Ejemplo n.º 1
0
int pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
{
    pthread_initialize();
    if (!thread_key_create((thread_key_t *)key, destructor))
        return errno;
    return OK;
}
Ejemplo n.º 2
0
int pthread_condattr_init(pthread_condattr_t *attr)
{
    pthread_initialize();
    if (attr == NULL)
        return_errno(EINVAL, EINVAL);
    /* nothing to do for us */
    return OK;
}
Ejemplo n.º 3
0
void pthread_cleanup_push(void (*routine)(void *), void *arg)
{
    (void) routine;
    (void) arg;
    pthread_initialize();
    //    thread_cleanup_push(routine, arg);
    notimplemented(pthread_cleanup_push);
    return;
}
Ejemplo n.º 4
0
int pthread_join(pthread_t thread, void **value_ptr)
{
    pthread_initialize();
    if (!thread_join((thread_t *)thread, value_ptr))
        return errno;
    //    if (value_ptr != NULL)
    //        if (*value_ptr == THREAD_CANCELED)
    //            *value_ptr = PTHREAD_CANCELED;
    return OK;
}
Ejemplo n.º 5
0
int pthread_once(
    pthread_once_t *once_control, void (*init_routine)(void))
{
    pthread_initialize();
    if (once_control == NULL || init_routine == NULL)
        return_errno(EINVAL, EINVAL);
    if (*once_control != 1)
        init_routine();
    *once_control = 1;
    return OK;
}
Ejemplo n.º 6
0
int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr)
{
    cond_t *cn;
    (void) attr;

    pthread_initialize();
    if (cond == NULL)
        return_errno(EINVAL, EINVAL);
    if ((cn = (cond_t *)malloc(sizeof(cond_t))) == NULL)
        return errno;
    if (!thread_cond_init(cn))
        return errno;
    (*cond) = (pthread_cond_t)cn;
    return OK;
}
Ejemplo n.º 7
0
int pthread_rwlock_init(pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr)
{
    rwlock_t *rw;
    (void) attr;

    pthread_initialize();
    if (rwlock == NULL)
        return_errno(EINVAL, EINVAL);
    if ((rw = (rwlock_t *)malloc(sizeof(rwlock_t))) == NULL)
        return errno;
    if (!thread_rwlock_init(rw))
        return errno;
    (*rwlock) = (pthread_rwlock_t)rw;
    return OK;
}
Ejemplo n.º 8
0
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
{
    mutex_t *m;
    (void) attr;

    pthread_initialize();
    if (mutex == NULL)
        return_errno(EINVAL, EINVAL);
    if ((m = (mutex_t *)malloc(sizeof(mutex_t))) == NULL)
        return errno;
    if (!thread_mutex_init(m, "pthread_mutex"))
        return errno;
    (*mutex) = (pthread_mutex_t)m;
    return OK;
}
Ejemplo n.º 9
0
///Main function! Kind of.
int crawl(char *start_url,
	  int download_workers,
	  int parse_workers,
	  int queue_size,
	  char * (*_fetch_fn)(char *url),
	  void (*_edge_fn)(char *from, char *to)) {

  	//start code here:
	pthread_initialize();
  	//assign queue_size to global var
  	dq_size = queue_size;
	
	_fetch_function = _fetch_fn;
	_edge_function = _edge_fn;

	p_init();
	d_init();



	dfill(start_url);
	check_visited(start_url);
	pthread_t pid[download_workers], cid[parse_workers];
	int i;
	
	for(i = 0; i < download_workers; i++){

		pthread_create(&pid[i], NULL, download_thread, NULL);
	}
	for(i = 0; i < parse_workers; i++){

		pthread_create(&cid[i], NULL, parse_thread, NULL);
	}
	


	pthread_mutex_lock(&w_lock);
	while(work > 0){
		pthread_cond_wait(&done, &w_lock);
	}

	pthread_mutex_unlock(&w_lock);
	
