int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fd, unsigned char *buf, int ofs, int len) { struct jffs2_raw_inode *ri; size_t readlen; uint32_t crc; unsigned char *decomprbuf = NULL; unsigned char *readbuf = NULL; int ret = 0; ri = jffs2_alloc_raw_inode(); if (!ri) return -ENOMEM; ret = jffs2_flash_read(c, ref_offset(fd->raw), sizeof(*ri), &readlen, (char *)ri); if (ret) { jffs2_free_raw_inode(ri); pr_warn("Error reading node from 0x%08x: %d\n", ref_offset(fd->raw), ret); return ret; } if (readlen != sizeof(*ri)) { jffs2_free_raw_inode(ri); pr_warn("Short read from 0x%08x: wanted 0x%zx bytes, got 0x%zx\n", ref_offset(fd->raw), sizeof(*ri), readlen); return -EIO; } crc = crc32(0, ri, sizeof(*ri)-8); jffs2_dbg(1, "Node read from %08x: node_crc %08x, calculated CRC %08x. dsize %x, csize %x, offset %x, buf %p\n", ref_offset(fd->raw), je32_to_cpu(ri->node_crc), crc, je32_to_cpu(ri->dsize), je32_to_cpu(ri->csize), je32_to_cpu(ri->offset), buf); if (crc != je32_to_cpu(ri->node_crc)) { pr_warn("Node CRC %08x != calculated CRC %08x for node at %08x\n", je32_to_cpu(ri->node_crc), crc, ref_offset(fd->raw)); ret = -EIO; goto out_ri; } /* There was a bug where we wrote hole nodes out with csize/dsize swapped. Deal with it */ if (ri->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(ri->dsize) && je32_to_cpu(ri->csize)) { ri->dsize = ri->csize; ri->csize = cpu_to_je32(0); } D1(if(ofs + len > je32_to_cpu(ri->dsize)) { pr_warn("jffs2_read_dnode() asked for %d bytes at %d from %d-byte node\n", len, ofs, je32_to_cpu(ri->dsize)); ret = -EINVAL; goto out_ri; });
/* * Helper function for jffs2_get_inode_nodes(). * The function detects whether more data should be read and reads it if yes. * * Returns: 0 on success; * negative error code on failure. */ static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, int needed_len, int *rdlen, unsigned char *buf) { int err, to_read = needed_len - *rdlen; size_t retlen; uint32_t offs; if (jffs2_is_writebuffered(c)) { int rem = to_read % c->wbuf_pagesize; if (rem) to_read += c->wbuf_pagesize - rem; } /* We need to read more data */ offs = ref_offset(ref) + *rdlen; dbg_readinode("read more %d bytes\n", to_read); err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen); if (err) { JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", to_read, offs, err); return err; } if (retlen < to_read) { JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", offs, retlen, to_read); return -EIO; } *rdlen += to_read; return 0; }
/* * Helper function for jffs2_get_inode_nodes(). * The function detects whether more data should be read and reads it if yes. * * Returns: 0 on succes; * negative error code on failure. */ static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, int right_size, int *rdlen, unsigned char *buf, unsigned char *bufstart) { int right_len, len; uint32_t offs; if (jffs2_is_writebuffered(c)) { right_len = c->wbuf_pagesize - (bufstart - buf); if (right_size + (int)(bufstart - buf) > c->wbuf_pagesize) right_len += c->wbuf_pagesize; } else right_len = right_size; if (*rdlen == right_len) return 0; /* We need to read more data */ offs = ref_offset(ref) + *rdlen; if (jffs2_is_writebuffered(c)) { bufstart = buf + c->wbuf_pagesize; len = c->wbuf_pagesize; } else { bufstart = buf + *rdlen; len = right_size - *rdlen; } dbg_readinode("read more %d bytes\n", len); if (jffs2_flash_read_safe(c, offs, len, bufstart)) return -EIO; *rdlen = right_len; return 0; }
void jffs2_print_frag_list(struct jffs2_inode_info *f) { jffs2_print_fragtree(&f->fragtree, 0); if (f->metadata) { printk(KERN_DEBUG "metadata at 0x%08x\n", ref_offset(f->metadata->raw)); } }
/* * Helper function for jffs2_get_inode_nodes(). * It is called every time an unknown node is found. * * Returns: 0 on succes; * 1 if the node should be marked obsolete; * negative error code on failure. */ static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un, uint32_t read) { /* We don't mark unknown nodes as REF_UNCHECKED */ BUG_ON(ref_flags(ref) == REF_UNCHECKED); un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype)); if (crc32(0, un, sizeof(struct jffs2_unknown_node) - 4) != je32_to_cpu(un->hdr_crc)) { /* Hmmm. This should have been caught at scan time. */ JFFS2_NOTICE("node header CRC failed at %#08x. But it must have been OK earlier.\n", ref_offset(ref)); jffs2_dbg_dump_node(c, ref_offset(ref)); return 1; } else { switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) { case JFFS2_FEATURE_INCOMPAT: JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n", je16_to_cpu(un->nodetype), ref_offset(ref)); /* EEP */ BUG(); break; case JFFS2_FEATURE_ROCOMPAT: JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n", je16_to_cpu(un->nodetype), ref_offset(ref)); BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO)); break; case JFFS2_FEATURE_RWCOMPAT_COPY: JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n", je16_to_cpu(un->nodetype), ref_offset(ref)); break; case JFFS2_FEATURE_RWCOMPAT_DELETE: JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n", je16_to_cpu(un->nodetype), ref_offset(ref)); return 1; } } return 0; }
/* * Helper function for jffs2_get_inode_nodes(). * It is called every time an unknown node is found. * * Returns: 0 on success; * negative error code on failure. */ static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un) { /* We don't mark unknown nodes as REF_UNCHECKED */ if (ref_flags(ref) == REF_UNCHECKED) { JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n", ref_offset(ref)); JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n", je16_to_cpu(un->magic), je16_to_cpu(un->nodetype), je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc)); jffs2_mark_node_obsolete(c, ref); return 0; } un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype)); switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) { case JFFS2_FEATURE_INCOMPAT: JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n", je16_to_cpu(un->nodetype), ref_offset(ref)); /* EEP */ BUG(); break; case JFFS2_FEATURE_ROCOMPAT: JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n", je16_to_cpu(un->nodetype), ref_offset(ref)); BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO)); break; case JFFS2_FEATURE_RWCOMPAT_COPY: JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n", je16_to_cpu(un->nodetype), ref_offset(ref)); break; case JFFS2_FEATURE_RWCOMPAT_DELETE: JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n", je16_to_cpu(un->nodetype), ref_offset(ref)); jffs2_mark_node_obsolete(c, ref); return 0; } return 0; }
/* Returns first valid node after 'ref'. May return 'ref' */ static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref) { while (ref && ref->next_in_ino) { if (!ref_obsolete(ref)) return ref; dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref)); ref = ref->next_in_ino; } return NULL; }
