// host stub function
void ops_par_loop_update_halo_kernel2_xvel_plus_4_bot(char const *name,
                                                      ops_block block, int dim,
                                                      int *range, ops_arg arg0,
                                                      ops_arg arg1,
                                                      ops_arg arg2) {

  // Timing
  double t1, t2, c1, c2;

  ops_arg args[3] = {arg0, arg1, arg2};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 3, range, 24))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(24, "update_halo_kernel2_xvel_plus_4_bot");
    OPS_kernels[24].count++;
    ops_timers_core(&c1, &t1);
  }

  // compute locally allocated range for the sub-block
  int start[3];
  int end[3];
#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned)
    return;
  for (int n = 0; n < 3; n++) {
    start[n] = sb->decomp_disp[n];
    end[n] = sb->decomp_disp[n] + sb->decomp_size[n];
    if (start[n] >= range[2 * n]) {
      start[n] = 0;
    } else {
      start[n] = range[2 * n] - start[n];
    }
    if (sb->id_m[n] == MPI_PROC_NULL && range[2 * n] < 0)
      start[n] = range[2 * n];
    if (end[n] >= range[2 * n + 1]) {
      end[n] = range[2 * n + 1] - sb->decomp_disp[n];
    } else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n] == MPI_PROC_NULL &&
        (range[2 * n + 1] > sb->decomp_disp[n] + sb->decomp_size[n]))
      end[n] += (range[2 * n + 1] - sb->decomp_disp[n] - sb->decomp_size[n]);
  }
#else
  for (int n = 0; n < 3; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
  }
#endif

  int x_size = MAX(0, end[0] - start[0]);
  int y_size = MAX(0, end[1] - start[1]);
  int z_size = MAX(0, end[2] - start[2]);

  int xdim0 = args[0].dat->size[0];
  int ydim0 = args[0].dat->size[1];
  int xdim1 = args[1].dat->size[0];
  int ydim1 = args[1].dat->size[1];

  // build opencl kernel if not already built

  buildOpenCLKernels_update_halo_kernel2_xvel_plus_4_bot(xdim0, ydim0, xdim1,
                                                         ydim1);

  // set up OpenCL thread blocks
  size_t globalWorkSize[3] = {
      ((x_size - 1) / OPS_block_size_x + 1) * OPS_block_size_x,
      ((y_size - 1) / OPS_block_size_y + 1) * OPS_block_size_y,
      ((z_size - 1) / OPS_block_size_z + 1) * OPS_block_size_z};
  size_t localWorkSize[3] = {OPS_block_size_x, OPS_block_size_y,
                             OPS_block_size_z};

  int *arg2h = (int *)arg2.data;

  int consts_bytes = 0;

  consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int));

  reallocConstArrays(consts_bytes);

  consts_bytes = 0;
  arg2.data = OPS_consts_h + consts_bytes;
  arg2.data_d = OPS_consts_d + consts_bytes;
  for (int d = 0; d < NUM_FIELDS; d++)
    ((int *)arg2.data)[d] = arg2h[d];
  consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int));
  mvConstArraysToDevice(consts_bytes);

  // set up initial pointers
  int d_m[OPS_MAX_DIM];
#ifdef OPS_MPI
  for (int d = 0; d < dim; d++)
    d_m[d] =
        args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
#else
  for (int d = 0; d < dim; d++)
    d_m[d] = args[0].dat->d_m[d];
#endif
  int base0 = 1 * 1 * (start[0] * args[0].stencil->stride[0] -
                       args[0].dat->base[0] - d_m[0]);
  base0 = base0 +
          args[0].dat->size[0] * 1 * (start[1] * args[0].stencil->stride[1] -
                                      args[0].dat->base[1] - d_m[1]);
  base0 = base0 +
          args[0].dat->size[0] * 1 * args[0].dat->size[1] * 1 *
              (start[2] * args[0].stencil->stride[2] - args[0].dat->base[2] -
               d_m[2]);

#ifdef OPS_MPI
  for (int d = 0; d < dim; d++)
    d_m[d] =
        args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
#else
  for (int d = 0; d < dim; d++)
    d_m[d] = args[1].dat->d_m[d];
#endif
  int base1 = 1 * 1 * (start[0] * args[1].stencil->stride[0] -
                       args[1].dat->base[0] - d_m[0]);
  base1 = base1 +
          args[1].dat->size[0] * 1 * (start[1] * args[1].stencil->stride[1] -
                                      args[1].dat->base[1] - d_m[1]);
  base1 = base1 +
          args[1].dat->size[0] * 1 * args[1].dat->size[1] * 1 *
              (start[2] * args[1].stencil->stride[2] - args[1].dat->base[2] -
               d_m[2]);

  ops_H_D_exchanges_device(args, 3);
  ops_halo_exchanges(args, 3, range);
  ops_H_D_exchanges_device(args, 3);

