Ejemplo n.º 1
0
btMultiBody* MultiDofDemo::createFeatherstoneMultiBody_testMultiDof(btMultiBodyDynamicsWorld *pWorld, int numLinks, const btVector3 &basePosition, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents, bool spherical, bool floating)
{
	//init the base	
	btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
	float baseMass = 1.f;
	
	if(baseMass)
	{
		btCollisionShape *pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
		pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag);
		delete pTempBox;
	}

	bool canSleep = false;
	
	btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);

	btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
	pMultiBody->setBasePos(basePosition);
	pMultiBody->setWorldToBaseRot(baseOriQuat);
	btVector3 vel(0, 0, 0);
//	pMultiBody->setBaseVel(vel);

	//init the links	
	btVector3 hingeJointAxis(1, 0, 0);
	float linkMass = 1.f;
	btVector3 linkInertiaDiag(0.f, 0.f, 0.f);

	btCollisionShape *pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));
	pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag);
	delete pTempBox;

	//y-axis assumed up
	btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0);						//par body's COM to cur body's COM offset	
	btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0);							//cur body's COM to cur body's PIV offset
	btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom;	//par body's COM to cur body's PIV offset

	//////
	btScalar q0 = 0.f * SIMD_PI/ 180.f;
	btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
	quat0.normalize();	
	/////

	for(int i = 0; i < numLinks; ++i)
	{
		if(!spherical)			
			pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, true);
		else
			//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
			pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, true);
	}

	pMultiBody->finalizeMultiDof();

	///
	pWorld->addMultiBody(pMultiBody);
	///
	return pMultiBody;
}
Ejemplo n.º 2
0
	void llquat_test_object_t::test<6>()
	{
		LLQuaternion quat1(3.0f, 2.0f, 6.0f, 0.0f), quat2(1.0f, 1.0f, 1.0f, 1.0f);
		ensure("1. The two values are different", llround(12.000000f, 2) == llround(dot(quat1, quat2), 2));

		LLQuaternion quat0(3.0f, 9.334f, 34.5f, 23.0f), quat(34.5f, 23.23f, 2.0f, 45.5f);
		ensure("2. The two values are different", llround(1435.828807f, 2) == llround(dot(quat0, quat), 2));
	}
Ejemplo n.º 3
0
	void llquat_test_object_t::test<7>()
	{
		F32 radian = 60.0f;
		LLQuaternion quat(3.0f, 2.0f, 6.0f, 0.0f);
		LLQuaternion quat1;
		quat1 = quat.constrain(radian);
		ensure("1. LLQuaternion::constrain(F32 radians) failed", 
									is_approx_equal_fraction(-0.423442f, quat1.mQ[0], 8) &&
									is_approx_equal_fraction(-0.282295f, quat1.mQ[1], 8) &&
									is_approx_equal_fraction(-0.846884f, quat1.mQ[2], 8) &&				
									is_approx_equal_fraction(0.154251f, quat1.mQ[3], 8));				
											

		radian = 30.0f;
		LLQuaternion quat0(37.50f, 12.0f, 86.023f, 40.32f);
		quat1 = quat0.constrain(radian);
	
		ensure("2. LLQuaternion::constrain(F32 radians) failed", 
									is_approx_equal_fraction(37.500000f, quat1.mQ[0], 8) &&
									is_approx_equal_fraction(12.0000f, quat1.mQ[1], 8) &&
									is_approx_equal_fraction(86.0230f, quat1.mQ[2], 8) &&				
									is_approx_equal_fraction(40.320000f, quat1.mQ[3], 8));				
	}
Ejemplo n.º 4
0
void TestJointTorqueSetup::initPhysics()
{
    int upAxis = 1;
	gJointFeedbackInWorldSpace = true;
	gJointFeedbackInJointFrame = true;

	m_guiHelper->setUpAxis(upAxis);

    btVector4 colors[4] =
    {
        btVector4(1,0,0,1),
        btVector4(0,1,0,1),
        btVector4(0,1,1,1),
        btVector4(1,1,0,1),
    };
    int curColor = 0;



    

	this->createEmptyDynamicsWorld();
    m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
    m_dynamicsWorld->getDebugDrawer()->setDebugMode(
        //btIDebugDraw::DBG_DrawConstraints
        +btIDebugDraw::DBG_DrawWireframe
        +btIDebugDraw::DBG_DrawContactPoints
        +btIDebugDraw::DBG_DrawAabb
        );//+btIDebugDraw::DBG_DrawConstraintLimits);

