Ejemplo n.º 1
0
// Print the current configuration.
// Called by the setup menu 'show' command.
int8_t Copter::setup_show(uint8_t argc, const Menu::arg *argv)
{
    AP_Param *param;
    ap_var_type type;

    //If a parameter name is given as an argument to show, print only that parameter
    if(argc>=2)
    {

        param=AP_Param::find(argv[1].str, &type);

        if(!param)
        {
            cliSerial->printf("Parameter not found: '%s'\n", argv[1].str);
            return 0;
        }
        AP_Param::show(param, argv[1].str, type, cliSerial);
        return 0;
    }

    // clear the area
    print_blanks(8);

    report_version();
    report_radio();
    report_frame();
    report_batt_monitor();
    report_flight_modes();
    report_ins();
    report_compass();
    report_optflow();

    AP_Param::show_all(cliSerial);

    return(0);
}
Ejemplo n.º 2
0
// setup_compassmot - sets compass's motor interference parameters
uint8_t Copter::mavlink_compassmot(mavlink_channel_t chan)
{
#if FRAME_CONFIG == HELI_FRAME
    // compassmot not implemented for tradheli
    return 1;
#else
    int8_t   comp_type;                 // throttle or current based compensation
    Vector3f compass_base[COMPASS_MAX_INSTANCES];           // compass vector when throttle is zero
    Vector3f motor_impact[COMPASS_MAX_INSTANCES];           // impact of motors on compass vector
    Vector3f motor_impact_scaled[COMPASS_MAX_INSTANCES];    // impact of motors on compass vector scaled with throttle
    Vector3f motor_compensation[COMPASS_MAX_INSTANCES];     // final compensation to be stored to eeprom
    float    throttle_pct;              // throttle as a percentage 0.0 ~ 1.0
    float    throttle_pct_max = 0.0f;   // maximum throttle reached (as a percentage 0~1.0)
    float    current_amps_max = 0.0f;   // maximum current reached
    float    interference_pct[COMPASS_MAX_INSTANCES];       // interference as a percentage of total mag field (for reporting purposes only)
    uint32_t last_run_time;
    uint32_t last_send_time;
    bool     updated = false;           // have we updated the compensation vector at least once
    uint8_t  command_ack_start = command_ack_counter;

    // exit immediately if we are already in compassmot
    if (ap.compass_mot) {
        // ignore restart messages
        return 1;
    }else{
        ap.compass_mot = true;
    }

    // initialise output
    for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
        interference_pct[i] = 0.0f;
    }

    // check compass is enabled
    if (!g.compass_enabled) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Compass disabled");
        ap.compass_mot = false;
        return 1;
    }

    // check compass health
    compass.read();
    for (uint8_t i=0; i<compass.get_count(); i++) {
        if (!compass.healthy(i)) {
            gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Check compass");
            ap.compass_mot = false;
            return 1;
        }
    }

    // check if radio is calibrated
    pre_arm_rc_checks();
    if (!ap.pre_arm_rc_check) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "RC not calibrated");
        ap.compass_mot = false;
        return 1;
    }

    // check throttle is at zero
    read_radio();
    if (channel_throttle->control_in != 0) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Throttle not zero");
        ap.compass_mot = false;
        return 1;
    }

    // check we are landed
    if (!ap.land_complete) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Not landed");
        ap.compass_mot = false;
        return 1;
    }

    // disable cpu failsafe
    failsafe_disable();

    // initialise compass
    init_compass();

    // default compensation type to use current if possible
    if (battery.has_current()) {
        comp_type = AP_COMPASS_MOT_COMP_CURRENT;
    }else{
        comp_type = AP_COMPASS_MOT_COMP_THROTTLE;
    }

    // send back initial ACK
    mavlink_msg_command_ack_send(chan, MAV_CMD_PREFLIGHT_CALIBRATION,0);

    // flash leds
    AP_Notify::flags.esc_calibration = true;