  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[24].mpi_time += t2 - t1;
  }

  if (globalWorkSize[0] > 0 && globalWorkSize[1] > 0 && globalWorkSize[2] > 0) {

    clSafeCall(clSetKernelArg(OPS_opencl_core.kernel[24], 0, sizeof(cl_mem),
                              (void *)&arg0.data_d));
    clSafeCall(clSetKernelArg(OPS_opencl_core.kernel[24], 1, sizeof(cl_mem),
                              (void *)&arg1.data_d));
    clSafeCall(clSetKernelArg(OPS_opencl_core.kernel[24], 2, sizeof(cl_mem),
                              (void *)&arg2.data_d));
    clSafeCall(clSetKernelArg(OPS_opencl_core.kernel[24], 3, sizeof(cl_int),
                              (void *)&base0));
    clSafeCall(clSetKernelArg(OPS_opencl_core.kernel[24], 4, sizeof(cl_int),
                              (void *)&base1));
    clSafeCall(clSetKernelArg(OPS_opencl_core.kernel[24], 5, sizeof(cl_int),
                              (void *)&x_size));
    clSafeCall(clSetKernelArg(OPS_opencl_core.kernel[24], 6, sizeof(cl_int),
                              (void *)&y_size));
    clSafeCall(clSetKernelArg(OPS_opencl_core.kernel[24], 7, sizeof(cl_int),
                              (void *)&z_size));

    // call/enque opencl kernel wrapper function
    clSafeCall(clEnqueueNDRangeKernel(
        OPS_opencl_core.command_queue, OPS_opencl_core.kernel[24], 3, NULL,
        globalWorkSize, localWorkSize, 0, NULL, NULL));
  }
  if (OPS_diags > 1) {
    clSafeCall(clFinish(OPS_opencl_core.command_queue));
  }

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[24].time += t1 - t2;
  }

  ops_set_dirtybit_device(args, 3);
  ops_set_halo_dirtybit3(&args[0], range);
  ops_set_halo_dirtybit3(&args[1], range);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c2, &t2);
    OPS_kernels[24].mpi_time += t2 - t1;
    OPS_kernels[24].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[24].transfer += ops_compute_transfer(dim, start, end, &arg1);
  }
}
// host stub function
void ops_par_loop_update_halo_kernel2_zvel_plus_2_left(char const *name, ops_block Block, int dim, int* range,
 ops_arg arg0, ops_arg arg1, ops_arg arg2) {

  ops_arg args[3] = { arg0, arg1, arg2};


  ops_timing_realloc(82,"update_halo_kernel2_zvel_plus_2_left");
  OPS_kernels[82].count++;

  //compute localy allocated range for the sub-block
  int start[3];
  int end[3];
  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<3; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<3; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI

  int x_size = MAX(0,end[0]-start[0]);
  int y_size = MAX(0,end[1]-start[1]);
  int z_size = MAX(0,end[2]-start[2]);


  xdim0 = args[0].dat->size[0]*args[0].dat->dim;
  ydim0 = args[0].dat->size[1];
  xdim1 = args[1].dat->size[0]*args[1].dat->dim;
  ydim1 = args[1].dat->size[1];

  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c2,&t2);

  if (xdim0 != xdim0_update_halo_kernel2_zvel_plus_2_left_h || ydim0 != ydim0_update_halo_kernel2_zvel_plus_2_left_h || xdim1 != xdim1_update_halo_kernel2_zvel_plus_2_left_h || ydim1 != ydim1_update_halo_kernel2_zvel_plus_2_left_h) {
    xdim0_update_halo_kernel2_zvel_plus_2_left = xdim0;
    xdim0_update_halo_kernel2_zvel_plus_2_left_h = xdim0;
    ydim0_update_halo_kernel2_zvel_plus_2_left = ydim0;
    ydim0_update_halo_kernel2_zvel_plus_2_left_h = ydim0;
    xdim1_update_halo_kernel2_zvel_plus_2_left = xdim1;
    xdim1_update_halo_kernel2_zvel_plus_2_left_h = xdim1;
    ydim1_update_halo_kernel2_zvel_plus_2_left = ydim1;
    ydim1_update_halo_kernel2_zvel_plus_2_left_h = ydim1;
  }