/* * Helper function for jffs2_get_inode_nodes(). * The function detects whether more data should be read and reads it if yes. * * Returns: 0 on succes; * negative error code on failure. */ static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, int right_size, int *rdlen, unsigned char *buf, unsigned char *bufstart) { int right_len, err, len; size_t retlen; uint32_t offs; if (jffs2_is_writebuffered(c)) { right_len = c->wbuf_pagesize - (bufstart - buf); if (right_size + (int)(bufstart - buf) > c->wbuf_pagesize) right_len += c->wbuf_pagesize; } else right_len = right_size; if (*rdlen == right_len) return 0; /* We need to read more data */ offs = ref_offset(ref) + *rdlen; if (jffs2_is_writebuffered(c)) { bufstart = buf + c->wbuf_pagesize; len = c->wbuf_pagesize; } else { bufstart = buf + *rdlen; len = right_size - *rdlen; } dbg_readinode("read more %d bytes\n", len); err = jffs2_flash_read(c, offs, len, &retlen, bufstart); if (err) { JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, offs, err); return err; } if (retlen < len) { JFFS2_ERROR("short read at %#08x: %d instead of %d.\n", offs, retlen, len); return -EIO; } *rdlen = right_len; return 0; }
/* * Helper function for jffs2_add_older_frag_to_fragtree(). * * Checks the node if we are in the checking stage. */ static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) { int ret; BUG_ON(ref_obsolete(tn->fn->raw)); /* We only check the data CRC of unchecked nodes */ if (ref_flags(tn->fn->raw) != REF_UNCHECKED) return 0; dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n", tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw)); ret = check_node_data(c, tn); if (unlikely(ret < 0)) { JFFS2_ERROR("check_node_data() returned error: %d.\n", ret); } else if (unlikely(ret > 0)) { dbg_readinode("CRC error, mark it obsolete.\n"); jffs2_mark_node_obsolete(c, tn->fn->raw); } return ret; }
static void jffs2_print_fragtree(struct rb_root *list, int permitbug) { struct jffs2_node_frag *this = frag_first(list); uint32_t lastofs = 0; int buggy = 0; while(this) { if (this->node) printk(KERN_DEBUG "frag %04x-%04x: 0x%08x(%d) on flash (*%p). left (%p), right (%p), parent (%p)\n", this->ofs, this->ofs+this->size, ref_offset(this->node->raw), ref_flags(this->node->raw), this, frag_left(this), frag_right(this), frag_parent(this)); else printk(KERN_DEBUG "frag %04x-%04x: hole (*%p). left (%p} right (%p), parent (%p)\n", this->ofs, this->ofs+this->size, this, frag_left(this), frag_right(this), frag_parent(this)); if (this->ofs != lastofs) buggy = 1; lastofs = this->ofs+this->size; this = frag_next(this); } if (buggy && !permitbug) { printk(KERN_CRIT "Frag tree got a hole in it\n"); BUG(); } }
static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *latest_node) { struct jffs2_tmp_dnode_info *tn; struct rb_root tn_list; struct rb_node *rb, *repl_rb; struct jffs2_full_dirent *fd_list; struct jffs2_full_dnode *fn, *first_fn = NULL; uint32_t crc; uint32_t latest_mctime, mctime_ver; size_t retlen; int ret; dbg_readinode("ino #%u nlink is %d\n", f->inocache->ino, f->inocache->nlink); /* Grab all nodes relevant to this ino */ ret = jffs2_get_inode_nodes(c, f, &tn_list, &fd_list, &f->highest_version, &latest_mctime, &mctime_ver); if (ret) { JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret); if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); return ret; } f->dents = fd_list; rb = rb_first(&tn_list); while (rb) { cond_resched(); tn = rb_entry(rb, struct jffs2_tmp_dnode_info, rb); fn = tn->fn; ret = 1; dbg_readinode("consider node ver %u, phys offset " "%#08x(%d), range %u-%u.\n", tn->version, ref_offset(fn->raw), ref_flags(fn->raw), fn->ofs, fn->ofs + fn->size); if (fn->size) { ret = jffs2_add_older_frag_to_fragtree(c, f, tn); /* TODO: the error code isn't checked, check it */ jffs2_dbg_fragtree_paranoia_check_nolock(f); BUG_ON(ret < 0); if (!first_fn && ret == 0) first_fn = fn; } else if (!first_fn) { first_fn = fn; f->metadata = fn; ret = 0; /* Prevent freeing the metadata update node */ } else jffs2_mark_node_obsolete(c, fn->raw); BUG_ON(rb->rb_left); if (rb->rb_parent && rb->rb_parent->rb_left == rb) { /* We were then left-hand child of our parent. We need * to move our own right-hand child into our place. */ repl_rb = rb->rb_right; if (repl_rb) repl_rb->rb_parent = rb->rb_parent; } else repl_rb = NULL; rb = rb_next(rb); /* Remove the spent tn from the tree; don't bother rebalancing * but put our right-hand child in our own place. */ if (tn->rb.rb_parent) { if (tn->rb.rb_parent->rb_left == &tn->rb) tn->rb.rb_parent->rb_left = repl_rb; else if (tn->rb.rb_parent->rb_right == &tn->rb) tn->rb.rb_parent->rb_right = repl_rb; else BUG(); } else if (tn->rb.rb_right) tn->rb.rb_right->rb_parent = NULL; jffs2_free_tmp_dnode_info(tn); if (ret) { dbg_readinode("delete dnode %u-%u.\n", fn->ofs, fn->ofs + fn->size); jffs2_free_full_dnode(fn); } } jffs2_dbg_fragtree_paranoia_check_nolock(f); BUG_ON(first_fn && ref_obsolete(first_fn->raw)); fn = first_fn; if (unlikely(!first_fn)) { /* No data nodes for this inode. */ if (f->inocache->ino != 1) { JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino); if (!fd_list) { if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); return -EIO; } JFFS2_NOTICE("but it has children so we fake some modes for it\n"); } latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO); latest_node->version = cpu_to_je32(0); latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0); latest_node->isize = cpu_to_je32(0); latest_node->gid = cpu_to_je16(0); latest_node->uid = cpu_to_je16(0); if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); return 0; } ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(*latest_node), &retlen, (void *)latest_node); if (ret || retlen != sizeof(*latest_node)) { JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n", ret, retlen, sizeof(*latest_node)); /* FIXME: If this fails, there seems to be a memory leak. Find it. */ up(&f->sem); jffs2_do_clear_inode(c, f); return ret?ret:-EIO; } crc = crc32(0, latest_node, sizeof(*latest_node)-8); if (crc != je32_to_cpu(latest_node->node_crc)) { JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n", f->inocache->ino, ref_offset(fn->raw)); up(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } switch(jemode_to_cpu(latest_node->mode) & S_IFMT) { case S_IFDIR: if (mctime_ver > je32_to_cpu(latest_node->version)) { /* The times in the latest_node are actually older than mctime in the latest dirent. Cheat. */ latest_node->ctime = latest_node->mtime = cpu_to_je32(latest_mctime); } break; case S_IFREG: /* If it was a regular file, truncate it to the latest node's isize */ jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize)); break; case S_IFLNK: /* Hack to work around broken isize in old symlink code. Remove this when dwmw2 comes to his senses and stops symlinks from being an entirely gratuitous special case. */ if (!je32_to_cpu(latest_node->isize)) latest_node->isize = latest_node->dsize; if (f->inocache->state != INO_STATE_CHECKING) { /* Symlink's inode data is the target path. Read it and * keep in RAM to facilitate quick follow symlink * operation. */ f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL); if (!f->target) { JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize)); up(&f->sem); jffs2_do_clear_inode(c, f); return -ENOMEM; } ret = jffs2_flash_read(c, ref_offset(fn->raw) + sizeof(*latest_node), je32_to_cpu(latest_node->csize), &retlen, (char *)f->target); if (ret || retlen != je32_to_cpu(latest_node->csize)) { if (retlen != je32_to_cpu(latest_node->csize)) ret = -EIO; kfree(f->target); f->target = NULL; up(&f->sem); jffs2_do_clear_inode(c, f); return -ret; } f->target[je32_to_cpu(latest_node->csize)] = '\0'; dbg_readinode("symlink's target '%s' cached\n", f->target); } /* fall through... */ case S_IFBLK: case S_IFCHR: /* Certain inode types should have only one data node, and it's kept as the metadata node */ if (f->metadata) { JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n", f->inocache->ino, jemode_to_cpu(latest_node->mode)); up(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } if (!frag_first(&f->fragtree)) { JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n", f->inocache->ino, jemode_to_cpu(latest_node->mode)); up(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } /* ASSERT: f->fraglist != NULL */ if (frag_next(frag_first(&f->fragtree))) { JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n", f->inocache->ino, jemode_to_cpu(latest_node->mode)); /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */ up(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } /* OK. We're happy */ f->metadata = frag_first(&f->fragtree)->node; jffs2_free_node_frag(frag_first(&f->fragtree)); f->fragtree = RB_ROOT; break; } if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); return 0; }
static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *latest_node) { struct jffs2_readinode_info rii; uint32_t crc, new_size; size_t retlen; int ret; dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino, f->inocache->pino_nlink); memset(&rii, 0, sizeof(rii)); /* Grab all nodes relevant to this ino */ ret = jffs2_get_inode_nodes(c, f, &rii); if (ret) { JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret); if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); return ret; } ret = jffs2_build_inode_fragtree(c, f, &rii); if (ret) { JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n", f->inocache->ino, ret); if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); jffs2_free_tmp_dnode_info_list(&rii.tn_root); /* FIXME: We could at least crc-check them all */ if (rii.mdata_tn) { jffs2_free_full_dnode(rii.mdata_tn->fn); jffs2_free_tmp_dnode_info(rii.mdata_tn); rii.mdata_tn = NULL; } return ret; } if (rii.mdata_tn) { if (rii.mdata_tn->fn->raw == rii.latest_ref) { f->metadata = rii.mdata_tn->fn; jffs2_free_tmp_dnode_info(rii.mdata_tn); } else { jffs2_kill_tn(c, rii.mdata_tn); } rii.mdata_tn = NULL; } f->dents = rii.fds; jffs2_dbg_fragtree_paranoia_check_nolock(f); if (unlikely(!rii.latest_ref)) { /* No data nodes for this inode. */ if (f->inocache->ino != 1) { JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino); if (!rii.fds) { if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); return -EIO; } JFFS2_NOTICE("but it has children so we fake some modes for it\n"); } latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO); latest_node->version = cpu_to_je32(0); latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0); latest_node->isize = cpu_to_je32(0); latest_node->gid = cpu_to_je16(0); latest_node->uid = cpu_to_je16(0); if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); return 0; } ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node); if (ret || retlen != sizeof(*latest_node)) { JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n", ret, retlen, sizeof(*latest_node)); /* FIXME: If this fails, there seems to be a memory leak. Find it. */ mutex_unlock(&f->sem); jffs2_do_clear_inode(c, f); return ret?ret:-EIO; } crc = crc32(0, latest_node, sizeof(*latest_node)-8); if (crc != je32_to_cpu(latest_node->node_crc)) { JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n", f->inocache->ino, ref_offset(rii.latest_ref)); mutex_unlock(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } switch(jemode_to_cpu(latest_node->mode) & S_IFMT) { case S_IFDIR: if (rii.mctime_ver > je32_to_cpu(latest_node->version)) { /* The times in the latest_node are actually older than mctime in the latest dirent. Cheat. */ latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime); } break; case S_IFREG: /* If it was a regular file, truncate it to the latest node's isize */ new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize)); if (new_size != je32_to_cpu(latest_node->isize)) { JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n", f->inocache->ino, je32_to_cpu(latest_node->isize), new_size); latest_node->isize = cpu_to_je32(new_size); } break; case S_IFLNK: /* Hack to work around broken isize in old symlink code. Remove this when dwmw2 comes to his senses and stops symlinks from being an entirely gratuitous special case. */ if (!je32_to_cpu(latest_node->isize)) latest_node->isize = latest_node->dsize; if (f->inocache->state != INO_STATE_CHECKING) { /* Symlink's inode data is the target path. Read it and * keep in RAM to facilitate quick follow symlink * operation. */ f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL); if (!f->target) { JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize)); mutex_unlock(&f->sem); jffs2_do_clear_inode(c, f); return -ENOMEM; } ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node), je32_to_cpu(latest_node->csize), &retlen, (char *)f->target); if (ret || retlen != je32_to_cpu(latest_node->csize)) { if (retlen != je32_to_cpu(latest_node->csize)) ret = -EIO; kfree(f->target); f->target = NULL; mutex_unlock(&f->sem); jffs2_do_clear_inode(c, f); return ret; } f->target[je32_to_cpu(latest_node->csize)] = '\0'; dbg_readinode("symlink's target '%s' cached\n", f->target); } /* fall through... */ case S_IFBLK: case S_IFCHR: /* Certain inode types should have only one data node, and it's kept as the metadata node */ if (f->metadata) { JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n", f->inocache->ino, jemode_to_cpu(latest_node->mode)); mutex_unlock(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } if (!frag_first(&f->fragtree)) { JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n", f->inocache->ino, jemode_to_cpu(latest_node->mode)); mutex_unlock(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } /* ASSERT: f->fraglist != NULL */ if (frag_next(frag_first(&f->fragtree))) { JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n", f->inocache->ino, jemode_to_cpu(latest_node->mode)); /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */ mutex_unlock(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } /* OK. We're happy */ f->metadata = frag_first(&f->fragtree)->node; jffs2_free_node_frag(frag_first(&f->fragtree)); f->fragtree = RB_ROOT; break; } if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); return 0; }
/* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated with this ino, returning the former in order of version */ static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct rb_root *tnp, struct jffs2_full_dirent **fdp, uint32_t *highest_version, uint32_t *latest_mctime, uint32_t *mctime_ver) { struct jffs2_raw_node_ref *ref, *valid_ref; struct rb_root ret_tn = RB_ROOT; struct jffs2_full_dirent *ret_fd = NULL; unsigned char *buf = NULL; union jffs2_node_union *node; size_t retlen; int len, err; *mctime_ver = 0; dbg_readinode("ino #%u\n", f->inocache->ino); if (jffs2_is_writebuffered(c)) { /* * If we have the write buffer, we assume the minimal I/O unit * is c->wbuf_pagesize. We implement some optimizations which in * this case and we need a temporary buffer of size = * 2*c->wbuf_pagesize bytes (see comments in read_dnode()). * Basically, we want to read not only the node header, but the * whole wbuf (NAND page in case of NAND) or 2, if the node * header overlaps the border between the 2 wbufs. */ len = 2*c->wbuf_pagesize; } else { /* * When there is no write buffer, the size of the temporary * buffer is the size of the larges node header. */ len = sizeof(union jffs2_node_union); } /* FIXME: in case of NOR and available ->point() this * needs to be fixed. */ buf = kmalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; spin_lock(&c->erase_completion_lock); valid_ref = jffs2_first_valid_node(f->inocache->nodes); if (!valid_ref && f->inocache->ino != 1) JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino); while (valid_ref) { unsigned char *bufstart; /* We can hold a pointer to a non-obsolete node without the spinlock, but _obsolete_ nodes may disappear at any time, if the block they're in gets erased. So if we mark 'ref' obsolete while we're not holding the lock, it can go away immediately. For that reason, we find the next valid node first, before processing 'ref'. */ ref = valid_ref; valid_ref = jffs2_first_valid_node(ref->next_in_ino); spin_unlock(&c->erase_completion_lock); cond_resched(); /* * At this point we don't know the type of the node we're going * to read, so we do not know the size of its header. In order * to minimize the amount of flash IO we assume the node has * size = JFFS2_MIN_NODE_HEADER. */ if (jffs2_is_writebuffered(c)) { /* * We treat 'buf' as 2 adjacent wbufs. We want to * adjust bufstart such as it points to the * beginning of the node within this wbuf. */ bufstart = buf + (ref_offset(ref) % c->wbuf_pagesize); /* We will read either one wbuf or 2 wbufs. */ len = c->wbuf_pagesize - (bufstart - buf); if (JFFS2_MIN_NODE_HEADER + (int)(bufstart - buf) > c->wbuf_pagesize) { /* The header spans the border of the first wbuf */ len += c->wbuf_pagesize; } } else { bufstart = buf; len = JFFS2_MIN_NODE_HEADER; } dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref)); /* FIXME: point() */ err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, bufstart); if (err) { JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err); goto free_out; } if (retlen < len) { JFFS2_ERROR("short read at %#08x: %d instead of %d.\n", ref_offset(ref), retlen, len); err = -EIO; goto free_out; } node = (union jffs2_node_union *)bufstart; switch (je16_to_cpu(node->u.nodetype)) { case JFFS2_NODETYPE_DIRENT: if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent)) { err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf, bufstart); if (unlikely(err)) goto free_out; } err = read_direntry(c, ref, &node->d, retlen, &ret_fd, latest_mctime, mctime_ver); if (err == 1) { jffs2_mark_node_obsolete(c, ref); break; } else if (unlikely(err)) goto free_out; if (je32_to_cpu(node->d.version) > *highest_version) *highest_version = je32_to_cpu(node->d.version); break; case JFFS2_NODETYPE_INODE: if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode)) { err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf, bufstart); if (unlikely(err)) goto free_out; } err = read_dnode(c, ref, &node->i, &ret_tn, len, latest_mctime, mctime_ver); if (err == 1) { jffs2_mark_node_obsolete(c, ref); break; } else if (unlikely(err)) goto free_out; if (je32_to_cpu(node->i.version) > *highest_version) *highest_version = je32_to_cpu(node->i.version); break; default: if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node)) { err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf, bufstart); if (unlikely(err)) goto free_out; } err = read_unknown(c, ref, &node->u); if (err == 1) { jffs2_mark_node_obsolete(c, ref); break; } else if (unlikely(err)) goto free_out; } spin_lock(&c->erase_completion_lock); } spin_unlock(&c->erase_completion_lock); *tnp = ret_tn; *fdp = ret_fd; kfree(buf); dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n", f->inocache->ino, *highest_version, *latest_mctime, *mctime_ver); return 0; free_out: jffs2_free_tmp_dnode_info_list(&ret_tn); jffs2_free_full_dirent_list(ret_fd); kfree(buf); return err; }
/* * Helper function for jffs2_get_inode_nodes(). * It is called every time an directory entry node is found. * * Returns: 0 on succes; * 1 if the node should be marked obsolete; * negative error code on failure. */ static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_raw_dirent *rd, size_t read, struct jffs2_full_dirent **fdp, uint32_t *latest_mctime, uint32_t *mctime_ver) { struct jffs2_full_dirent *fd; /* The direntry nodes are checked during the flash scanning */ BUG_ON(ref_flags(ref) == REF_UNCHECKED); /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ BUG_ON(ref_obsolete(ref)); /* Sanity check */ if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) { JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n", ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen)); return 1; } fd = jffs2_alloc_full_dirent(rd->nsize + 1); if (unlikely(!fd)) return -ENOMEM; fd->raw = ref; fd->version = je32_to_cpu(rd->version); fd->ino = je32_to_cpu(rd->ino); fd->type = rd->type; /* Pick out the mctime of the latest dirent */ if(fd->version > *mctime_ver && je32_to_cpu(rd->mctime)) { *mctime_ver = fd->version; *latest_mctime = je32_to_cpu(rd->mctime); } /* * Copy as much of the name as possible from the raw * dirent we've already read from the flash. */ if (read > sizeof(*rd)) memcpy(&fd->name[0], &rd->name[0], min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) )); /* Do we need to copy any more of the name directly from the flash? */ if (rd->nsize + sizeof(*rd) > read) { /* FIXME: point() */ int err; int already = read - sizeof(*rd); err = jffs2_flash_read(c, (ref_offset(ref)) + read, rd->nsize - already, &read, &fd->name[already]); if (unlikely(read != rd->nsize - already) && likely(!err)) return -EIO; if (unlikely(err)) { JFFS2_ERROR("read remainder of name: error %d\n", err); jffs2_free_full_dirent(fd); return -EIO; } } fd->nhash = full_name_hash(fd->name, rd->nsize); fd->next = NULL; fd->name[rd->nsize] = '\0'; /* * Wheee. We now have a complete jffs2_full_dirent structure, with * the name in it and everything. Link it into the list */ jffs2_add_fd_to_list(c, fd, fdp); return 0; }