	

    //create a static ground object
    if (1)
        {
            btVector3 groundHalfExtents(1,1,0.2);
            groundHalfExtents[upAxis]=1.f;
            btBoxShape* box = new btBoxShape(groundHalfExtents);
            box->initializePolyhedralFeatures();

            m_guiHelper->createCollisionShapeGraphicsObject(box);
            btTransform start; start.setIdentity();
            btVector3 groundOrigin(-0.4f, 3.f, 0.f);
            groundOrigin[upAxis] -=.5;
			groundOrigin[2]-=0.6;
            start.setOrigin(groundOrigin);
			btQuaternion groundOrn(btVector3(0,1,0),0.25*SIMD_PI);
		
		//	start.setRotation(groundOrn);
            btRigidBody* body =  createRigidBody(0,start,box);
			body->setFriction(0);
            btVector4 color = colors[curColor];
			curColor++;
			curColor&=3;
            m_guiHelper->createRigidBodyGraphicsObject(body,color);
        }

    {
        bool floating = false;
        bool damping = false;
        bool gyro = false;
        int numLinks = 2;
        bool spherical = false;					//set it ot false -to use 1DoF hinges instead of 3DoF sphericals
        bool canSleep = false;
        bool selfCollide = false;
          btVector3 linkHalfExtents(0.05, 0.37, 0.1);
        btVector3 baseHalfExtents(0.05, 0.37, 0.1);

        btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
        //mbC->forceMultiDof();							//if !spherical, you can comment this line to check the 1DoF algorithm
        //init the base
        btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
        float baseMass = 1.f;

        if(baseMass)
        {
            //btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
			btCollisionShape *shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
            shape->calculateLocalInertia(baseMass, baseInertiaDiag);
            delete shape;
        }

        bool isMultiDof = true;
        btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep, isMultiDof);
		
        m_multiBody = pMultiBody;
        btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
	//	baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI);
        pMultiBody->setBasePos(basePosition);
        pMultiBody->setWorldToBaseRot(baseOriQuat);
        btVector3 vel(0, 0, 0);
    //	pMultiBody->setBaseVel(vel);

        //init the links
        btVector3 hingeJointAxis(1, 0, 0);
        
        //y-axis assumed up
        btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0);						//par body's COM to cur body's COM offset
        btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0);							//cur body's COM to cur body's PIV offset
        btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom;	//par body's COM to cur body's PIV offset

        //////
        btScalar q0 = 0.f * SIMD_PI/ 180.f;
        btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
        quat0.normalize();
        /////

        for(int i = 0; i < numLinks; ++i)
        {
			float linkMass = 1.f;
			//if (i==3 || i==2)
			//	linkMass= 1000;
			btVector3 linkInertiaDiag(0.f, 0.f, 0.f);

			btCollisionShape* shape = 0;
			if (i==0)
			{
				shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));//
			} else
			{
				shape = new btSphereShape(radius);
			}
			shape->calculateLocalInertia(linkMass, linkInertiaDiag);
			delete shape;


            if(!spherical)
			{
                //pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
		
				if (i==0)
				{
				pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, 
					btQuaternion(0.f, 0.f, 0.f, 1.f), 
					hingeJointAxis, 
					parentComToCurrentPivot, 
					currentPivotToCurrentCom, false);
				} else
				{
					btVector3 parentComToCurrentCom(0, -radius * 2.f, 0);						//par body's COM to cur body's COM offset
					btVector3 currentPivotToCurrentCom(0, -radius, 0);							//cur body's COM to cur body's PIV offset
					btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom;	//par body's COM to cur body's PIV offset


					pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1, 
					btQuaternion(0.f, 0.f, 0.f, 1.f), 
					parentComToCurrentPivot, 
					currentPivotToCurrentCom, false);
				}
					
				//pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false);
		
			}
            else
			{
                //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
                pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
			}
        }

        pMultiBody->finalizeMultiDof();

		//for (int i=pMultiBody->getNumLinks()-1;i>=0;i--)//
			for (int i=0;i<pMultiBody->getNumLinks();i++)
		{
			btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
			pMultiBody->getLink(i).m_jointFeedback = fb;
			m_jointFeedbacks.push_back(fb);
			//break;
		}
        btMultiBodyDynamicsWorld* world = m_dynamicsWorld;