  int dat0 = args[0].dat->elem_size;
  int dat1 = args[1].dat->elem_size;

  int *arg2h = (int *)arg2.data;
  //Upload large globals
  int consts_bytes = 0;
  consts_bytes += ROUND_UP(NUM_FIELDS*sizeof(int));
  reallocConstArrays(consts_bytes);
  consts_bytes = 0;
  args[2].data = OPS_consts_h + consts_bytes;
  args[2].data_d = OPS_consts_d + consts_bytes;
  for (int d=0; d<NUM_FIELDS; d++) ((int *)args[2].data)[d] = arg2h[d];
  consts_bytes += ROUND_UP(NUM_FIELDS*sizeof(int));
  mvConstArraysToDevice(consts_bytes);

  //set up initial pointers
  int d_m[OPS_MAX_DIM];
  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
  #endif //OPS_MPI
  int base0 = dat0 * 1 * 
    (start[0] * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
  base0 = base0+ dat0 *
    args[0].dat->size[0] *
    (start[1] * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
  base0 = base0+ dat0 *
    args[0].dat->size[0] *
    args[0].dat->size[1] *
    (start[2] * args[0].stencil->stride[2] - args[0].dat->base[2] - d_m[2]);
  #ifdef OPS_GPU
  double *p_a0 = (double *)((char *)args[0].data_d + base0);
  #else
  double *p_a0 = (double *)((char *)args[0].data + base0);
  #endif

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d];
  #endif //OPS_MPI
  int base1 = dat1 * 1 * 
    (start[0] * args[1].stencil->stride[0] - args[1].dat->base[0] - d_m[0]);
  base1 = base1+ dat1 *
    args[1].dat->size[0] *
    (start[1] * args[1].stencil->stride[1] - args[1].dat->base[1] - d_m[1]);
  base1 = base1+ dat1 *
    args[1].dat->size[0] *
    args[1].dat->size[1] *
    (start[2] * args[1].stencil->stride[2] - args[1].dat->base[2] - d_m[2]);
  #ifdef OPS_GPU
  double *p_a1 = (double *)((char *)args[1].data_d + base1);
  #else
  double *p_a1 = (double *)((char *)args[1].data + base1);
  #endif

  #ifdef OPS_GPU
  int *p_a2 = (int *)args[2].data_d;
  #else
  int *p_a2 = arg2h;
  #endif

  #ifdef OPS_GPU
  ops_H_D_exchanges_device(args, 3);
  #else
  ops_H_D_exchanges_host(args, 3);
  #endif
  ops_halo_exchanges(args,3,range);

  ops_timers_core(&c1,&t1);
  OPS_kernels[82].mpi_time += t1-t2;

  update_halo_kernel2_zvel_plus_2_left_c_wrapper(
    p_a0,
    p_a1,
    p_a2,
    x_size, y_size, z_size);

  ops_timers_core(&c2,&t2);
  OPS_kernels[82].time += t2-t1;
  #ifdef OPS_GPU
  ops_set_dirtybit_device(args, 3);
  #else
  ops_set_dirtybit_host(args, 3);
  #endif
  ops_set_halo_dirtybit3(&args[0],range);
  ops_set_halo_dirtybit3(&args[1],range);

  //Update kernel record
  OPS_kernels[82].transfer += ops_compute_transfer(dim, range, &arg0);
  OPS_kernels[82].transfer += ops_compute_transfer(dim, range, &arg1);
}
// host stub function
void ops_par_loop_update_halo_kernel1_b1(char const *name, ops_block block,
                                         int dim, int *range, ops_arg arg0,
                                         ops_arg arg1, ops_arg arg2,
                                         ops_arg arg3, ops_arg arg4,
                                         ops_arg arg5, ops_arg arg6,
                                         ops_arg arg7) {

  // Timing
  double t1, t2, c1, c2;
  ops_arg args[8] = {arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 8, range, 10))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(10, "update_halo_kernel1_b1");
    OPS_kernels[10].count++;
    ops_timers_core(&c1, &t1);
  }