  	return 0;
}
Ejemplo n.º 10
0
int pthread_create(
    pthread_t *thread, const pthread_attr_t *attr,
    void *(*start_routine)(void *), void *arg)
{
    pthread_initialize();
    if (thread == NULL || start_routine == NULL)
        return_errno(EINVAL, EINVAL);
    //    if (thread_ctrl(THREAD_CTRL_GETTHREADS) >= PTHREAD_THREADS_MAX)
    //    return_errno(EAGAIN, EAGAIN);
    if (attr == NULL)
        *thread = (pthread_t)thread_spawn(NULL, start_routine, arg);
    else
        *thread = (pthread_t)thread_spawn_with_attr(NULL, start_routine, arg, (thread_attr_t)(*attr));
    if (*thread == NULL) {
        errno = ENOMEM;
        return -1;
    }
    return OK;
}
Ejemplo n.º 11
0
void os_start(void)
{
  int i;

  slldbg("Entry\n");

  /* Initialize RTOS Data ***************************************************/
  /* Initialize all task lists */

  dq_init(&g_readytorun);
  dq_init(&g_pendingtasks);
  dq_init(&g_waitingforsemaphore);
#ifndef CONFIG_DISABLE_SIGNALS
  dq_init(&g_waitingforsignal);
#endif
#ifndef CONFIG_DISABLE_MQUEUE
  dq_init(&g_waitingformqnotfull);
  dq_init(&g_waitingformqnotempty);
#endif
#ifdef CONFIG_PAGING
  dq_init(&g_waitingforfill);
#endif
  dq_init(&g_inactivetasks);
  sq_init(&g_delayed_kufree);
#if (defined(CONFIG_BUILD_PROTECTED) || defined(CONFIG_BUILD_KERNEL)) && \
     defined(CONFIG_MM_KERNEL_HEAP)
  sq_init(&g_delayed_kfree);
#endif

  /* Initialize the logic that determine unique process IDs. */

  g_lastpid = 0;
  for (i = 0; i < CONFIG_MAX_TASKS; i++)
    {
      g_pidhash[i].tcb = NULL;
      g_pidhash[i].pid = INVALID_PROCESS_ID;
    }

  /* Assign the process ID of ZERO to the idle task */

  g_pidhash[PIDHASH(0)].tcb = &g_idletcb.cmn;
  g_pidhash[PIDHASH(0)].pid = 0;

  /* Initialize the IDLE task TCB *******************************************/
  /* Initialize a TCB for this thread of execution.  NOTE:  The default
   * value for most components of the g_idletcb are zero.  The entire
   * structure is set to zero.  Then only the (potentially) non-zero
   * elements are initialized. NOTE:  The idle task is the only task in
   * that has pid == 0 and sched_priority == 0.
   */

  bzero((void*)&g_idletcb, sizeof(struct task_tcb_s));
  g_idletcb.cmn.task_state = TSTATE_TASK_RUNNING;
  g_idletcb.cmn.entry.main = (main_t)os_start;
  g_idletcb.cmn.flags      = TCB_FLAG_TTYPE_KERNEL;

  /* Set the IDLE task name */

#if CONFIG_TASK_NAME_SIZE > 0
  strncpy(g_idletcb.cmn.name, g_idlename, CONFIG_TASK_NAME_SIZE);
  g_idletcb.cmn.name[CONFIG_TASK_NAME_SIZE] = '\0';
#endif /* CONFIG_TASK_NAME_SIZE */

  /* Configure the task name in the argument list.  The IDLE task does
   * not really have an argument list, but this name is still useful
   * for things like the NSH PS command.
   *
   * In the kernel mode build, the arguments are saved on the task's stack
   * and there is no support that yet.
   */

#if CONFIG_TASK_NAME_SIZE > 0
  g_idleargv[0]  = g_idletcb.cmn.name;
#else
  g_idleargv[0]  = (FAR char *)g_idlename;
#endif /* CONFIG_TASK_NAME_SIZE */
  g_idleargv[1]  = NULL;
  g_idletcb.argv = g_idleargv;