/* * Helper function for jffs2_get_inode_nodes(). * It is called every time an inode node is found. * * Returns: 0 on succes; * 1 if the node should be marked obsolete; * negative error code on failure. */ static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_raw_inode *rd, struct rb_root *tnp, int rdlen, uint32_t *latest_mctime, uint32_t *mctime_ver) { struct jffs2_tmp_dnode_info *tn; uint32_t len, csize; int ret = 1; /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ BUG_ON(ref_obsolete(ref)); tn = jffs2_alloc_tmp_dnode_info(); if (!tn) { JFFS2_ERROR("failed to allocate tn (%d bytes).\n", sizeof(*tn)); return -ENOMEM; } tn->partial_crc = 0; csize = je32_to_cpu(rd->csize); /* If we've never checked the CRCs on this node, check them now */ if (ref_flags(ref) == REF_UNCHECKED) { uint32_t crc; crc = crc32(0, rd, sizeof(*rd) - 8); if (unlikely(crc != je32_to_cpu(rd->node_crc))) { JFFS2_NOTICE("header CRC failed on node at %#08x: read %#08x, calculated %#08x\n", ref_offset(ref), je32_to_cpu(rd->node_crc), crc); goto free_out; } /* Sanity checks */ if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) || unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) { JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref)); jffs2_dbg_dump_node(c, ref_offset(ref)); goto free_out; } if (jffs2_is_writebuffered(c) && csize != 0) { /* At this point we are supposed to check the data CRC * of our unchecked node. But thus far, we do not * know whether the node is valid or obsolete. To * figure this out, we need to walk all the nodes of * the inode and build the inode fragtree. We don't * want to spend time checking data of nodes which may * later be found to be obsolete. So we put off the full * data CRC checking until we have read all the inode * nodes and have started building the fragtree. * * The fragtree is being built starting with nodes * having the highest version number, so we'll be able * to detect whether a node is valid (i.e., it is not * overlapped by a node with higher version) or not. * And we'll be able to check only those nodes, which * are not obsolete. * * Of course, this optimization only makes sense in case * of NAND flashes (or other flashes whith * !jffs2_can_mark_obsolete()), since on NOR flashes * nodes are marked obsolete physically. * * Since NAND flashes (or other flashes with * jffs2_is_writebuffered(c)) are anyway read by * fractions of c->wbuf_pagesize, and we have just read * the node header, it is likely that the starting part * of the node data is also read when we read the * header. So we don't mind to check the CRC of the * starting part of the data of the node now, and check * the second part later (in jffs2_check_node_data()). * Of course, we will not need to re-read and re-check * the NAND page which we have just read. This is why we * read the whole NAND page at jffs2_get_inode_nodes(), * while we needed only the node header. */ unsigned char *buf; /* 'buf' will point to the start of data */ buf = (unsigned char *)rd + sizeof(*rd); /* len will be the read data length */ len = min_t(uint32_t, rdlen - sizeof(*rd), csize); tn->partial_crc = crc32(0, buf, len); dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize); /* If we actually calculated the whole data CRC * and it is wrong, drop the node. */ if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) { JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n", ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc)); goto free_out; } } else if (csize == 0) { /* * We checked the header CRC. If the node has no data, adjust * the space accounting now. For other nodes this will be done * later either when the node is marked obsolete or when its * data is checked. */ struct jffs2_eraseblock *jeb; dbg_readinode("the node has no data.\n"); jeb = &c->blocks[ref->flash_offset / c->sector_size]; len = ref_totlen(c, jeb, ref); spin_lock(&c->erase_completion_lock); jeb->used_size += len; jeb->unchecked_size -= len; c->used_size += len; c->unchecked_size -= len; ref->flash_offset = ref_offset(ref) | REF_NORMAL; spin_unlock(&c->erase_completion_lock); } } tn->fn = jffs2_alloc_full_dnode(); if (!tn->fn) { JFFS2_ERROR("alloc fn failed\n"); ret = -ENOMEM; goto free_out; } tn->version = je32_to_cpu(rd->version); tn->fn->ofs = je32_to_cpu(rd->offset); tn->data_crc = je32_to_cpu(rd->data_crc); tn->csize = csize; tn->fn->raw = ref; /* There was a bug where we wrote hole nodes out with csize/dsize swapped. Deal with it */ if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize) tn->fn->size = csize; else // normal case... tn->fn->size = je32_to_cpu(rd->dsize); dbg_readinode("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n", ref_offset(ref), je32_to_cpu(rd->version), je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize); jffs2_add_tn_to_tree(tn, tnp); return 0; free_out: jffs2_free_tmp_dnode_info(tn); return ret; }
static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct rb_root *tnp, struct jffs2_full_dirent **fdp, uint32_t *highest_version, uint32_t *latest_mctime, uint32_t *mctime_ver) { struct jffs2_raw_node_ref *ref, *valid_ref; struct rb_root ret_tn = RB_ROOT; struct jffs2_full_dirent *ret_fd = NULL; union jffs2_node_union node; size_t retlen; int err; *mctime_ver = 0; JFFS2_DBG_READINODE("ino #%u\n", f->inocache->ino); spin_lock(&c->erase_completion_lock); valid_ref = jffs2_first_valid_node(f->inocache->nodes); if (!valid_ref && (f->inocache->ino != 1)) JFFS2_WARNING("no valid nodes for ino #%u\n", f->inocache->ino); while (valid_ref) { /* We can hold a pointer to a non-obsolete node without the spinlock, but _obsolete_ nodes may disappear at any time, if the block they're in gets erased. So if we mark 'ref' obsolete while we're not holding the lock, it can go away immediately. For that reason, we find the next valid node first, before processing 'ref'. */ ref = valid_ref; valid_ref = jffs2_first_valid_node(ref->next_in_ino); spin_unlock(&c->erase_completion_lock); cond_resched(); /* FIXME: point() */ err = jffs2_flash_read(c, (ref_offset(ref)), min_t(uint32_t, ref_totlen(c, NULL, ref), sizeof(node)), &retlen, (void *)&node); if (err) { JFFS2_ERROR("error %d reading node at 0x%08x in get_inode_nodes()\n", err, ref_offset(ref)); goto free_out; } switch (je16_to_cpu(node.u.nodetype)) { case JFFS2_NODETYPE_DIRENT: JFFS2_DBG_READINODE("node at %08x (%d) is a dirent node\n", ref_offset(ref), ref_flags(ref)); if (retlen < sizeof(node.d)) { JFFS2_ERROR("short read dirent at %#08x\n", ref_offset(ref)); err = -EIO; goto free_out; } err = read_direntry(c, ref, &node.d, retlen, &ret_fd, (int32_t *)latest_mctime, mctime_ver); if (err == 1) { jffs2_mark_node_obsolete(c, ref); break; } else if (unlikely(err)) goto free_out; if (je32_to_cpu(node.d.version) > *highest_version) *highest_version = je32_to_cpu(node.d.version); break; case JFFS2_NODETYPE_INODE: JFFS2_DBG_READINODE("node at %08x (%d) is a data node\n", ref_offset(ref), ref_flags(ref)); if (retlen < sizeof(node.i)) { JFFS2_ERROR("short read dnode at %#08x\n", ref_offset(ref)); err = -EIO; goto free_out; } err = read_dnode(c, ref, &node.i, retlen, &ret_tn, (int32_t *)latest_mctime, mctime_ver); if (err == 1) { jffs2_mark_node_obsolete(c, ref); break; } else if (unlikely(err)) goto free_out; if (je32_to_cpu(node.i.version) > *highest_version) *highest_version = je32_to_cpu(node.i.version); JFFS2_DBG_READINODE("version %d, highest_version now %d\n", je32_to_cpu(node.i.version), *highest_version); break; default: /* Check we've managed to read at least the common node header */ if (retlen < sizeof(struct jffs2_unknown_node)) { JFFS2_ERROR("short read unknown node at %#08x\n", ref_offset(ref)); return -EIO; } err = read_unknown(c, ref, &node.u, retlen); if (err == 1) { jffs2_mark_node_obsolete(c, ref); break; } else if (unlikely(err)) goto free_out; } spin_lock(&c->erase_completion_lock); } spin_unlock(&c->erase_completion_lock); *tnp = ret_tn; *fdp = ret_fd; return 0; free_out: jffs2_free_tmp_dnode_info_list(&ret_tn); jffs2_free_full_dirent_list(ret_fd); return err; }