    // warn user we are starting calibration
    gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Starting calibration");

    // inform what type of compensation we are attempting
    if (comp_type == AP_COMPASS_MOT_COMP_CURRENT) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Current");
    } else{
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Throttle");
    }

    // disable throttle and battery failsafe
    g.failsafe_throttle = FS_THR_DISABLED;
    g.failsafe_battery_enabled = FS_BATT_DISABLED;

    // disable motor compensation
    compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
    for (uint8_t i=0; i<compass.get_count(); i++) {
        compass.set_motor_compensation(i, Vector3f(0,0,0));
    }

    // get initial compass readings
    last_run_time = millis();
    while ( millis() - last_run_time < 500 ) {
        compass.accumulate();
    }
    compass.read();

    // store initial x,y,z compass values
    // initialise interference percentage
    for (uint8_t i=0; i<compass.get_count(); i++) {
        compass_base[i] = compass.get_field(i);
        interference_pct[i] = 0.0f;
    }

    // enable motors and pass through throttle
    init_rc_out();
    enable_motor_output();
    motors.armed(true);

    // initialise run time
    last_run_time = millis();
    last_send_time = millis();

    // main run while there is no user input and the compass is healthy
    while (command_ack_start == command_ack_counter && compass.healthy(compass.get_primary()) && motors.armed()) {
        // 50hz loop
        if (millis() - last_run_time < 20) {
            // grab some compass values
            compass.accumulate();
            hal.scheduler->delay(5);
            continue;
        }
        last_run_time = millis();

        // read radio input
        read_radio();
        
        // pass through throttle to motors
        motors.throttle_pass_through(channel_throttle->radio_in);
        
        // read some compass values
        compass.read();
        
        // read current
        read_battery();
        
        // calculate scaling for throttle
        throttle_pct = (float)channel_throttle->control_in / 1000.0f;
        throttle_pct = constrain_float(throttle_pct,0.0f,1.0f);

        // if throttle is near zero, update base x,y,z values
        if (throttle_pct <= 0.0f) {
            for (uint8_t i=0; i<compass.get_count(); i++) {
                compass_base[i] = compass_base[i] * 0.99f + compass.get_field(i) * 0.01f;
            }

            // causing printing to happen as soon as throttle is lifted
        } else {

            // calculate diff from compass base and scale with throttle
            for (uint8_t i=0; i<compass.get_count(); i++) {
                motor_impact[i] = compass.get_field(i) - compass_base[i];
            }

            // throttle based compensation
            if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
                // for each compass
                for (uint8_t i=0; i<compass.get_count(); i++) {
                    // scale by throttle
                    motor_impact_scaled[i] = motor_impact[i] / throttle_pct;
                    // adjust the motor compensation to negate the impact
                    motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
                }

                updated = true;
            } else {
                // for each compass
                for (uint8_t i=0; i<compass.get_count(); i++) {
                    // current based compensation if more than 3amps being drawn
                    motor_impact_scaled[i] = motor_impact[i] / battery.current_amps();
                
                    // adjust the motor compensation to negate the impact if drawing over 3amps
                    if (battery.current_amps() >= 3.0f) {
                        motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
                        updated = true;
                    }
                }
            }

            // calculate interference percentage at full throttle as % of total mag field
            if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
                for (uint8_t i=0; i<compass.get_count(); i++) {
                    // interference is impact@fullthrottle / mag field * 100
                    interference_pct[i] = motor_compensation[i].length() / (float)COMPASS_MAGFIELD_EXPECTED * 100.0f;
                }
            }else{
                for (uint8_t i=0; i<compass.get_count(); i++) {
                    // interference is impact/amp * (max current seen / max throttle seen) / mag field * 100
                    interference_pct[i] = motor_compensation[i].length() * (current_amps_max/throttle_pct_max) / (float)COMPASS_MAGFIELD_EXPECTED * 100.0f;
                }
            }