  /* Then add the idle task's TCB to the head of the ready to run list */

  dq_addfirst((FAR dq_entry_t*)&g_idletcb, (FAR dq_queue_t*)&g_readytorun);

  /* Initialize the processor-specific portion of the TCB */

  up_initial_state(&g_idletcb.cmn);

  /* Initialize RTOS facilities *********************************************/
  /* Initialize the semaphore facility.  This has to be done very early
   * because many subsystems depend upon fully functional semaphores.
   */

  sem_initialize();

#if defined(MM_KERNEL_USRHEAP_INIT) || defined(CONFIG_MM_KERNEL_HEAP) || defined(CONFIG_MM_PGALLOC)
  /* Initialize the memory manager */

  {
    FAR void *heap_start;
    size_t heap_size;

#ifdef MM_KERNEL_USRHEAP_INIT
    /* Get the user-mode heap from the platform specific code and configure
     * the user-mode memory allocator.
     */

    up_allocate_heap(&heap_start, &heap_size);
    kumm_initialize(heap_start, heap_size);
#endif

#ifdef CONFIG_MM_KERNEL_HEAP
    /* Get the kernel-mode heap from the platform specific code and configure
     * the kernel-mode memory allocator.
     */

    up_allocate_kheap(&heap_start, &heap_size);
    kmm_initialize(heap_start, heap_size);
#endif

#ifdef CONFIG_MM_PGALLOC
    /* If there is a page allocator in the configuration, then get the page
     * heap information from the platform-specific code and configure the
     * page allocator.
     */

    up_allocate_pgheap(&heap_start, &heap_size);
    mm_pginitialize(heap_start, heap_size);
#endif
  }
#endif

#if defined(CONFIG_SCHED_HAVE_PARENT) && defined(CONFIG_SCHED_CHILD_STATUS)
  /* Initialize tasking data structures */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (task_initialize != NULL)
#endif
    {
      task_initialize();
    }
#endif

  /* Initialize the interrupt handling subsystem (if included) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (irq_initialize != NULL)
#endif
    {
      irq_initialize();
    }

  /* Initialize the watchdog facility (if included in the link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (wd_initialize != NULL)
#endif
    {
      wd_initialize();
    }

  /* Initialize the POSIX timer facility (if included in the link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (clock_initialize != NULL)
#endif
    {
      clock_initialize();
    }

#ifndef CONFIG_DISABLE_POSIX_TIMERS
#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (timer_initialize != NULL)
#endif
    {
      timer_initialize();
    }
#endif

#ifndef CONFIG_DISABLE_SIGNALS
  /* Initialize the signal facility (if in link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (sig_initialize != NULL)
#endif
    {
      sig_initialize();
    }
#endif

#ifndef CONFIG_DISABLE_MQUEUE
  /* Initialize the named message queue facility (if in link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (mq_initialize != NULL)
#endif
    {
      mq_initialize();
    }
#endif

#ifndef CONFIG_DISABLE_PTHREAD
  /* Initialize the thread-specific data facility (if in link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (pthread_initialize != NULL)
#endif
    {
      pthread_initialize();
    }
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0
  /* Initialize the file system (needed to support device drivers) */

  fs_initialize();
#endif

#ifdef CONFIG_NET
  /* Initialize the networking system.  Network initialization is
   * performed in two steps:  (1) net_setup() initializes static
   * configuration of the network support.  This must be done prior
   * to registering network drivers by up_initialize().  This step
   * cannot require upon any hardware-depending features such as
   * timers or interrupts.
   */

  net_setup();
#endif

  /* The processor specific details of running the operating system
   * will be handled here.  Such things as setting up interrupt
   * service routines and starting the clock are some of the things
   * that are different for each  processor and hardware platform.
   */

  up_initialize();

