Ejemplo n.º 1
0
void runAutoTest(const char *ref_file, char *exec_path)
{
    checkCudaErrors(cudaMalloc((void **)&d_output, width*height*sizeof(GLubyte)*4));

    // render the volumeData
    render_kernel(gridSize, blockSize, d_output, width, height, w);

    checkCudaErrors(cudaDeviceSynchronize());
    getLastCudaError("render_kernel failed");

    void *h_output = malloc(width*height*sizeof(GLubyte)*4);
    checkCudaErrors(cudaMemcpy(h_output, d_output, width*height*sizeof(GLubyte)*4, cudaMemcpyDeviceToHost));
    sdkDumpBin(h_output, width*height*sizeof(GLubyte)*4, "simpleTexture3D.bin");

    bool bTestResult = sdkCompareBin2BinFloat("simpleTexture3D.bin", sdkFindFilePath(ref_file, exec_path), width*height,
                                              MAX_EPSILON_ERROR, THRESHOLD, exec_path);

    checkCudaErrors(cudaFree(d_output));
    free(h_output);

    // cudaDeviceReset causes the driver to clean up all state. While
    // not mandatory in normal operation, it is good practice.  It is also
    // needed to ensure correct operation when the application is being
    // profiled. Calling cudaDeviceReset causes all profile data to be
    // flushed before the application exits
    cudaDeviceReset();
    sdkStopTimer(&timer);
    sdkDeleteTimer(&timer);

    exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
DWORD WINAPI render_thread(void* ptr)
{
	params* p = (params*)ptr;

	for (uint y = p->y_start; y < p->y_end; y++)
	for (uint x = 0; x < p->imageExtent.x; x++)
	{
		render_kernel(x, y, *p);
	}

	return 0;
}
Ejemplo n.º 3
0
// render image using CUDA
void render()
{
    // map PBO to get CUDA device pointer
    g_GraphicsMapFlag++;
    checkCudaErrors(cudaGraphicsMapResources(1, &cuda_pbo_resource, 0));
    size_t num_bytes;
    checkCudaErrors(cudaGraphicsResourceGetMappedPointer((void **)&d_output, &num_bytes, cuda_pbo_resource));
    //printf("CUDA mapped PBO: May access %ld bytes\n", num_bytes);

    // call CUDA kernel, writing results to PBO
    render_kernel(gridSize, blockSize, d_output, width, height, w);

    getLastCudaError("render_kernel failed");

    if (g_GraphicsMapFlag)
    {
        checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0));
        g_GraphicsMapFlag--;
    }
}
Ejemplo n.º 4
0
// render image using CUDA
void render()
{
	copyInvViewMatrix(invViewMatrix, sizeof(float4)*3);

    // map PBO to get CUDA device pointer
    uint *d_output;
	// map PBO to get CUDA device pointer
	cutilSafeCall(cudaGraphicsMapResources(1, &cuda_pbo_resource, 0));
    size_t num_bytes; 
    cutilSafeCall(cudaGraphicsResourceGetMappedPointer((void **)&d_output, &num_bytes,  
						       cuda_pbo_resource));
    //printf("CUDA mapped PBO: May access %ld bytes\n", num_bytes);

    // clear image
    cutilSafeCall(cudaMemset(d_output, 0, width*height*4));

    // call CUDA kernel, writing results to PBO
    render_kernel(gridSize, blockSize, d_output, width, height, density, brightness, transferOffset, transferScale);

    cutilCheckMsg("kernel failed");

    cutilSafeCall(cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0));
}
Ejemplo n.º 5
0
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main( int argc, char** argv) 
{
    //start logs
    shrSetLogFileName ("volumeRender.txt");
    shrLog("%s Starting...\n\n", argv[0]); 

    if (cutCheckCmdLineFlag(argc, (const char **)argv, "qatest") ||
		cutCheckCmdLineFlag(argc, (const char **)argv, "noprompt")) 
	{
        g_bQAReadback = true;
        fpsLimit = frameCheckNumber;
    }

    if (cutCheckCmdLineFlag(argc, (const char **)argv, "glverify")) 
	{
        g_bQAGLVerify = true;
        fpsLimit = frameCheckNumber;
    }

    if (g_bQAReadback) {
	    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
        if( cutCheckCmdLineFlag(argc, (const char**)argv, "device") ) {
            cutilDeviceInit(argc, argv);
        } else {
            cudaSetDevice( cutGetMaxGflopsDeviceId() );
        }

    } else {
        // First initialize OpenGL context, so we can properly set the GL for CUDA.
        // This is necessary in order to achieve optimal performance with OpenGL/CUDA interop.
        initGL( &argc, argv );

	    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
        if( cutCheckCmdLineFlag(argc, (const char**)argv, "device") ) {
            cutilGLDeviceInit(argc, argv);
        } else {
            cudaGLSetGLDevice( cutGetMaxGflopsDeviceId() );
        }
/*
        int device;
        struct cudaDeviceProp prop;
        cudaGetDevice( &device );
        cudaGetDeviceProperties( &prop, device );
        if( !strncmp( "Tesla", prop.name, 5 ) ) {
            shrLog("This sample needs a card capable of OpenGL and display.\n");
            shrLog("Please choose a different device with the -device=x argument.\n");
            cutilExit(argc, argv);
        }
*/
	}