  // compute localy allocated range for the sub-block

  int start[2];
  int end[2];
#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif // OPS_MPI

  int arg_idx[2];
  int arg_idx_base[2];
#ifdef OPS_MPI
  if (compute_ranges(args, 8, block, range, start, end, arg_idx) < 0)
    return;
#else // OPS_MPI
  for (int n = 0; n < 2; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
    arg_idx[n] = start[n];
  }
#endif
  for (int n = 0; n < 2; n++) {
    arg_idx_base[n] = arg_idx[n];
  }

  int dat0 = args[0].dat->elem_size;
  int dat1 = args[1].dat->elem_size;
  int dat2 = args[2].dat->elem_size;
  int dat3 = args[3].dat->elem_size;
  int dat4 = args[4].dat->elem_size;
  int dat5 = args[5].dat->elem_size;
  int dat6 = args[6].dat->elem_size;

  int *arg7h = (int *)arg7.data;
// Upload large globals
#ifdef OPS_GPU
  int consts_bytes = 0;
  consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int));
  reallocConstArrays(consts_bytes);
  consts_bytes = 0;
  args[7].data = OPS_consts_h + consts_bytes;
  args[7].data_d = OPS_consts_d + consts_bytes;
  for (int d = 0; d < NUM_FIELDS; d++)
    ((int *)args[7].data)[d] = arg7h[d];
  consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int));
  mvConstArraysToDevice(consts_bytes);
#endif // OPS_GPU

  // set up initial pointers
  int base0 = args[0].dat->base_offset +
              (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
                  start[0] * args[0].stencil->stride[0];
  base0 = base0 +
          (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
              args[0].dat->size[0] * start[1] * args[0].stencil->stride[1];
#ifdef OPS_GPU
  double *p_a0 = (double *)((char *)args[0].data_d + base0);
#else
  double *p_a0 = (double *)((char *)args[0].data + base0);
#endif

  int base1 = args[1].dat->base_offset +
              (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
                  start[0] * args[1].stencil->stride[0];
  base1 = base1 +
          (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
              args[1].dat->size[0] * start[1] * args[1].stencil->stride[1];
#ifdef OPS_GPU
  double *p_a1 = (double *)((char *)args[1].data_d + base1);
#else
  double *p_a1 = (double *)((char *)args[1].data + base1);
#endif

  int base2 = args[2].dat->base_offset +
              (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size) *
                  start[0] * args[2].stencil->stride[0];
  base2 = base2 +
          (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size) *
              args[2].dat->size[0] * start[1] * args[2].stencil->stride[1];
#ifdef OPS_GPU
  double *p_a2 = (double *)((char *)args[2].data_d + base2);
#else
  double *p_a2 = (double *)((char *)args[2].data + base2);
#endif

  int base3 = args[3].dat->base_offset +
              (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size) *
                  start[0] * args[3].stencil->stride[0];
  base3 = base3 +
          (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size) *
              args[3].dat->size[0] * start[1] * args[3].stencil->stride[1];
#ifdef OPS_GPU
  double *p_a3 = (double *)((char *)args[3].data_d + base3);
#else
  double *p_a3 = (double *)((char *)args[3].data + base3);
#endif

  int base4 = args[4].dat->base_offset +
              (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size) *
                  start[0] * args[4].stencil->stride[0];
  base4 = base4 +
          (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size) *
              args[4].dat->size[0] * start[1] * args[4].stencil->stride[1];
#ifdef OPS_GPU
  double *p_a4 = (double *)((char *)args[4].data_d + base4);
#else
  double *p_a4 = (double *)((char *)args[4].data + base4);
#endif

  int base5 = args[5].dat->base_offset +
              (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size) *
                  start[0] * args[5].stencil->stride[0];
  base5 = base5 +
          (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size) *
              args[5].dat->size[0] * start[1] * args[5].stencil->stride[1];
#ifdef OPS_GPU
  double *p_a5 = (double *)((char *)args[5].data_d + base5);
#else
  double *p_a5 = (double *)((char *)args[5].data + base5);
#endif

  int base6 = args[6].dat->base_offset +
              (OPS_soa ? args[6].dat->type_size : args[6].dat->elem_size) *
                  start[0] * args[6].stencil->stride[0];
  base6 = base6 +
          (OPS_soa ? args[6].dat->type_size : args[6].dat->elem_size) *
              args[6].dat->size[0] * start[1] * args[6].stencil->stride[1];
#ifdef OPS_GPU
  double *p_a6 = (double *)((char *)args[6].data_d + base6);
#else
  double *p_a6 = (double *)((char *)args[6].data + base6);
#endif

#ifdef OPS_GPU
  int *p_a7 = (int *)args[7].data_d;
#else
  int *p_a7 = arg7h;
#endif

  int x_size = MAX(0, end[0] - start[0]);
  int y_size = MAX(0, end[1] - start[1]);