        ///
        world->addMultiBody(pMultiBody);
        btMultiBody* mbC = pMultiBody;
        mbC->setCanSleep(canSleep);
        mbC->setHasSelfCollision(selfCollide);
        mbC->setUseGyroTerm(gyro);
        //
        if(!damping)
        {
            mbC->setLinearDamping(0.f);
            mbC->setAngularDamping(0.f);
        }else
        {	mbC->setLinearDamping(0.1f);
            mbC->setAngularDamping(0.9f);
        }
        //
    	m_dynamicsWorld->setGravity(btVector3(0,0,-10));

        //////////////////////////////////////////////
        if(0)//numLinks > 0)
        {
            btScalar q0 = 45.f * SIMD_PI/ 180.f;
            if(!spherical)
                if(mbC->isMultiDof())
                    mbC->setJointPosMultiDof(0, &q0);
                else
                    mbC->setJointPos(0, q0);
            else
            {
                btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
                quat0.normalize();
                mbC->setJointPosMultiDof(0, quat0);
            }
        }
        ///

        btAlignedObjectArray<btQuaternion> world_to_local;
        world_to_local.resize(pMultiBody->getNumLinks() + 1);

        btAlignedObjectArray<btVector3> local_origin;
        local_origin.resize(pMultiBody->getNumLinks() + 1);
        world_to_local[0] = pMultiBody->getWorldToBaseRot();
        local_origin[0] = pMultiBody->getBasePos();
      //  double friction = 1;
        {

        //	float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
//            btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};


            if (1)
            {
                btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0],baseHalfExtents[1],baseHalfExtents[2]));//new btSphereShape(baseHalfExtents[0]);
                m_guiHelper->createCollisionShapeGraphicsObject(shape);

                btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
                col->setCollisionShape(shape);

                btTransform tr;
                tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this 
				//when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider
               
                tr.setOrigin(local_origin[0]);
				btQuaternion orn(btVector3(0,0,1),0.25*3.1415926538);
				
                tr.setRotation(orn);
                col->setWorldTransform(tr);

				bool isDynamic = (baseMass > 0 && floating);
				short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter);
				short collisionFilterMask = isDynamic? 	short(btBroadphaseProxy::AllFilter) : 	short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);


                world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//, 2,1+2);

                btVector3 color(0.0,0.0,0.5);
                m_guiHelper->createCollisionObjectGraphicsObject(col,color);

//                col->setFriction(friction);
                pMultiBody->setBaseCollider(col);

            }
        }


        for (int i=0; i < pMultiBody->getNumLinks(); ++i)
        {
            const int parent = pMultiBody->getParent(i);
            world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1];
            local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i)));
        }


        for (int i=0; i < pMultiBody->getNumLinks(); ++i)
        {

            btVector3 posr = local_origin[i+1];
        //	float pos[4]={posr.x(),posr.y(),posr.z(),1};

            btScalar quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()};
			btCollisionShape* shape =0;

			if (i==0)
			{
				shape = new btBoxShape(btVector3(linkHalfExtents[0],linkHalfExtents[1],linkHalfExtents[2]));//btSphereShape(linkHalfExtents[0]);
			} else
			{
				
				shape = new btSphereShape(radius);
			}

            m_guiHelper->createCollisionShapeGraphicsObject(shape);
            btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);

            col->setCollisionShape(shape);
            btTransform tr;
            tr.setIdentity();
            tr.setOrigin(posr);
            tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
            col->setWorldTransform(tr);
     //       col->setFriction(friction);
			bool isDynamic = 1;//(linkMass > 0);
			short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter);
			short collisionFilterMask = isDynamic? 	short(btBroadphaseProxy::AllFilter) : 	short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);

			//if (i==0||i>numLinks-2)
			{
				world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//,2,1+2);
				   btVector4 color = colors[curColor];
			curColor++;
			curColor&=3;
            m_guiHelper->createCollisionObjectGraphicsObject(col,color);


            pMultiBody->getLink(i).m_collider=col;
			}
         
        }
    }

	btSerializer* s = new btDefaultSerializer;
	m_dynamicsWorld->serialize(s);
	b3ResourcePath p;
	char resourcePath[1024];
	if (p.findResourcePath("multibody.bullet",resourcePath,1024))
	{
		FILE* f = fopen(resourcePath,"wb");
		fwrite(s->getBufferPointer(),s->getCurrentBufferSize(),1,f);
		fclose(f);
	}
}
Ejemplo n.º 5
0
void	MultiDofDemo::initPhysics()
{	


	m_guiHelper->setUpAxis(1);

	if(g_firstInit)
	{
		m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10.*scaling));
		m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraPitch(50);
		g_firstInit = false;
	}	
	///collision configuration contains default setup for memory, collision setup
	m_collisionConfiguration = new btDefaultCollisionConfiguration();