/* * This function is used when we read an inode. Data nodes arrive in * arbitrary order -- they may be older or newer than the nodes which * are already in the tree. Where overlaps occur, the older node can * be discarded as long as the newer passes the CRC check. We don't * bother to keep track of holes in this rbtree, and neither do we deal * with frags -- we can have multiple entries starting at the same * offset, and the one with the smallest length will come first in the * ordering. * * Returns 0 if the node was handled (including marking it obsolete) * < 0 an if error occurred */ static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c, struct jffs2_readinode_info *rii, struct jffs2_tmp_dnode_info *tn) { uint32_t fn_end = tn->fn->ofs + tn->fn->size; struct jffs2_tmp_dnode_info *this, *ptn; dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw)); /* If a node has zero dsize, we only have to keep if it if it might be the node with highest version -- i.e. the one which will end up as f->metadata. Note that such nodes won't be REF_UNCHECKED since there are no data to check anyway. */ if (!tn->fn->size) { if (rii->mdata_tn) { if (rii->mdata_tn->version < tn->version) { /* We had a candidate mdata node already */ dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version); jffs2_kill_tn(c, rii->mdata_tn); } else { dbg_readinode("kill new mdata with ver %d (older than existing %d\n", tn->version, rii->mdata_tn->version); jffs2_kill_tn(c, tn); return 0; } } rii->mdata_tn = tn; dbg_readinode("keep new mdata with ver %d\n", tn->version); return 0; } /* Find the earliest node which _may_ be relevant to this one */ this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs); if (this) { /* If the node is coincident with another at a lower address, back up until the other node is found. It may be relevant */ while (this->overlapped) { ptn = tn_prev(this); if (!ptn) { /* * We killed a node which set the overlapped * flags during the scan. Fix it up. */ this->overlapped = 0; break; } this = ptn; } dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole"); } while (this) { if (this->fn->ofs > fn_end) break; dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n", this->version, this->fn->ofs, this->fn->size); if (this->version == tn->version) { /* Version number collision means REF_PRISTINE GC. Accept either of them as long as the CRC is correct. Check the one we have already... */ if (!check_tn_node(c, this)) { /* The one we already had was OK. Keep it and throw away the new one */ dbg_readinode("Like old node. Throw away new\n"); jffs2_kill_tn(c, tn); return 0; } else { /* Who cares if the new one is good; keep it for now anyway. */ dbg_readinode("Like new node. Throw away old\n"); rb_replace_node(&this->rb, &tn->rb, &rii->tn_root); jffs2_kill_tn(c, this); /* Same overlapping from in front and behind */ return 0; } } if (this->version < tn->version && this->fn->ofs >= tn->fn->ofs && this->fn->ofs + this->fn->size <= fn_end) { /* New node entirely overlaps 'this' */ if (check_tn_node(c, tn)) { dbg_readinode("new node bad CRC\n"); jffs2_kill_tn(c, tn); return 0; } /* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */ while (this && this->fn->ofs + this->fn->size <= fn_end) { struct jffs2_tmp_dnode_info *next = tn_next(this); if (this->version < tn->version) { tn_erase(this, &rii->tn_root); dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n", this->version, this->fn->ofs, this->fn->ofs+this->fn->size); jffs2_kill_tn(c, this); } this = next; } dbg_readinode("Done killing overlapped nodes\n"); continue; } if (this->version > tn->version && this->fn->ofs <= tn->fn->ofs && this->fn->ofs+this->fn->size >= fn_end) { /* New node entirely overlapped by 'this' */ if (!check_tn_node(c, this)) { dbg_readinode("Good CRC on old node. Kill new\n"); jffs2_kill_tn(c, tn); return 0; } /* ... but 'this' was bad. Replace it... */ dbg_readinode("Bad CRC on old overlapping node. Kill it\n"); tn_erase(this, &rii->tn_root); jffs2_kill_tn(c, this); break; } this = tn_next(this); } /* We neither completely obsoleted nor were completely obsoleted by an earlier node. Insert into the tree */ { struct rb_node *parent; struct rb_node **link = &rii->tn_root.rb_node; struct jffs2_tmp_dnode_info *insert_point = NULL; while (*link) { parent = *link; insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb); if (tn->fn->ofs > insert_point->fn->ofs) link = &insert_point->rb.rb_right; else if (tn->fn->ofs < insert_point->fn->ofs || tn->fn->size < insert_point->fn->size) link = &insert_point->rb.rb_left; else link = &insert_point->rb.rb_right; } rb_link_node(&tn->rb, &insert_point->rb, link); rb_insert_color(&tn->rb, &rii->tn_root); } /* If there's anything behind that overlaps us, note it */ this = tn_prev(tn); if (this) { while (1) { if (this->fn->ofs + this->fn->size > tn->fn->ofs) { dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n", this, this->version, this->fn->ofs, this->fn->ofs+this->fn->size); tn->overlapped = 1; break; } if (!this->overlapped) break; ptn = tn_prev(this); if (!ptn) { /* * We killed a node which set the overlapped * flags during the scan. Fix it up. */ this->overlapped = 0; break; } this = ptn; } } /* If the new node overlaps anything ahead, note it */ this = tn_next(tn); while (this && this->fn->ofs < fn_end) { this->overlapped = 1; dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n", this->version, this->fn->ofs, this->fn->ofs+this->fn->size); this = tn_next(this); } return 0; }
/* * Helper function for jffs2_get_inode_nodes(). * It is called every time an inode node is found. * * Returns: 0 on succes; * 1 if the node should be marked obsolete; * negative error code on failure. */ static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_raw_inode *rd, uint32_t read, struct rb_root *tnp, int32_t *latest_mctime, uint32_t *mctime_ver) { struct jffs2_eraseblock *jeb; struct jffs2_tmp_dnode_info *tn; /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ BUG_ON(ref_obsolete(ref)); /* If we've never checked the CRCs on this node, check them now */ if (ref_flags(ref) == REF_UNCHECKED) { uint32_t crc, len; crc = crc32(0, rd, sizeof(*rd) - 8); if (unlikely(crc != je32_to_cpu(rd->node_crc))) { JFFS2_NOTICE("header CRC failed on node at %#08x: read %#08x, calculated %#08x\n", ref_offset(ref), je32_to_cpu(rd->node_crc), crc); return 1; } /* Sanity checks */ if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) || unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) { JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref)); jffs2_dbg_dump_node(c, ref_offset(ref)); return 1; } if (rd->compr != JFFS2_COMPR_ZERO && je32_to_cpu(rd->csize)) { unsigned char *buf = NULL; uint32_t pointed = 0; int err; #ifndef __ECOS if (c->mtd->point) { err = c->mtd->point (c->mtd, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize), &read, &buf); if (unlikely(read < je32_to_cpu(rd->csize)) && likely(!err)) { JFFS2_ERROR("MTD point returned len too short: 0x%zx\n", read); c->mtd->unpoint(c->mtd, buf, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize)); } else if (unlikely(err)){ JFFS2_ERROR("MTD point failed %d\n", err); } else pointed = 1; /* succefully pointed to device */ } #endif if(!pointed){ buf = kmalloc(je32_to_cpu(rd->csize), GFP_KERNEL); if (!buf) return -ENOMEM; err = jffs2_flash_read(c, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize), &read, buf); if (unlikely(read != je32_to_cpu(rd->csize)) && likely(!err)) err = -EIO; if (err) { kfree(buf); return err; } } crc = crc32(0, buf, je32_to_cpu(rd->csize)); if(!pointed) kfree(buf); #ifndef __ECOS else c->mtd->unpoint(c->mtd, buf, ref_offset(ref) + sizeof(*rd), je32_to_cpu(rd->csize)); #endif if (crc != je32_to_cpu(rd->data_crc)) { JFFS2_NOTICE("data CRC failed on node at %#08x: read %#08x, calculated %#08x\n", ref_offset(ref), je32_to_cpu(rd->data_crc), crc); return 1; } } /* Mark the node as having been checked and fix the accounting accordingly */ jeb = &c->blocks[ref->flash_offset / c->sector_size]; len = ref_totlen(c, jeb, ref); spin_lock(&c->erase_completion_lock); jeb->used_size += len; jeb->unchecked_size -= len; c->used_size += len; c->unchecked_size -= len; /* If node covers at least a whole page, or if it starts at the beginning of a page and runs to the end of the file, or if it's a hole node, mark it REF_PRISTINE, else REF_NORMAL. If it's actually overlapped, it'll get made NORMAL (or OBSOLETE) when the overlapping node(s) get added to the tree anyway. */ if ((je32_to_cpu(rd->dsize) >= PAGE_CACHE_SIZE) || ( ((je32_to_cpu(rd->offset) & (PAGE_CACHE_SIZE-1))==0) && (je32_to_cpu(rd->dsize) + je32_to_cpu(rd->offset) == je32_to_cpu(rd->isize)))) { JFFS2_DBG_READINODE("marking node at %#08x REF_PRISTINE\n", ref_offset(ref)); ref->flash_offset = ref_offset(ref) | REF_PRISTINE; } else { JFFS2_DBG_READINODE("marking node at %#08x REF_NORMAL\n", ref_offset(ref)); ref->flash_offset = ref_offset(ref) | REF_NORMAL; } spin_unlock(&c->erase_completion_lock); } tn = jffs2_alloc_tmp_dnode_info(); if (!tn) { JFFS2_ERROR("alloc tn failed\n"); return -ENOMEM; } tn->fn = jffs2_alloc_full_dnode(); if (!tn->fn) { JFFS2_ERROR("alloc fn failed\n"); jffs2_free_tmp_dnode_info(tn); return -ENOMEM; } tn->version = je32_to_cpu(rd->version); tn->fn->ofs = je32_to_cpu(rd->offset); tn->fn->raw = ref; /* There was a bug where we wrote hole nodes out with csize/dsize swapped. Deal with it */ if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && je32_to_cpu(rd->csize)) tn->fn->size = je32_to_cpu(rd->csize); else // normal case... tn->fn->size = je32_to_cpu(rd->dsize); JFFS2_DBG_READINODE("dnode @%08x: ver %u, offset %#04x, dsize %#04x\n", ref_offset(ref), je32_to_cpu(rd->version), je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize)); jffs2_add_tn_to_tree(tn, tnp); return 0; }
/* * Check the data CRC of the node. * * Returns: 0 if the data CRC is correct; * 1 - if incorrect; * error code if an error occurred. */ static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) { struct jffs2_raw_node_ref *ref = tn->fn->raw; int err = 0, pointed = 0; struct jffs2_eraseblock *jeb; unsigned char *buffer; uint32_t crc, ofs, len; size_t retlen; BUG_ON(tn->csize == 0); /* Calculate how many bytes were already checked */ ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode); len = tn->csize; if (jffs2_is_writebuffered(c)) { int adj = ofs % c->wbuf_pagesize; if (likely(adj)) adj = c->wbuf_pagesize - adj; if (adj >= tn->csize) { dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n", ref_offset(ref), tn->csize, ofs); goto adj_acc; } ofs += adj; len -= adj; } dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n", ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len); #ifndef __ECOS /* TODO: instead, incapsulate point() stuff to jffs2_flash_read(), * adding and jffs2_flash_read_end() interface. */ err = mtd_point(c->mtd, ofs, len, &retlen, (void **)&buffer, NULL); if (!err && retlen < len) { JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize); mtd_unpoint(c->mtd, ofs, retlen); } else if (err) { if (err != -EOPNOTSUPP) JFFS2_WARNING("MTD point failed: error code %d.\n", err); } else pointed = 1; /* succefully pointed to device */ #endif if (!pointed) { buffer = kmalloc(len, GFP_KERNEL); if (unlikely(!buffer)) return -ENOMEM; /* TODO: this is very frequent pattern, make it a separate * routine */ err = jffs2_flash_read(c, ofs, len, &retlen, buffer); if (err) { JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err); goto free_out; } if (retlen != len) { JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len); err = -EIO; goto free_out; } } /* Continue calculating CRC */ crc = crc32(tn->partial_crc, buffer, len); if(!pointed) kfree(buffer); #ifndef __ECOS else mtd_unpoint(c->mtd, ofs, len); #endif if (crc != tn->data_crc) { JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n", ref_offset(ref), tn->data_crc, crc); return 1; } adj_acc: jeb = &c->blocks[ref->flash_offset / c->sector_size]; len = ref_totlen(c, jeb, ref); /* If it should be REF_NORMAL, it'll get marked as such when we build the fragtree, shortly. No need to worry about GC moving it while it's marked REF_PRISTINE -- GC won't happen till we've finished checking every inode anyway. */ ref->flash_offset |= REF_PRISTINE; /* * Mark the node as having been checked and fix the * accounting accordingly. */ spin_lock(&c->erase_completion_lock); jeb->used_size += len; jeb->unchecked_size -= len; c->used_size += len; c->unchecked_size -= len; jffs2_dbg_acct_paranoia_check_nolock(c, jeb); spin_unlock(&c->erase_completion_lock); return 0; free_out: if(!pointed) kfree(buffer); #ifndef __ECOS else mtd_unpoint(c->mtd, ofs, len); #endif return err; }
/* * Helper function for jffs2_get_inode_nodes(). * It is called every time an directory entry node is found. * * Returns: 0 on success; * negative error code on failure. */ static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_raw_dirent *rd, size_t read, struct jffs2_readinode_info *rii) { struct jffs2_full_dirent *fd; uint32_t crc; /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ BUG_ON(ref_obsolete(ref)); crc = crc32(0, rd, sizeof(*rd) - 8); if (unlikely(crc != je32_to_cpu(rd->node_crc))) { JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n", ref_offset(ref), je32_to_cpu(rd->node_crc), crc); jffs2_mark_node_obsolete(c, ref); return 0; } /* If we've never checked the CRCs on this node, check them now */ if (ref_flags(ref) == REF_UNCHECKED) { struct jffs2_eraseblock *jeb; int len; /* Sanity check */ if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) { JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n", ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen)); jffs2_mark_node_obsolete(c, ref); return 0; } jeb = &c->blocks[ref->flash_offset / c->sector_size]; len = ref_totlen(c, jeb, ref); spin_lock(&c->erase_completion_lock); jeb->used_size += len; jeb->unchecked_size -= len; c->used_size += len; c->unchecked_size -= len; ref->flash_offset = ref_offset(ref) | dirent_node_state(rd); spin_unlock(&c->erase_completion_lock); } fd = jffs2_alloc_full_dirent(rd->nsize + 1); if (unlikely(!fd)) return -ENOMEM; fd->raw = ref; fd->version = je32_to_cpu(rd->version); fd->ino = je32_to_cpu(rd->ino); fd->type = rd->type; if (fd->version > rii->highest_version) rii->highest_version = fd->version; /* Pick out the mctime of the latest dirent */ if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) { rii->mctime_ver = fd->version; rii->latest_mctime = je32_to_cpu(rd->mctime); } /* * Copy as much of the name as possible from the raw * dirent we've already read from the flash. */ if (read > sizeof(*rd)) memcpy(&fd->name[0], &rd->name[0], min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) )); /* Do we need to copy any more of the name directly from the flash? */ if (rd->nsize + sizeof(*rd) > read) { /* FIXME: point() */ int err; int already = read - sizeof(*rd); err = jffs2_flash_read(c, (ref_offset(ref)) + read, rd->nsize - already, &read, &fd->name[already]); if (unlikely(read != rd->nsize - already) && likely(!err)) return -EIO; if (unlikely(err)) { JFFS2_ERROR("read remainder of name: error %d\n", err); jffs2_free_full_dirent(fd); return -EIO; } } fd->nhash = full_name_hash(fd->name, rd->nsize); fd->next = NULL; fd->name[rd->nsize] = '\0'; /* * Wheee. We now have a complete jffs2_full_dirent structure, with * the name in it and everything. Link it into the list */ jffs2_add_fd_to_list(c, fd, &rii->fds); return 0; }
