0;

	if (TryLockPage(page))
		return 0;

	/* From this point on, the odds are that we're going to
	 * nuke this pte, so read and clear the pte.  This hook
	 * is needed on CPUs which update the accessed and dirty
	 * bits in hardware.
	 */
	flush_cache_page(vma, address);
	pte = ptep_get_and_clear(page_table);
	flush_tlb_page(vma, address);

	if (pte_dirty(pte))
		set_page_dirty(page);

	/*
	 * Is the page already in the swap cache? If so, then
	 * we can just drop our reference to it without doing
	 * any IO - it's already up-to-date on disk.
	 */
	if (PageSwapCache(page)) {
		entry.val = page->index;
		swap_duplicate(entry);
set_swap_pte:
		set_pte(page_table, swp_entry_to_pte(entry));
drop_pte:
		mm->rss--;
		UnlockPage(page);
		{
			int freeable = page_count(page) - !!page->buffers <= 2;
			page_cache_release(page);
			return freeable;
		}
	}

	/*
	 * Is it a clean page? Then it must be recoverable
	 * by just paging it in again, and we can just drop
	 * it..  or if it's dirty but has backing store,
	 * just mark the page dirty and drop it.
	 *
	 * However, this won't actually free any real
	 * memory, as the page will just be in the page cache
	 * somewhere, and as such we should just continue
	 * our scan.
	 *
	 * Basically, this just makes it possible for us to do
	 * some real work in the future in "refill_inactive()".
	 */
	if (page->mapping)
		goto drop_pte;
	if (!PageDirty(page))
		goto drop_pte;

	/*
	 * Anonymous buffercache pages can be left behind by
	 * concurrent truncate and pagefault.
	 */
	if (page->buffers)
		goto preserve;

	/*
	 * This is a dirty, swappable page.  First of all,
	 * get a suitable swap entry for it, and make sure
	 * we have the swap cache set up to associate the
	 * page with that swap entry.
	 */
	for (;;) {
		entry = get_swap_page();
		if (!entry.val)
			break;
		/* Add it to the swap cache and mark it dirty
		 * (adding to the page cache will clear the dirty
		 * and uptodate bits, so we need to do it again)
		 */
		if (add_to_swap_cache(page, entry) == 0) {
			SetPageUptodate(page);
			set_page_dirty(page);
			goto set_swap_pte;
		}
		/* Raced with "speculative" read_swap_cache_async */
		swap_free(entry);
	}

	/* No swap space left */
preserve:
	set_pte(page_table, pte);
	UnlockPage(page);
	return 0;
}
Ejemplo n.º 6
0
/*
 * The swap-out functions return 1 if they successfully
 * threw something out, and we got a free page. It returns
 * zero if it couldn't do anything, and any other value
 * indicates it decreased rss, but the page was shared.
 *
 * NOTE! If it sleeps, it *must* return 1 to make sure we
 * don't continue with the swap-out. Otherwise we may be
 * using a process that no longer actually exists (it might
 * have died while we slept).
 */
static int try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, int gfp_mask)
{
	pte_t pte;
	swp_entry_t entry;
	struct page * page;
	int onlist;

	pte = *page_table;
	if (!pte_present(pte))
		goto out_failed;
	page = pte_page(pte);
	if ((!VALID_PAGE(page)) || PageReserved(page))
		goto out_failed;

	if (mm->swap_cnt)
		mm->swap_cnt--;

	onlist = PageActive(page);
	/* Don't look at this pte if it's been accessed recently. */
	if (ptep_test_and_clear_young(page_table)) {
		age_page_up(page);
		goto out_failed;
	}
	if (!onlist)
		/* The page is still mapped, so it can't be freeable... */
		age_page_down_ageonly(page);

	/*
	 * If the page is in active use by us, or if the page
	 * is in active use by others, don't unmap it or
	 * (worse) start unneeded IO.
	 */
	if (page->age > 0)
		goto out_failed;

	if (TryLockPage(page))
		goto out_failed;

	/* From this point on, the odds are that we're going to
	 * nuke this pte, so read and clear the pte.  This hook
	 * is needed on CPUs which update the accessed and dirty
	 * bits in hardware.
	 */
	pte = ptep_get_and_clear(page_table);

	/*
	 * Is the page already in the swap cache? If so, then
	 * we can just drop our reference to it without doing
	 * any IO - it's already up-to-date on disk.
	 *
	 * Return 0, as we didn't actually free any real
	 * memory, and we should just continue our scan.
	 */
	if (PageSwapCache(page)) {
		entry.val = page->index;
		if (pte_dirty(pte))
			set_page_dirty(page);
set_swap_pte:
		swap_duplicate(entry);
		set_pte(page_table, swp_entry_to_pte(entry));
drop_pte:
		UnlockPage(page);
		mm->rss--;
		flush_tlb_page(vma, address);
		deactivate_page(page);
		page_cache_release(page);
out_failed:
		return 0;
	}

	/*
	 * Is it a clean page? Then it must be recoverable
	 * by just paging it in again, and we can just drop
	 * it..
	 *
	 * However, this won't actually free any real
	 * memory, as the page will just be in the page cache
	 * somewhere, and as such we should just continue
	 * our scan.
	 *
	 * Basically, this just makes it possible for us to do
	 * some real work in the future in "refill_inactive()".
	 */
	flush_cache_page(vma, address);
	if (!pte_dirty(pte))
		goto drop_pte;

	/*
	 * Ok, it's really dirty. That means that
	 * we should either create a new swap cache
	 * entry for it, or we should write it back
	 * to its own backing store.
	 */
	if (page->mapping) {
		set_page_dirty(page);
		goto drop_pte;
	}

	/*
	 * This is a dirty, swappable page.  First of all,
	 * get a suitable swap entry for it, and make sure
	 * we have the swap cache set up to associate the
	 * page with that swap entry.
	 */
	entry = get_swap_page();
	if (!entry.val)
		goto out_unlock_restore; /* No swap space left */

	/* Add it to the swap cache and mark it dirty */
	add_to_swap_cache(page, entry);
	set_page_dirty(page);
	goto set_swap_pte;

out_unlock_restore:
	set_pte(page_table, pte);
	UnlockPage(page);
	return 0;
}