#ifdef CONFIG_NET
  /* Complete initialization the networking system now that interrupts
   * and timers have been configured by up_initialize().
   */

  net_initialize();
#endif

#ifdef CONFIG_MM_SHM
  /* Initialize shared memory support */

  shm_initialize();
#endif

  /* Initialize the C libraries.  This is done last because the libraries
   * may depend on the above.
   */

  lib_initialize();

  /* IDLE Group Initialization **********************************************/
#ifdef HAVE_TASK_GROUP
  /* Allocate the IDLE group */

  DEBUGVERIFY(group_allocate(&g_idletcb, g_idletcb.cmn.flags));
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0 || CONFIG_NSOCKET_DESCRIPTORS > 0
  /* Create stdout, stderr, stdin on the IDLE task.  These will be
   * inherited by all of the threads created by the IDLE task.
   */

  DEBUGVERIFY(group_setupidlefiles(&g_idletcb));
#endif

#ifdef HAVE_TASK_GROUP
  /* Complete initialization of the IDLE group.  Suppress retention
   * of child status in the IDLE group.
   */

  DEBUGVERIFY(group_initialize(&g_idletcb));
  g_idletcb.cmn.group->tg_flags = GROUP_FLAG_NOCLDWAIT;
#endif

  /* Bring Up the System ****************************************************/
  /* Create initial tasks and bring-up the system */

  DEBUGVERIFY(os_bringup());

  /* The IDLE Loop **********************************************************/
  /* When control is return to this point, the system is idle. */

  sdbg("Beginning Idle Loop\n");
  for (;;)
    {
      /* Perform garbage collection (if it is not being done by the worker
       * thread).  This cleans-up memory de-allocations that were queued
       * because they could not be freed in that execution context (for
       * example, if the memory was freed from an interrupt handler).
       */

#ifndef CONFIG_SCHED_WORKQUEUE
      /* We must have exclusive access to the memory manager to do this
       * BUT the idle task cannot wait on a semaphore.  So we only do
       * the cleanup now if we can get the semaphore -- this should be
       * possible because if the IDLE thread is running, no other task is!
       *
       * WARNING: This logic could have undesirable side-effects if priority
       * inheritance is enabled.  Imaginee the possible issues if the
       * priority of the IDLE thread were to get boosted!  Moral: If you
       * use priority inheritance, then you should also enable the work
       * queue so that is done in a safer context.
       */

      if (kmm_trysemaphore() == 0)
        {
          sched_garbagecollection();
          kmm_givesemaphore();
        }
#endif

      /* Perform any processor-specific idle state operations */

      up_idle();
    }
}
Ejemplo n.º 12
0
void os_start(void)
{
  int i;

  slldbg("Entry\n");

  /* Initialize all task lists */

  dq_init(&g_readytorun);
  dq_init(&g_pendingtasks);
  dq_init(&g_waitingforsemaphore);
#ifndef CONFIG_DISABLE_SIGNALS
  dq_init(&g_waitingforsignal);
#endif
#ifndef CONFIG_DISABLE_MQUEUE
  dq_init(&g_waitingformqnotfull);
  dq_init(&g_waitingformqnotempty);
#endif
#ifdef CONFIG_PAGING
  dq_init(&g_waitingforfill);
#endif
  dq_init(&g_inactivetasks);
  sq_init(&g_delayeddeallocations);

  /* Initialize the logic that determine unique process IDs. */

  g_lastpid = 0;
  for (i = 0; i < CONFIG_MAX_TASKS; i++)
    {
      g_pidhash[i].tcb = NULL;
      g_pidhash[i].pid = INVALID_PROCESS_ID;
    }

  /* Assign the process ID of ZERO to the idle task */

  g_pidhash[ PIDHASH(0)].tcb = &g_idletcb;
  g_pidhash[ PIDHASH(0)].pid = 0;