	///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
	m_dispatcher = new	btCollisionDispatcher(m_collisionConfiguration);

	m_broadphase = new btDbvtBroadphase();

	//Use the btMultiBodyConstraintSolver for Featherstone btMultiBody support
	btMultiBodyConstraintSolver* sol = new btMultiBodyConstraintSolver;
	m_solver = sol;

	//use btMultiBodyDynamicsWorld for Featherstone btMultiBody support
	btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher,m_broadphase,sol,m_collisionConfiguration);
	m_dynamicsWorld = world;
//	m_dynamicsWorld->setDebugDrawer(&gDebugDraw);
	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
	m_dynamicsWorld->setGravity(btVector3(0,-10,0));

	///create a few basic rigid bodies
	btVector3 groundHalfExtents(50,50,50);
	btCollisionShape* groundShape = new btBoxShape(groundHalfExtents);
	//groundShape->initializePolyhedralFeatures();
//	btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
	
	m_collisionShapes.push_back(groundShape);

	btTransform groundTransform;
	groundTransform.setIdentity();
	groundTransform.setOrigin(btVector3(0,-50,00));

	/////////////////////////////////////////////////////////////////	
	/////////////////////////////////////////////////////////////////
	
	bool damping = true;
	bool gyro = true;
	int numLinks = 5;
	bool spherical = true;					//set it ot false -to use 1DoF hinges instead of 3DoF sphericals		
	bool multibodyOnly = false;
	bool canSleep = true;
	bool selfCollide = true;
    bool multibodyConstraint = false;
	btVector3 linkHalfExtents(0.05, 0.37, 0.1);
	btVector3 baseHalfExtents(0.05, 0.37, 0.1);

	btMultiBody* mbC = createFeatherstoneMultiBody_testMultiDof(world, numLinks, btVector3(-0.4f, 3.f, 0.f), linkHalfExtents, baseHalfExtents, spherical, g_floatingBase);	
	//mbC->forceMultiDof();							//if !spherical, you can comment this line to check the 1DoF algorithm		

	g_floatingBase = ! g_floatingBase;
	mbC->setCanSleep(canSleep);	
	mbC->setHasSelfCollision(selfCollide);
	mbC->setUseGyroTerm(gyro);
	//
	if(!damping)
	{
		mbC->setLinearDamping(0.f);
		mbC->setAngularDamping(0.f);
	}else
	{	mbC->setLinearDamping(0.1f);
		mbC->setAngularDamping(0.9f);
	}
	//
	m_dynamicsWorld->setGravity(btVector3(0, -9.81 ,0));	
	//m_dynamicsWorld->getSolverInfo().m_numIterations = 100;
	//////////////////////////////////////////////
	if(numLinks > 0)
	{			
		btScalar q0 = 45.f * SIMD_PI/ 180.f;
		if(!spherical)
		{
			mbC->setJointPosMultiDof(0, &q0);
		}
		else
		{
			btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
			quat0.normalize();
			mbC->setJointPosMultiDof(0, quat0);				
		}			
	}		
	///
	addColliders_testMultiDof(mbC, world, baseHalfExtents, linkHalfExtents);	

	
	/////////////////////////////////////////////////////////////////	
	btScalar groundHeight = -51.55;
	if (!multibodyOnly)
	{
		btScalar mass(0.);

		//rigidbody is dynamic if and only if mass is non zero, otherwise static
		bool isDynamic = (mass != 0.f);

		btVector3 localInertia(0,0,0);
		if (isDynamic)
			groundShape->calculateLocalInertia(mass,localInertia);

		//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
		groundTransform.setIdentity();
		groundTransform.setOrigin(btVector3(0,groundHeight,0));
		btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
		btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
		btRigidBody* body = new btRigidBody(rbInfo);

		//add the body to the dynamics world
		m_dynamicsWorld->addRigidBody(body,1,1+2);//,1,1+2);

		