    // parse arguments
    char *filename;
    if (cutGetCmdLineArgumentstr( argc, (const char**) argv, "file", &filename)) {
        volumeFilename = filename;
    }
    int n;
    if (cutGetCmdLineArgumenti( argc, (const char**) argv, "size", &n)) {
        volumeSize.width = volumeSize.height = volumeSize.depth = n;
    }
    if (cutGetCmdLineArgumenti( argc, (const char**) argv, "xsize", &n)) {
        volumeSize.width = n;
    }
    if (cutGetCmdLineArgumenti( argc, (const char**) argv, "ysize", &n)) {
        volumeSize.height = n;
    }
    if (cutGetCmdLineArgumenti( argc, (const char**) argv, "zsize", &n)) {
         volumeSize.depth = n;
    }

    // load volume data
    char* path = shrFindFilePath(volumeFilename, argv[0]);
    if (path == 0) {
        shrLog("Error finding file '%s'\n", volumeFilename);
        exit(EXIT_FAILURE);
    }

    size_t size = volumeSize.width*volumeSize.height*volumeSize.depth*sizeof(VolumeType);
    void *h_volume = loadRawFile(path, size);
    
    initCuda(h_volume, volumeSize);
    free(h_volume);

    cutilCheckError( cutCreateTimer( &timer));

    shrLog("Press '=' and '-' to change density\n"
           "      ']' and '[' to change brightness\n"
           "      ';' and ''' to modify transfer function offset\n"
           "      '.' and ',' to modify transfer function scale\n\n");

    // calculate new grid size
    gridSize = dim3(iDivUp(width, blockSize.x), iDivUp(height, blockSize.y));

    if (g_bQAReadback) {
        g_CheckRender = new CheckBackBuffer(width, height, 4, false);
        g_CheckRender->setPixelFormat(GL_RGBA);
        g_CheckRender->setExecPath(argv[0]);
        g_CheckRender->EnableQAReadback(true);

        uint *d_output;
        cutilSafeCall(cudaMalloc((void**)&d_output, width*height*sizeof(uint)));
        cutilSafeCall(cudaMemset(d_output, 0, width*height*sizeof(uint)));

        float modelView[16] = 
        {
            1.0f, 0.0f, 0.0f, 0.0f,
            0.0f, 1.0f, 0.0f, 0.0f,
            0.0f, 0.0f, 1.0f, 0.0f,
            0.0f, 0.0f, 4.0f, 1.0f
        };

        invViewMatrix[0] = modelView[0]; invViewMatrix[1] = modelView[4]; invViewMatrix[2] = modelView[8]; invViewMatrix[3] = modelView[12];
        invViewMatrix[4] = modelView[1]; invViewMatrix[5] = modelView[5]; invViewMatrix[6] = modelView[9]; invViewMatrix[7] = modelView[13];
        invViewMatrix[8] = modelView[2]; invViewMatrix[9] = modelView[6]; invViewMatrix[10] = modelView[10]; invViewMatrix[11] = modelView[14];

        // call CUDA kernel, writing results to PBO
	    copyInvViewMatrix(invViewMatrix, sizeof(float4)*3);
        
        // Start timer 0 and process n loops on the GPU 
        int nIter = 10;
        for (int i = -1; i < nIter; i++)
        {
            if( i == 0 ) {
                cudaThreadSynchronize();
                cutStartTimer(timer); 
            }
            
            render_kernel(gridSize, blockSize, d_output, width, height, density, brightness, transferOffset, transferScale);
        }
        cudaThreadSynchronize();
        cutStopTimer(timer);
        // Get elapsed time and throughput, then log to sample and master logs
        double dAvgTime = cutGetTimerValue(timer)/(nIter * 1000.0);
        shrLogEx(LOGBOTH | MASTER, 0, "volumeRender, Throughput = %.4f MTexels/s, Time = %.5f s, Size = %u Texels, NumDevsUsed = %u, Workgroup = %u\n", 
               (1.0e-6 * width * height)/dAvgTime, dAvgTime, (width * height), 1, blockSize.x * blockSize.y); 
        

        cutilCheckMsg("Error: render_kernel() execution FAILED");
        cutilSafeCall( cudaThreadSynchronize() );

        cutilSafeCall( cudaMemcpy(g_CheckRender->imageData(), d_output, width*height*4, cudaMemcpyDeviceToHost) );
        g_CheckRender->savePPM(sOriginal[g_Index], true, NULL);

        if (!g_CheckRender->PPMvsPPM(sOriginal[g_Index], sReference[g_Index], MAX_EPSILON_ERROR, THRESHOLD)) {
            shrLog("\nFAILED\n\n");
        } else {
            shrLog("\nPASSED\n\n");
        }

        cudaFree(d_output);
    	freeCudaBuffers();

        if (g_CheckRender) {
            delete g_CheckRender; g_CheckRender = NULL;
        }

    } else {
        // This is the normal rendering path for VolumeRender
        glutDisplayFunc(display);
        glutKeyboardFunc(keyboard);
        glutMouseFunc(mouse);
        glutMotionFunc(motion);
        glutReshapeFunc(reshape);
        glutIdleFunc(idle);

        initPixelBuffer();

        if (g_bQAGLVerify) {
            g_CheckRender = new CheckBackBuffer(width, height, 4);
            g_CheckRender->setPixelFormat(GL_RGBA);
            g_CheckRender->setExecPath(argv[0]);
            g_CheckRender->EnableQAReadback(true);
        }
        atexit(cleanup);

        glutMainLoop();
    }

    cudaThreadExit();
    shrEXIT(argc, (const char**)argv);
}