  /* Initialize a TCB for this thread of execution.  NOTE:  The default
   * value for most components of the g_idletcb are zero.  The entire
   * structure is set to zero.  Then only the (potentially) non-zero
   * elements are initialized. NOTE:  The idle task is the only task in
   * that has pid == 0 and sched_priority == 0.
   */

  bzero((void*)&g_idletcb, sizeof(_TCB));
  g_idletcb.task_state = TSTATE_TASK_RUNNING;
  g_idletcb.entry.main = (main_t)os_start;

#if CONFIG_TASK_NAME_SIZE > 0
  strncpy(g_idletcb.name, g_idlename, CONFIG_TASK_NAME_SIZE-1);
  g_idletcb.argv[0] = g_idletcb.name;
#else
  g_idletcb.argv[0] = (char*)g_idlename;
#endif /* CONFIG_TASK_NAME_SIZE */

  /* Then add the idle task's TCB to the head of the ready to run list */

  dq_addfirst((FAR dq_entry_t*)&g_idletcb, (FAR dq_queue_t*)&g_readytorun);

  /* Initialize the processor-specific portion of the TCB */

  g_idletcb.flags = TCB_FLAG_TTYPE_KERNEL;
  up_initial_state(&g_idletcb);

  /* Initialize the semaphore facility(if in link).  This has to be done
   * very early because many subsystems depend upon fully functional
   * semaphores.
   */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (sem_initialize != NULL)
#endif
    {
      sem_initialize();
    }

  /* Initialize the memory manager */

#ifndef CONFIG_HEAP_BASE
  {
    FAR void *heap_start;
    size_t heap_size;
    up_allocate_heap(&heap_start, &heap_size);
    kmm_initialize(heap_start, heap_size);
  }
#else
  kmm_initialize((void*)CONFIG_HEAP_BASE, CONFIG_HEAP_SIZE);
#endif

  /* Initialize the interrupt handling subsystem (if included) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (irq_initialize != NULL)
#endif
    {
      irq_initialize();
    }

  /* Initialize the watchdog facility (if included in the link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (wd_initialize != NULL)
#endif
    {
      wd_initialize();
    }

  /* Initialize the POSIX timer facility (if included in the link) */

#ifndef CONFIG_DISABLE_CLOCK
#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (clock_initialize != NULL)
#endif
    {
      clock_initialize();
    }
#endif

#ifndef CONFIG_DISABLE_POSIX_TIMERS
#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (timer_initialize != NULL)
#endif
    {
      timer_initialize();
    }
#endif

  /* Initialize the signal facility (if in link) */

#ifndef CONFIG_DISABLE_SIGNALS
#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (sig_initialize != NULL)
#endif
    {
      sig_initialize();
    }
#endif

  /* Initialize the named message queue facility (if in link) */

#ifndef CONFIG_DISABLE_MQUEUE
#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (mq_initialize != NULL)
#endif
    {
      mq_initialize();
    }
#endif

  /* Initialize the thread-specific data facility (if in link) */

#ifndef CONFIG_DISABLE_PTHREAD
#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (pthread_initialize != NULL)
#endif
    {
      pthread_initialize();
    }
#endif

  /* Initialize the file system (needed to support device drivers) */

#if CONFIG_NFILE_DESCRIPTORS > 0
#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (fs_initialize != NULL)
#endif
    {
      fs_initialize();
    }
#endif

  /* Initialize the network system */

#ifdef CONFIG_NET
#if 0
  if (net_initialize != NULL)
#endif
    {
      net_initialize();
    }
#endif

  /* The processor specific details of running the operating system
   * will be handled here.  Such things as setting up interrupt
   * service routines and starting the clock are some of the things
   * that are different for each  processor and hardware platform.
   */

  up_initialize();

  /* Initialize the C libraries (if included in the link).  This
   * is done last because the libraries may depend on the above.
   */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (lib_initialize != NULL)
#endif
    {
      lib_initialize();
    }

  /* Create stdout, stderr, stdin on the IDLE task.  These will be
   * inherited by all of the threads created by the IDLE task.
   */