            // record maximum throttle and current
            throttle_pct_max = MAX(throttle_pct_max, throttle_pct);
            current_amps_max = MAX(current_amps_max, battery.current_amps());

        }
        if (AP_HAL::millis() - last_send_time > 500) {
            last_send_time = AP_HAL::millis();
            mavlink_msg_compassmot_status_send(chan, 
                                               channel_throttle->control_in,
                                               battery.current_amps(),
                                               interference_pct[compass.get_primary()],
                                               motor_compensation[compass.get_primary()].x,
                                               motor_compensation[compass.get_primary()].y,
                                               motor_compensation[compass.get_primary()].z);
        }
    }

    // stop motors
    motors.output_min();
    motors.armed(false);

    // set and save motor compensation
    if (updated) {
        compass.motor_compensation_type(comp_type);
        for (uint8_t i=0; i<compass.get_count(); i++) {
            compass.set_motor_compensation(i, motor_compensation[i]);
        }
        compass.save_motor_compensation();
        // display success message
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Calibration successful");
    } else {
        // compensation vector never updated, report failure
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_NOTICE, "Failed");
        compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
    }

    // display new motor offsets and save
    report_compass();

    // turn off notify leds
    AP_Notify::flags.esc_calibration = false;

    // re-enable cpu failsafe
    failsafe_enable();

    // re-enable failsafes
    g.failsafe_throttle.load();
    g.failsafe_battery_enabled.load();

    // flag we have completed
    ap.compass_mot = false;

    return 0;
#endif  // FRAME_CONFIG != HELI_FRAME
}
Ejemplo n.º 3
0
int8_t Sub::test_compass(uint8_t argc, const Menu::arg *argv)
{
    uint8_t delta_ms_fast_loop;
    uint8_t medium_loopCounter = 0;

    if (!g.compass_enabled) {
        cliSerial->printf("Compass: "******"Compass initialisation failed!");
        return 0;
    }

    ahrs.init();
    ahrs.set_fly_forward(true);
    ahrs.set_compass(&compass);
#if OPTFLOW == ENABLED
    ahrs.set_optflow(&optflow);
#endif
    report_compass();

    // we need the AHRS initialised for this test
    ins.init(scheduler.get_loop_rate_hz());
    ahrs.reset();
    int16_t counter = 0;
    float heading = 0;

    print_hit_enter();

    while(1) {
        delay(20);
        if (millis() - fast_loopTimer > 19) {
            delta_ms_fast_loop      = millis() - fast_loopTimer;
            G_Dt                    = (float)delta_ms_fast_loop / 1000.0f;                       // used by DCM integrator
            fast_loopTimer          = millis();

            // INS
            // ---
            ahrs.update();

            medium_loopCounter++;
            if(medium_loopCounter == 5) {
                if (compass.read()) {
                    // Calculate heading
                    const Matrix3f &m = ahrs.get_rotation_body_to_ned();
                    heading = compass.calculate_heading(m);
                    compass.learn_offsets();
                }
                medium_loopCounter = 0;
            }

            counter++;
            if (counter>20) {
                if (compass.healthy()) {
                    const Vector3f &mag_ofs = compass.get_offsets();
                    const Vector3f &mag = compass.get_field();
                    cliSerial->printf("Heading: %d, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n",
                                      (int)(wrap_360_cd(ToDeg(heading) * 100)) /100,
                                        (double)mag.x,
                                        (double)mag.y,
                                        (double)mag.z,
                                        (double)mag_ofs.x,
                                        (double)mag_ofs.y,
                                        (double)mag_ofs.z);
                } else {
                    cliSerial->println("compass not healthy");
                }
                counter=0;
            }
        }
        if (cliSerial->available() > 0) {
            break;
        }
    }

    // save offsets. This allows you to get sane offset values using
    // the CLI before you go flying.
    cliSerial->println("saving offsets");
    compass.save_offsets();
    return (0);
}