  // initialize global variable with the dimension of dats
  xdim0 = args[0].dat->size[0];
  xdim1 = args[1].dat->size[0];
  xdim2 = args[2].dat->size[0];
  xdim3 = args[3].dat->size[0];
  xdim4 = args[4].dat->size[0];
  xdim5 = args[5].dat->size[0];
  xdim6 = args[6].dat->size[0];
  if (xdim0 != xdim0_update_halo_kernel1_b1_h ||
      xdim1 != xdim1_update_halo_kernel1_b1_h ||
      xdim2 != xdim2_update_halo_kernel1_b1_h ||
      xdim3 != xdim3_update_halo_kernel1_b1_h ||
      xdim4 != xdim4_update_halo_kernel1_b1_h ||
      xdim5 != xdim5_update_halo_kernel1_b1_h ||
      xdim6 != xdim6_update_halo_kernel1_b1_h) {
    xdim0_update_halo_kernel1_b1 = xdim0;
    xdim0_update_halo_kernel1_b1_h = xdim0;
    xdim1_update_halo_kernel1_b1 = xdim1;
    xdim1_update_halo_kernel1_b1_h = xdim1;
    xdim2_update_halo_kernel1_b1 = xdim2;
    xdim2_update_halo_kernel1_b1_h = xdim2;
    xdim3_update_halo_kernel1_b1 = xdim3;
    xdim3_update_halo_kernel1_b1_h = xdim3;
    xdim4_update_halo_kernel1_b1 = xdim4;
    xdim4_update_halo_kernel1_b1_h = xdim4;
    xdim5_update_halo_kernel1_b1 = xdim5;
    xdim5_update_halo_kernel1_b1_h = xdim5;
    xdim6_update_halo_kernel1_b1 = xdim6;
    xdim6_update_halo_kernel1_b1_h = xdim6;
  }

// Halo Exchanges

#ifdef OPS_GPU
  ops_H_D_exchanges_device(args, 8);
#else
  ops_H_D_exchanges_host(args, 8);
#endif
  ops_halo_exchanges(args, 8, range);

#ifdef OPS_GPU
  ops_H_D_exchanges_device(args, 8);
#else
  ops_H_D_exchanges_host(args, 8);
#endif
  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[10].mpi_time += t2 - t1;
  }

  update_halo_kernel1_b1_c_wrapper(p_a0, p_a1, p_a2, p_a3, p_a4, p_a5, p_a6,
                                   p_a7, x_size, y_size);

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[10].time += t1 - t2;
  }
#ifdef OPS_GPU
  ops_set_dirtybit_device(args, 8);
#else
  ops_set_dirtybit_host(args, 8);
#endif
  ops_set_halo_dirtybit3(&args[0], range);
  ops_set_halo_dirtybit3(&args[1], range);
  ops_set_halo_dirtybit3(&args[2], range);
  ops_set_halo_dirtybit3(&args[3], range);
  ops_set_halo_dirtybit3(&args[4], range);
  ops_set_halo_dirtybit3(&args[5], range);
  ops_set_halo_dirtybit3(&args[6], range);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c2, &t2);
    OPS_kernels[10].mpi_time += t2 - t1;
    OPS_kernels[10].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[10].transfer += ops_compute_transfer(dim, start, end, &arg1);
    OPS_kernels[10].transfer += ops_compute_transfer(dim, start, end, &arg2);
    OPS_kernels[10].transfer += ops_compute_transfer(dim, start, end, &arg3);
    OPS_kernels[10].transfer += ops_compute_transfer(dim, start, end, &arg4);
    OPS_kernels[10].transfer += ops_compute_transfer(dim, start, end, &arg5);
    OPS_kernels[10].transfer += ops_compute_transfer(dim, start, end, &arg6);
  }
}
// host stub function
void ops_par_loop_update_halo_kernel2_yvel_minus_2_a(char const *name,
                                                     ops_block block, int dim,
                                                     int *range, ops_arg arg0,
                                                     ops_arg arg1,
                                                     ops_arg arg2) {

  // Timing
  double t1, t2, c1, c2;
  ops_arg args[3] = {arg0, arg1, arg2};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 3, range, 26))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(26, "update_halo_kernel2_yvel_minus_2_a");
    OPS_kernels[26].count++;
    ops_timers_core(&c1, &t1);
  }