  (void)sched_setupidlefiles(&g_idletcb);

  /* Create initial tasks and bring-up the system */

  (void)os_bringup();

  /* When control is return to this point, the system is idle. */

  sdbg("Beginning Idle Loop\n");
  for (;;)
    {
      /* Perform garbage collection (if it is not being done by the worker
       * thread).  This cleans-up memory de-allocations that were queued
       * because they could not be freed in that execution context (for
       * example, if the memory was freed from an interrupt handler).
       */

#ifndef CONFIG_SCHED_WORKQUEUE
      /* We must have exclusive access to the memory manager to do this
       * BUT the idle task cannot wait on a semaphore.  So we only do
       * the cleanup now if we can get the semaphore -- this should be
       * possible because if the IDLE thread is running, no other task is!
       */

      if (kmm_trysemaphore() == 0)
        {
          sched_garbagecollection();
          kmm_givesemaphore();
        }
#endif

      /* Perform any processor-specific idle state operations */

      up_idle();
    }
}
Ejemplo n.º 13
0
void __pthread_initialize(void)
{
  pthread_initialize();
}
Ejemplo n.º 14
0
int __pthread_initialize_manager(void)
{
  int manager_pipe[2];
  int pid;
  int report_events;
  struct pthread_request request;

  *__libc_multiple_threads_ptr = 1;

  /* If basic initialization not done yet (e.g. we're called from a
     constructor run before our constructor), do it now */
  if (__pthread_initial_thread_bos == NULL) pthread_initialize();
  /* Setup stack for thread manager */
  __pthread_manager_thread_bos = malloc(THREAD_MANAGER_STACK_SIZE);
  if (__pthread_manager_thread_bos == NULL) return -1;
  __pthread_manager_thread_tos =
    __pthread_manager_thread_bos + THREAD_MANAGER_STACK_SIZE;

  /* On non-MMU systems we make sure that the initial thread bounds don't overlap
   * with the manager stack frame */
  NOMMU_INITIAL_THREAD_BOUNDS(__pthread_manager_thread_tos,__pthread_manager_thread_bos);
  PDEBUG("manager stack: size=%d, bos=%p, tos=%p\n", THREAD_MANAGER_STACK_SIZE,
	 __pthread_manager_thread_bos, __pthread_manager_thread_tos);
#if 0
  PDEBUG("initial stack: estimate bos=%p, tos=%p\n",
	 __pthread_initial_thread_bos, __pthread_initial_thread_tos);
#endif

  /* Setup pipe to communicate with thread manager */
  if (pipe(manager_pipe) == -1) {
    free(__pthread_manager_thread_bos);
    return -1;
  }
  /* Start the thread manager */
  pid = 0;
#if defined(USE_TLS) && USE_TLS
  if (__linuxthreads_initial_report_events != 0)
    THREAD_SETMEM (((pthread_descr) NULL), p_report_events,
		   __linuxthreads_initial_report_events);
  report_events = THREAD_GETMEM (((pthread_descr) NULL), p_report_events);
#else
  if (__linuxthreads_initial_report_events != 0)
    __pthread_initial_thread.p_report_events
      = __linuxthreads_initial_report_events;
  report_events = __pthread_initial_thread.p_report_events;
#endif
  if (__builtin_expect (report_events, 0))
    {
      /* It's a bit more complicated.  We have to report the creation of
	 the manager thread.  */
      int idx = __td_eventword (TD_CREATE);
      uint32_t mask = __td_eventmask (TD_CREATE);

      if ((mask & (__pthread_threads_events.event_bits[idx]
		   | __pthread_initial_thread.p_eventbuf.eventmask.event_bits[idx]))
	  != 0)
	{