	}
	/////////////////////////////////////////////////////////////////
	if(!multibodyOnly)
	{
		btVector3 halfExtents(.5,.5,.5);
		btBoxShape* colShape = new btBoxShape(halfExtents);
		//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
		m_collisionShapes.push_back(colShape);

		/// Create Dynamic Objects
		btTransform startTransform;
		startTransform.setIdentity();

		btScalar	mass(1.f);

		//rigidbody is dynamic if and only if mass is non zero, otherwise static
		bool isDynamic = (mass != 0.f);

		btVector3 localInertia(0,0,0);
		if (isDynamic)
			colShape->calculateLocalInertia(mass,localInertia);

		startTransform.setOrigin(btVector3(
							btScalar(0.0),
							0.0,
							btScalar(0.0)));

			
		//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
		btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
		btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
		btRigidBody* body = new btRigidBody(rbInfo);
					
		m_dynamicsWorld->addRigidBody(body);//,1,1+2);	

        if (multibodyConstraint) {
            btVector3 pointInA = -linkHalfExtents;
      //      btVector3 pointInB = halfExtents;
            btMatrix3x3 frameInA;
            btMatrix3x3 frameInB;
            frameInA.setIdentity();
            frameInB.setIdentity();
            btVector3 jointAxis(1.0,0.0,0.0);
            //btMultiBodySliderConstraint* p2p = new btMultiBodySliderConstraint(mbC,numLinks-1,body,pointInA,pointInB,frameInA,frameInB,jointAxis);
            btMultiBodyFixedConstraint* p2p = new btMultiBodyFixedConstraint(mbC,numLinks-1,mbC,numLinks-4,pointInA,pointInA,frameInA,frameInB);
            p2p->setMaxAppliedImpulse(2.0);
            m_dynamicsWorld->addMultiBodyConstraint(p2p);
        }
	}

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);

	/////////////////////////////////////////////////////////////////
}
void NewtonEulerFrom1DLocalFrameR::computeJachq(double time, Interaction& inter, SP::BlockVector q0)
{

  DEBUG_BEGIN("NewtonEulerFrom1DLocalFrameR::computeJachq(double time, Interaction& inter, SP::BlockVector q0 ) \n");
  DEBUG_PRINTF("with time =  %f\n",time);
  DEBUG_PRINTF("with inter =  %p\n",&inter);


  _jachq->setValue(0, 0, _Nc->getValue(0));
  _jachq->setValue(0, 1, _Nc->getValue(1));
  _jachq->setValue(0, 2, _Nc->getValue(2));
  if (inter.has2Bodies())
  {
    _jachq->setValue(0, 7, -_Nc->getValue(0));
    _jachq->setValue(0, 8, -_Nc->getValue(1));
    _jachq->setValue(0, 9, -_Nc->getValue(2));
  }

  for (unsigned int iDS =0 ; iDS < q0->getNumberOfBlocks()  ; iDS++)
  {
    SP::SiconosVector q = (q0->getAllVect())[iDS];
    double sign = 1.0;
    DEBUG_PRINTF("NewtonEulerFrom1DLocalFrameR::computeJachq : ds%d->q :", iDS);
    DEBUG_EXPR_WE(q->display(););

    ::boost::math::quaternion<double>    quatGP;
    if (iDS == 0)
    {
      ::boost::math::quaternion<double>    quatAux(0, _Pc1->getValue(0) - q->getValue(0), _Pc1->getValue(1) - q->getValue(1),
                                                   _Pc1->getValue(2) - q->getValue(2));
      quatGP = quatAux;
    }
    else
    {
      sign = -1.0;
      //cout<<"NewtonEulerFrom1DLocalFrameR::computeJachq sign is -1 \n";
      ::boost::math::quaternion<double>    quatAux(0, _Pc2->getValue(0) - q->getValue(0), _Pc2->getValue(1) - q->getValue(1),
                                                   _Pc2->getValue(2) - q->getValue(2));
      quatGP = quatAux;
    }
    DEBUG_PRINTF("NewtonEulerFrom1DLocalFrameR::computeJachq :GP :%lf, %lf, %lf\n", quatGP.R_component_2(), quatGP.R_component_3(), quatGP.R_component_4());
    DEBUG_PRINTF("NewtonEulerFrom1DLocalFrameR::computeJachq :Q :%e,%e, %e, %e\n", q->getValue(3), q->getValue(4), q->getValue(5), q->getValue(6));
    ::boost::math::quaternion<double>    quatQ(q->getValue(3), q->getValue(4), q->getValue(5), q->getValue(6));
    ::boost::math::quaternion<double>    quatcQ(q->getValue(3), -q->getValue(4), -q->getValue(5), -q->getValue(6));
    ::boost::math::quaternion<double>    quat0(1, 0, 0, 0);
    ::boost::math::quaternion<double>    quatBuff;
    ::boost::math::quaternion<double>    _2qiquatGP;
    _2qiquatGP = quatGP;
    _2qiquatGP *= 2 * (q->getValue(3));
    quatBuff = (quatGP * quatQ) + (quatcQ * quatGP) - _2qiquatGP;