  // compute localy allocated range for the sub-block

  int start[2];
  int end[2];
#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif // OPS_MPI

  int arg_idx[2];
  int arg_idx_base[2];
#ifdef OPS_MPI
  if (compute_ranges(args, 3, block, range, start, end, arg_idx) < 0)
    return;
#else // OPS_MPI
  for (int n = 0; n < 2; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
    arg_idx[n] = start[n];
  }
#endif
  for (int n = 0; n < 2; n++) {
    arg_idx_base[n] = arg_idx[n];
  }

  int dat0 = args[0].dat->elem_size;
  int dat1 = args[1].dat->elem_size;

  int *arg2h = (int *)arg2.data;
// Upload large globals
#ifdef OPS_GPU
  int consts_bytes = 0;
  consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int));
  reallocConstArrays(consts_bytes);
  consts_bytes = 0;
  args[2].data = OPS_consts_h + consts_bytes;
  args[2].data_d = OPS_consts_d + consts_bytes;
  for (int d = 0; d < NUM_FIELDS; d++)
    ((int *)args[2].data)[d] = arg2h[d];
  consts_bytes += ROUND_UP(NUM_FIELDS * sizeof(int));
  mvConstArraysToDevice(consts_bytes);
#endif // OPS_GPU

  // set up initial pointers
  int base0 = args[0].dat->base_offset +
              (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
                  start[0] * args[0].stencil->stride[0];
  base0 = base0 +
          (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
              args[0].dat->size[0] * start[1] * args[0].stencil->stride[1];
#ifdef OPS_GPU
  double *p_a0 = (double *)((char *)args[0].data_d + base0);
#else
  double *p_a0 = (double *)((char *)args[0].data + base0);
#endif

  int base1 = args[1].dat->base_offset +
              (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
                  start[0] * args[1].stencil->stride[0];
  base1 = base1 +
          (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
              args[1].dat->size[0] * start[1] * args[1].stencil->stride[1];
#ifdef OPS_GPU
  double *p_a1 = (double *)((char *)args[1].data_d + base1);
#else
  double *p_a1 = (double *)((char *)args[1].data + base1);
#endif

#ifdef OPS_GPU
  int *p_a2 = (int *)args[2].data_d;
#else
  int *p_a2 = arg2h;
#endif

  int x_size = MAX(0, end[0] - start[0]);
  int y_size = MAX(0, end[1] - start[1]);

  // initialize global variable with the dimension of dats
  xdim0 = args[0].dat->size[0];
  xdim1 = args[1].dat->size[0];
  if (xdim0 != xdim0_update_halo_kernel2_yvel_minus_2_a_h ||
      xdim1 != xdim1_update_halo_kernel2_yvel_minus_2_a_h) {
    xdim0_update_halo_kernel2_yvel_minus_2_a = xdim0;
    xdim0_update_halo_kernel2_yvel_minus_2_a_h = xdim0;
    xdim1_update_halo_kernel2_yvel_minus_2_a = xdim1;
    xdim1_update_halo_kernel2_yvel_minus_2_a_h = xdim1;
  }

// Halo Exchanges

#ifdef OPS_GPU
  ops_H_D_exchanges_device(args, 3);
#else
  ops_H_D_exchanges_host(args, 3);
#endif
  ops_halo_exchanges(args, 3, range);

#ifdef OPS_GPU
  ops_H_D_exchanges_device(args, 3);
#else
  ops_H_D_exchanges_host(args, 3);
#endif
  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[26].mpi_time += t2 - t1;
  }

  update_halo_kernel2_yvel_minus_2_a_c_wrapper(p_a0, p_a1, p_a2, x_size,
                                               y_size);

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[26].time += t1 - t2;
  }
#ifdef OPS_GPU
  ops_set_dirtybit_device(args, 3);
#else
  ops_set_dirtybit_host(args, 3);
#endif
  ops_set_halo_dirtybit3(&args[0], range);
  ops_set_halo_dirtybit3(&args[1], range);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c2, &t2);
    OPS_kernels[26].mpi_time += t2 - t1;
    OPS_kernels[26].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[26].transfer += ops_compute_transfer(dim, start, end, &arg1);
  }
}
// host stub function
void ops_par_loop_update_halo_kernel1_r1(char const *name, ops_block Block, int dim, int* range,
 ops_arg arg0, ops_arg arg1, ops_arg arg2, ops_arg arg3, ops_arg arg4, ops_arg arg5, ops_arg arg6, ops_arg arg7) {

  ops_arg args[8] = { arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7};


  #ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args,8,range,50)) return;
  #endif

  ops_timing_realloc(50,"update_halo_kernel1_r1");
  OPS_kernels[50].count++;

  //compute localy allocated range for the sub-block
  int start[2];
  int end[2];
  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<2; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<2; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI

  int x_size = MAX(0,end[0]-start[0]);
  int y_size = MAX(0,end[1]-start[1]);


  xdim0 = args[0].dat->size[0]*args[0].dat->dim;
  xdim1 = args[1].dat->size[0]*args[1].dat->dim;
  xdim2 = args[2].dat->size[0]*args[2].dat->dim;
  xdim3 = args[3].dat->size[0]*args[3].dat->dim;
  xdim4 = args[4].dat->size[0]*args[4].dat->dim;
  xdim5 = args[5].dat->size[0]*args[5].dat->dim;
  xdim6 = args[6].dat->size[0]*args[6].dat->dim;