	 __pthread_lock(__pthread_manager_thread.p_lock, NULL);

#ifdef __ia64__
	  pid = __clone2(__pthread_manager_event,
			(void **) __pthread_manager_thread_tos,
			THREAD_MANAGER_STACK_SIZE,
			CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
			(void *)(long)manager_pipe[0]);
#else
	  pid = clone(__pthread_manager_event,
			(void **) __pthread_manager_thread_tos,
			CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
			(void *)(long)manager_pipe[0]);
#endif

	  if (pid != -1)
	    {
	      /* Now fill in the information about the new thread in
	         the newly created thread's data structure.  We cannot let
	         the new thread do this since we don't know whether it was
	         already scheduled when we send the event.  */
	      __pthread_manager_thread.p_eventbuf.eventdata =
		  &__pthread_manager_thread;
	      __pthread_manager_thread.p_eventbuf.eventnum = TD_CREATE;
	      __pthread_last_event = &__pthread_manager_thread;
	      __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
	      __pthread_manager_thread.p_pid = pid;

	      /* Now call the function which signals the event.  */
	      __linuxthreads_create_event ();
	    }
	  /* Now restart the thread.  */
	  __pthread_unlock(__pthread_manager_thread.p_lock);
	}
    }

  if (pid == 0) {
#ifdef __ia64__
    pid = __clone2(__pthread_manager, (void **) __pthread_manager_thread_tos,
		  THREAD_MANAGER_STACK_SIZE,
		  CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
		  (void *)(long)manager_pipe[0]);
#else
    pid = clone(__pthread_manager, (void **) __pthread_manager_thread_tos,
		  CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
		  (void *)(long)manager_pipe[0]);
#endif
  }
  if (pid == -1) {
    free(__pthread_manager_thread_bos);
    close(manager_pipe[0]);
    close(manager_pipe[1]);
    return -1;
  }
  __pthread_manager_request = manager_pipe[1]; /* writing end */
  __pthread_manager_reader = manager_pipe[0]; /* reading end */
  __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
  __pthread_manager_thread.p_pid = pid;

  /* Make gdb aware of new thread manager */
  if (__pthread_threads_debug && __pthread_sig_debug > 0)
    {
      raise(__pthread_sig_debug);
      /* We suspend ourself and gdb will wake us up when it is
	 ready to handle us. */
      __pthread_wait_for_restart_signal(thread_self());
    }
  /* Synchronize debugging of the thread manager */
  PDEBUG("send REQ_DEBUG to manager thread\n");
  request.req_kind = REQ_DEBUG;
  TEMP_FAILURE_RETRY(write(__pthread_manager_request,
	      (char *) &request, sizeof(request)));
  return 0;
}
Ejemplo n.º 15
0
int __pthread_initialize_manager(void)
{
  int manager_pipe[2];
  int pid;
  struct pthread_request request;

#ifndef HAVE_Z_NODELETE
  if (__builtin_expect (&__dso_handle != NULL, 1))
    __cxa_atexit ((void (*) (void *)) pthread_atexit_retcode, NULL,
		  __dso_handle);
#endif

  if (__pthread_max_stacksize == 0)
    __pthread_init_max_stacksize ();
  /* If basic initialization not done yet (e.g. we're called from a
     constructor run before our constructor), do it now */
  if (__pthread_initial_thread_bos == NULL) pthread_initialize();
  /* Setup stack for thread manager */
  __pthread_manager_thread_bos = malloc(THREAD_MANAGER_STACK_SIZE);
  if (__pthread_manager_thread_bos == NULL) return -1;
  __pthread_manager_thread_tos =
    __pthread_manager_thread_bos + THREAD_MANAGER_STACK_SIZE;
  /* Setup pipe to communicate with thread manager */
  if (__libc_pipe(manager_pipe) == -1) {
    free(__pthread_manager_thread_bos);
    return -1;
  }
  /* Start the thread manager */
  pid = 0;
  if (__builtin_expect (__pthread_initial_thread.p_report_events, 0))
    {
      /* It's a bit more complicated.  We have to report the creation of
	 the manager thread.  */
      int idx = __td_eventword (TD_CREATE);
      uint32_t mask = __td_eventmask (TD_CREATE);

      if ((mask & (__pthread_threads_events.event_bits[idx]
		   | __pthread_initial_thread.p_eventbuf.eventmask.event_bits[idx]))
	  != 0)
	{
	  __pthread_lock(__pthread_manager_thread.p_lock, NULL);