    DEBUG_PRINTF("NewtonEulerFrom1DLocalFrameR::computeJachq :quattBuuf : %e,%e,%e \n", quatBuff.R_component_2(), quatBuff.R_component_3(), quatBuff.R_component_4());

    _jachq->setValue(0, 7 * iDS + 3, sign * (quatBuff.R_component_2()*_Nc->getValue(0) +
                                             quatBuff.R_component_3()*_Nc->getValue(1) + quatBuff.R_component_4()*_Nc->getValue(2)));
    //cout<<"WARNING NewtonEulerFrom1DLocalFrameR set jachq \n";
    //_jachq->setValue(0,7*iDS+3,0);
    for (unsigned int i = 1; i < 4; i++)
    {
      ::boost::math::quaternion<double>    quatei(0, (i == 1) ? 1 : 0, (i == 2) ? 1 : 0, (i == 3) ? 1 : 0);
      _2qiquatGP = quatGP;
      _2qiquatGP *= 2 * (q->getValue(3 + i));
      quatBuff = quatei * quatcQ * quatGP - quatGP * quatQ * quatei - _2qiquatGP;
      _jachq->setValue(0, 7 * iDS + 3 + i, sign * (quatBuff.R_component_2()*_Nc->getValue(0) +
                                                   quatBuff.R_component_3()*_Nc->getValue(1) + quatBuff.R_component_4()*_Nc->getValue(2)));
    }
  }
void TestJointTorqueSetup::initPhysics()
{
    int upAxis = 2;
	m_guiHelper->setUpAxis(upAxis);

    btVector4 colors[4] =
    {
        btVector4(1,0,0,1),
        btVector4(0,1,0,1),
        btVector4(0,1,1,1),
        btVector4(1,1,0,1),
    };
    int curColor = 0;



    

	this->createEmptyDynamicsWorld();
    m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
    m_dynamicsWorld->getDebugDrawer()->setDebugMode(
        //btIDebugDraw::DBG_DrawConstraints
        +btIDebugDraw::DBG_DrawWireframe
        +btIDebugDraw::DBG_DrawContactPoints
        +btIDebugDraw::DBG_DrawAabb
        );//+btIDebugDraw::DBG_DrawConstraintLimits);

    //create a static ground object
    if (0)
        {
            btVector3 groundHalfExtents(20,20,20);
            groundHalfExtents[upAxis]=1.f;
            btBoxShape* box = new btBoxShape(groundHalfExtents);
            box->initializePolyhedralFeatures();

            m_guiHelper->createCollisionShapeGraphicsObject(box);
            btTransform start; start.setIdentity();
            btVector3 groundOrigin(0,0,0);
            groundOrigin[upAxis]=-1.5;
            start.setOrigin(groundOrigin);
            btRigidBody* body =  createRigidBody(0,start,box);
            btVector4 color = colors[curColor];
			curColor++;
			curColor&=3;
            m_guiHelper->createRigidBodyGraphicsObject(body,color);
        }

    {
        bool floating = false;
        bool damping = true;
        bool gyro = true;
        int numLinks = 5;
        bool spherical = false;					//set it ot false -to use 1DoF hinges instead of 3DoF sphericals
        bool canSleep = false;
        bool selfCollide = false;
        btVector3 linkHalfExtents(0.05, 0.37, 0.1);
        btVector3 baseHalfExtents(0.05, 0.37, 0.1);

        btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
        //mbC->forceMultiDof();							//if !spherical, you can comment this line to check the 1DoF algorithm
        //init the base
        btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
        float baseMass = 1.f;

        if(baseMass)
        {
            btCollisionShape *pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
            pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag);
            delete pTempBox;
        }

        bool isMultiDof = false;
        btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep, isMultiDof);
        m_multiBody = pMultiBody;
        btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
        pMultiBody->setBasePos(basePosition);
        pMultiBody->setWorldToBaseRot(baseOriQuat);
        btVector3 vel(0, 0, 0);
    //	pMultiBody->setBaseVel(vel);