  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c2,&t2);

  if (xdim0 != xdim0_update_halo_kernel1_r1_h || xdim1 != xdim1_update_halo_kernel1_r1_h || xdim2 != xdim2_update_halo_kernel1_r1_h || xdim3 != xdim3_update_halo_kernel1_r1_h || xdim4 != xdim4_update_halo_kernel1_r1_h || xdim5 != xdim5_update_halo_kernel1_r1_h || xdim6 != xdim6_update_halo_kernel1_r1_h) {
    xdim0_update_halo_kernel1_r1 = xdim0;
    xdim0_update_halo_kernel1_r1_h = xdim0;
    xdim1_update_halo_kernel1_r1 = xdim1;
    xdim1_update_halo_kernel1_r1_h = xdim1;
    xdim2_update_halo_kernel1_r1 = xdim2;
    xdim2_update_halo_kernel1_r1_h = xdim2;
    xdim3_update_halo_kernel1_r1 = xdim3;
    xdim3_update_halo_kernel1_r1_h = xdim3;
    xdim4_update_halo_kernel1_r1 = xdim4;
    xdim4_update_halo_kernel1_r1_h = xdim4;
    xdim5_update_halo_kernel1_r1 = xdim5;
    xdim5_update_halo_kernel1_r1_h = xdim5;
    xdim6_update_halo_kernel1_r1 = xdim6;
    xdim6_update_halo_kernel1_r1_h = xdim6;
  }

  int dat0 = args[0].dat->elem_size;
  int dat1 = args[1].dat->elem_size;
  int dat2 = args[2].dat->elem_size;
  int dat3 = args[3].dat->elem_size;
  int dat4 = args[4].dat->elem_size;
  int dat5 = args[5].dat->elem_size;
  int dat6 = args[6].dat->elem_size;

  int *arg7h = (int *)arg7.data;
  //Upload large globals
  int consts_bytes = 0;
  consts_bytes += ROUND_UP(NUM_FIELDS*sizeof(int));
  reallocConstArrays(consts_bytes);
  consts_bytes = 0;
  args[7].data = OPS_consts_h + consts_bytes;
  args[7].data_d = OPS_consts_d + consts_bytes;
  for (int d=0; d<NUM_FIELDS; d++) ((int *)args[7].data)[d] = arg7h[d];
  consts_bytes += ROUND_UP(NUM_FIELDS*sizeof(int));
  mvConstArraysToDevice(consts_bytes);

  //set up initial pointers
  int d_m[OPS_MAX_DIM];
  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
  #endif //OPS_MPI
  int base0 = dat0 * 1 * 
    (start[0] * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
  base0 = base0+ dat0 *
    args[0].dat->size[0] *
    (start[1] * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
  #ifdef OPS_GPU
  double *p_a0 = (double *)((char *)args[0].data_d + base0);
  #else
  double *p_a0 = (double *)((char *)args[0].data + base0);
  #endif

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d];
  #endif //OPS_MPI
  int base1 = dat1 * 1 * 
    (start[0] * args[1].stencil->stride[0] - args[1].dat->base[0] - d_m[0]);
  base1 = base1+ dat1 *
    args[1].dat->size[0] *
    (start[1] * args[1].stencil->stride[1] - args[1].dat->base[1] - d_m[1]);
  #ifdef OPS_GPU
  double *p_a1 = (double *)((char *)args[1].data_d + base1);
  #else
  double *p_a1 = (double *)((char *)args[1].data + base1);
  #endif

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[2].dat->d_m[d] + OPS_sub_dat_list[args[2].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[2].dat->d_m[d];
  #endif //OPS_MPI
  int base2 = dat2 * 1 * 
    (start[0] * args[2].stencil->stride[0] - args[2].dat->base[0] - d_m[0]);
  base2 = base2+ dat2 *
    args[2].dat->size[0] *
    (start[1] * args[2].stencil->stride[1] - args[2].dat->base[1] - d_m[1]);
  #ifdef OPS_GPU
  double *p_a2 = (double *)((char *)args[2].data_d + base2);
  #else
  double *p_a2 = (double *)((char *)args[2].data + base2);
  #endif