#ifdef NEED_SEPARATE_REGISTER_STACK
	  pid = __clone2(__pthread_manager_event,
			 (void **) __pthread_manager_thread_bos,
			 THREAD_MANAGER_STACK_SIZE,
			 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
			 (void *)(long)manager_pipe[0]);
#elif _STACK_GROWS_UP
	  pid = __clone(__pthread_manager_event,
			(void **) __pthread_manager_thread_bos,
			CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
			(void *)(long)manager_pipe[0]);
#else
	  pid = __clone(__pthread_manager_event,
			(void **) __pthread_manager_thread_tos,
			CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
			(void *)(long)manager_pipe[0]);
#endif

	  if (pid != -1)
	    {
	      /* Now fill in the information about the new thread in
	         the newly created thread's data structure.  We cannot let
	         the new thread do this since we don't know whether it was
	         already scheduled when we send the event.  */
	      __pthread_manager_thread.p_eventbuf.eventdata =
		&__pthread_manager_thread;
	      __pthread_manager_thread.p_eventbuf.eventnum = TD_CREATE;
	      __pthread_last_event = &__pthread_manager_thread;
	      __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
	      __pthread_manager_thread.p_pid = pid;

	      /* Now call the function which signals the event.  */
	      __linuxthreads_create_event ();
	    }

	  /* Now restart the thread.  */
	  __pthread_unlock(__pthread_manager_thread.p_lock);
	}
    }

  if (__builtin_expect (pid, 0) == 0)
    {
#ifdef NEED_SEPARATE_REGISTER_STACK
      pid = __clone2(__pthread_manager, (void **) __pthread_manager_thread_bos,
		     THREAD_MANAGER_STACK_SIZE,
		     CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
		     (void *)(long)manager_pipe[0]);
#elif _STACK_GROWS_UP
      pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_bos,
		    CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
		    (void *)(long)manager_pipe[0]);
#else
      pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_tos,
		    CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
		    (void *)(long)manager_pipe[0]);
#endif
    }
  if (__builtin_expect (pid, 0) == -1) {
    free(__pthread_manager_thread_bos);
    __libc_close(manager_pipe[0]);
    __libc_close(manager_pipe[1]);
    return -1;
  }
  __pthread_manager_request = manager_pipe[1]; /* writing end */
  __pthread_manager_reader = manager_pipe[0]; /* reading end */
  __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
  __pthread_manager_thread.p_pid = pid;
  /* Make gdb aware of new thread manager */
  if (__builtin_expect (__pthread_threads_debug, 0) && __pthread_sig_debug > 0)
    {
      raise(__pthread_sig_debug);
      /* We suspend ourself and gdb will wake us up when it is
	 ready to handle us. */
      __pthread_wait_for_restart_signal(thread_self());
    }
  /* Synchronize debugging of the thread manager */
  request.req_kind = REQ_DEBUG;
  TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request,
				  (char *) &request, sizeof(request)));
  return 0;
}
Ejemplo n.º 16
0
int pthread_yield(void)
{
    pthread_initialize();
    thread_yield();
    return OK;
}
Ejemplo n.º 17
0
void pthread_exit(void *value_ptr)
{
    pthread_initialize();
    thread_exit(value_ptr);
    return;
}
Ejemplo n.º 18
0
int pthread_kill(pthread_t thread, int sig)
{
    pthread_initialize();
	
//    return thread_kill((thread_t*)thread, sig);
}
Ejemplo n.º 19
0
pthread_t pthread_self(void)
{
    pthread_initialize();
    return (pthread_t)thread_self();
}