        //init the links
        btVector3 hingeJointAxis(1, 0, 0);
        float linkMass = 1.f;
        btVector3 linkInertiaDiag(0.f, 0.f, 0.f);

        btCollisionShape *pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));
        pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag);
        delete pTempBox;

        //y-axis assumed up
        btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0);						//par body's COM to cur body's COM offset
        btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0);							//cur body's COM to cur body's PIV offset
        btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom;	//par body's COM to cur body's PIV offset

        //////
        btScalar q0 = 0.f * SIMD_PI/ 180.f;
        btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
        quat0.normalize();
        /////

        for(int i = 0; i < numLinks; ++i)
        {
            if(!spherical)
                pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
            else
                //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
                pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
        }

        //pMultiBody->finalizeMultiDof();

        btMultiBodyDynamicsWorld* world = m_dynamicsWorld;

        ///
        world->addMultiBody(pMultiBody);
        btMultiBody* mbC = pMultiBody;
        mbC->setCanSleep(canSleep);
        mbC->setHasSelfCollision(selfCollide);
        mbC->setUseGyroTerm(gyro);
        //
        if(!damping)
        {
            mbC->setLinearDamping(0.f);
            mbC->setAngularDamping(0.f);
        }else
        {	mbC->setLinearDamping(0.1f);
            mbC->setAngularDamping(0.9f);
        }
        //
        btVector3 gravity(0,0,0);
        //gravity[upAxis] = -9.81;
        m_dynamicsWorld->setGravity(gravity);
        //////////////////////////////////////////////
        if(numLinks > 0)
        {
            btScalar q0 = 45.f * SIMD_PI/ 180.f;
            if(!spherical)
                if(mbC->isMultiDof())
                    mbC->setJointPosMultiDof(0, &q0);
                else
                    mbC->setJointPos(0, q0);
            else
            {
                btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
                quat0.normalize();
                mbC->setJointPosMultiDof(0, quat0);
            }
        }
        ///

        btAlignedObjectArray<btQuaternion> world_to_local;
        world_to_local.resize(pMultiBody->getNumLinks() + 1);

        btAlignedObjectArray<btVector3> local_origin;
        local_origin.resize(pMultiBody->getNumLinks() + 1);
        world_to_local[0] = pMultiBody->getWorldToBaseRot();
        local_origin[0] = pMultiBody->getBasePos();
        double friction = 1;
        {

        //	float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
            float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};


            if (1)
            {
                btCollisionShape* box = new btBoxShape(baseHalfExtents);
                m_guiHelper->createCollisionShapeGraphicsObject(box);

                btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
                col->setCollisionShape(box);

                btTransform tr;
                tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this 
				//when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider
               
                tr.setOrigin(local_origin[0]);
                tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
                col->setWorldTransform(tr);

                world->addCollisionObject(col, 2,1+2);

                btVector3 color(0.0,0.0,0.5);
                m_guiHelper->createCollisionObjectGraphicsObject(col,color);

                col->setFriction(friction);
                pMultiBody->setBaseCollider(col);

            }
        }


        for (int i=0; i < pMultiBody->getNumLinks(); ++i)
        {
            const int parent = pMultiBody->getParent(i);
            world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1];
            local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i)));
        }


        for (int i=0; i < pMultiBody->getNumLinks(); ++i)
        {

            btVector3 posr = local_origin[i+1];
        //	float pos[4]={posr.x(),posr.y(),posr.z(),1};

            float quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()};

            btCollisionShape* box = new btBoxShape(linkHalfExtents);
            m_guiHelper->createCollisionShapeGraphicsObject(box);
            btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);

            col->setCollisionShape(box);
            btTransform tr;
            tr.setIdentity();
            tr.setOrigin(posr);
            tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
            col->setWorldTransform(tr);
            col->setFriction(friction);
            world->addCollisionObject(col,2,1+2);
            btVector4 color = colors[curColor];
			curColor++;
			curColor&=3;
            m_guiHelper->createCollisionObjectGraphicsObject(col,color);


            pMultiBody->getLink(i).m_collider=col;
        }
    }

}