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[3].dat->d_m[d] + OPS_sub_dat_list[args[3].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[3].dat->d_m[d];
  #endif //OPS_MPI
  int base3 = dat3 * 1 * 
    (start[0] * args[3].stencil->stride[0] - args[3].dat->base[0] - d_m[0]);
  base3 = base3+ dat3 *
    args[3].dat->size[0] *
    (start[1] * args[3].stencil->stride[1] - args[3].dat->base[1] - d_m[1]);
  #ifdef OPS_GPU
  double *p_a3 = (double *)((char *)args[3].data_d + base3);
  #else
  double *p_a3 = (double *)((char *)args[3].data + base3);
  #endif

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[4].dat->d_m[d] + OPS_sub_dat_list[args[4].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[4].dat->d_m[d];
  #endif //OPS_MPI
  int base4 = dat4 * 1 * 
    (start[0] * args[4].stencil->stride[0] - args[4].dat->base[0] - d_m[0]);
  base4 = base4+ dat4 *
    args[4].dat->size[0] *
    (start[1] * args[4].stencil->stride[1] - args[4].dat->base[1] - d_m[1]);
  #ifdef OPS_GPU
  double *p_a4 = (double *)((char *)args[4].data_d + base4);
  #else
  double *p_a4 = (double *)((char *)args[4].data + base4);
  #endif

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[5].dat->d_m[d] + OPS_sub_dat_list[args[5].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[5].dat->d_m[d];
  #endif //OPS_MPI
  int base5 = dat5 * 1 * 
    (start[0] * args[5].stencil->stride[0] - args[5].dat->base[0] - d_m[0]);
  base5 = base5+ dat5 *
    args[5].dat->size[0] *
    (start[1] * args[5].stencil->stride[1] - args[5].dat->base[1] - d_m[1]);
  #ifdef OPS_GPU
  double *p_a5 = (double *)((char *)args[5].data_d + base5);
  #else
  double *p_a5 = (double *)((char *)args[5].data + base5);
  #endif

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[6].dat->d_m[d] + OPS_sub_dat_list[args[6].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[6].dat->d_m[d];
  #endif //OPS_MPI
  int base6 = dat6 * 1 * 
    (start[0] * args[6].stencil->stride[0] - args[6].dat->base[0] - d_m[0]);
  base6 = base6+ dat6 *
    args[6].dat->size[0] *
    (start[1] * args[6].stencil->stride[1] - args[6].dat->base[1] - d_m[1]);
  #ifdef OPS_GPU
  double *p_a6 = (double *)((char *)args[6].data_d + base6);
  #else
  double *p_a6 = (double *)((char *)args[6].data + base6);
  #endif

  #ifdef OPS_GPU
  int *p_a7 = (int *)args[7].data_d;
  #else
  int *p_a7 = arg7h;
  #endif

  #ifdef OPS_GPU
  ops_H_D_exchanges_device(args, 8);
  #else
  ops_H_D_exchanges_host(args, 8);
  #endif
  ops_halo_exchanges(args,8,range);

  ops_timers_core(&c1,&t1);
  OPS_kernels[50].mpi_time += t1-t2;

  update_halo_kernel1_r1_c_wrapper(
    p_a0,
    p_a1,
    p_a2,
    p_a3,
    p_a4,
    p_a5,
    p_a6,
    p_a7,
    x_size, y_size);

  ops_timers_core(&c2,&t2);
  OPS_kernels[50].time += t2-t1;
  #ifdef OPS_GPU
  ops_set_dirtybit_device(args, 8);
  #else
  ops_set_dirtybit_host(args, 8);
  #endif
  ops_set_halo_dirtybit3(&args[0],range);
  ops_set_halo_dirtybit3(&args[1],range);
  ops_set_halo_dirtybit3(&args[2],range);
  ops_set_halo_dirtybit3(&args[3],range);
  ops_set_halo_dirtybit3(&args[4],range);
  ops_set_halo_dirtybit3(&args[5],range);
  ops_set_halo_dirtybit3(&args[6],range);

  //Update kernel record
  OPS_kernels[50].transfer += ops_compute_transfer(dim, range, &arg0);
  OPS_kernels[50].transfer += ops_compute_transfer(dim, range, &arg1);
  OPS_kernels[50].transfer += ops_compute_transfer(dim, range, &arg2);
  OPS_kernels[50].transfer += ops_compute_transfer(dim, range, &arg3);
  OPS_kernels[50].transfer += ops_compute_transfer(dim, range, &arg4);
  OPS_kernels[50].transfer += ops_compute_transfer(dim, range, &arg5);
  OPS_kernels[50].transfer += ops_compute_transfer(dim, range, &arg6);
}