static void jffs2_build_remove_unlinked_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, struct jffs2_full_dirent **dead_fds) { struct jffs2_raw_node_ref *raw; struct jffs2_full_dirent *fd; dbg_fsbuild("removing ino #%u with nlink == zero.\n", ic->ino); raw = ic->nodes; while (raw != (void *)ic) { struct jffs2_raw_node_ref *next = raw->next_in_ino; dbg_fsbuild("obsoleting node at 0x%08x\n", ref_offset(raw)); jffs2_mark_node_obsolete(c, raw); raw = next; } if (ic->scan_dents) { int whinged = 0; dbg_fsbuild("inode #%u was a directory which may have children...\n", ic->ino); while(ic->scan_dents) { struct jffs2_inode_cache *child_ic; fd = ic->scan_dents; ic->scan_dents = fd->next; if (!fd->ino) { /* It's a deletion dirent. Ignore it */ dbg_fsbuild("child \"%s\" is a deletion dirent, skipping...\n", fd->name); jffs2_free_full_dirent(fd); continue; } if (!whinged) whinged = 1; dbg_fsbuild("removing child \"%s\", ino #%u\n", fd->name, fd->ino); child_ic = jffs2_get_ino_cache(c, fd->ino); if (!child_ic) { dbg_fsbuild("cannot remove child \"%s\", ino #%u, because it doesn't exist\n", fd->name, fd->ino); jffs2_free_full_dirent(fd); continue; } /* Reduce nlink of the child. If it's now zero, stick it on the dead_fds list to be cleaned up later. Else just free the fd */ if (fd->type == DT_DIR) child_ic->pino_nlink = 0; else child_ic->pino_nlink--; if (!child_ic->pino_nlink) { dbg_fsbuild("inode #%u (\"%s\") now has no links; adding to dead_fds list.\n", fd->ino, fd->name); fd->next = *dead_fds; *dead_fds = fd; } else { dbg_fsbuild("inode #%u (\"%s\") has now got nlink %d. Ignoring.\n", fd->ino, fd->name, child_ic->pino_nlink); jffs2_free_full_dirent(fd); } } } /* We don't delete the inocache from the hash list and free it yet. The erase code will do that, when all the nodes are completely gone. */ }
/* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated with this ino. Perform a preliminary ordering on data nodes, throwing away those which are completely obsoleted by newer ones. The naïve approach we use to take of just returning them _all_ in version order will cause us to run out of memory in certain degenerate cases. */ static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_readinode_info *rii) { struct jffs2_raw_node_ref *ref, *valid_ref; unsigned char *buf = NULL; union jffs2_node_union *node; size_t retlen; int len, err; rii->mctime_ver = 0; dbg_readinode("ino #%u\n", f->inocache->ino); /* FIXME: in case of NOR and available ->point() this * needs to be fixed. */ len = sizeof(union jffs2_node_union) + c->wbuf_pagesize; buf = kmalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; spin_lock(&c->erase_completion_lock); valid_ref = jffs2_first_valid_node(f->inocache->nodes); if (!valid_ref && f->inocache->ino != 1) JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino); while (valid_ref) { /* We can hold a pointer to a non-obsolete node without the spinlock, but _obsolete_ nodes may disappear at any time, if the block they're in gets erased. So if we mark 'ref' obsolete while we're not holding the lock, it can go away immediately. For that reason, we find the next valid node first, before processing 'ref'. */ ref = valid_ref; valid_ref = jffs2_first_valid_node(ref->next_in_ino); spin_unlock(&c->erase_completion_lock); cond_resched(); /* * At this point we don't know the type of the node we're going * to read, so we do not know the size of its header. In order * to minimize the amount of flash IO we assume the header is * of size = JFFS2_MIN_NODE_HEADER. */ len = JFFS2_MIN_NODE_HEADER; if (jffs2_is_writebuffered(c)) { int end, rem; /* * We are about to read JFFS2_MIN_NODE_HEADER bytes, * but this flash has some minimal I/O unit. It is * possible that we'll need to read more soon, so read * up to the next min. I/O unit, in order not to * re-read the same min. I/O unit twice. */ end = ref_offset(ref) + len; rem = end % c->wbuf_pagesize; if (rem) end += c->wbuf_pagesize - rem; len = end - ref_offset(ref); } dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref)); /* FIXME: point() */ err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf); if (err) { JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err); goto free_out; } if (retlen < len) { JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len); err = -EIO; goto free_out; } node = (union jffs2_node_union *)buf; /* No need to mask in the valid bit; it shouldn't be invalid */ if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) { JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n", ref_offset(ref), je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype), je32_to_cpu(node->u.totlen), je32_to_cpu(node->u.hdr_crc)); jffs2_dbg_dump_node(c, ref_offset(ref)); jffs2_mark_node_obsolete(c, ref); goto cont; } if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) { /* Not a JFFS2 node, whinge and move on */ JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n", je16_to_cpu(node->u.magic), ref_offset(ref)); jffs2_mark_node_obsolete(c, ref); goto cont; } switch (je16_to_cpu(node->u.nodetype)) { case JFFS2_NODETYPE_DIRENT: if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) && len < sizeof(struct jffs2_raw_dirent)) { err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf); if (unlikely(err)) goto free_out; } err = read_direntry(c, ref, &node->d, retlen, rii); if (unlikely(err)) goto free_out; break; case JFFS2_NODETYPE_INODE: if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) && len < sizeof(struct jffs2_raw_inode)) { err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf); if (unlikely(err)) goto free_out; } err = read_dnode(c, ref, &node->i, len, rii); if (unlikely(err)) goto free_out; break; default: if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) && len < sizeof(struct jffs2_unknown_node)) { err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf); if (unlikely(err)) goto free_out; } err = read_unknown(c, ref, &node->u); if (unlikely(err)) goto free_out; } cont: spin_lock(&c->erase_completion_lock); } spin_unlock(&c->erase_completion_lock); kfree(buf); f->highest_version = rii->highest_version; dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n", f->inocache->ino, rii->highest_version, rii->latest_mctime, rii->mctime_ver); return 0; free_out: jffs2_free_tmp_dnode_info_list(&rii->tn_root); jffs2_free_full_dirent_list(rii->fds); rii->fds = NULL; kfree(buf); return err; }