Ejemplo n.º 1
0
void Ekf::controlFusionModes()
{
	// Store the status to enable change detection
	_control_status_prev.value = _control_status.value;

	// Get the magnetic declination
	calcMagDeclination();

	// monitor the tilt alignment
	if (!_control_status.flags.tilt_align) {
		// whilst we are aligning the tilt, monitor the variances
		Vector3f angle_err_var_vec = calcRotVecVariances();

		// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
		// and declare the tilt alignment complete
		if ((angle_err_var_vec(0) + angle_err_var_vec(1)) < sq(0.05235f)) {
			_control_status.flags.tilt_align = true;
			_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
		}
	}

	// control use of various external sources for position and velocity aiding
	controlExternalVisionAiding();
	controlOpticalFlowAiding();
	controlGpsAiding();
	controlHeightAiding();
	controlMagAiding();

}
Ejemplo n.º 2
0
void Ekf::controlGpsAiding()
{
	// GPS fusion mode selection logic
	// To start use GPS we need angular alignment completed, the local NED origin set and fresh GPS data
	if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) {
		if (_control_status.flags.tilt_align && (_time_last_imu - _time_last_gps) < 5e5 && _NED_origin_initialised
		    && (_time_last_imu - _last_gps_fail_us > 5e6)) {
			// If the heading is not aligned, reset the yaw and magnetic field states
			if (!_control_status.flags.yaw_align) {
				_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
			}

			// If the heading is valid start using gps aiding
			if (_control_status.flags.yaw_align) {
				_control_status.flags.gps = true;
				_time_last_gps = _time_last_imu;

				// if we are not already aiding with optical flow, then we need to reset the position and velocity
				if (!_control_status.flags.opt_flow) {
					_control_status.flags.gps = resetPosition();
					_control_status.flags.gps = resetVelocity();
				}
			}
		}

	}  else if (!(_params.fusion_mode & MASK_USE_GPS)) {
		_control_status.flags.gps = false;
	}

	// handle the case when we are relying on GPS fusion and lose it
	if (_control_status.flags.gps && !_control_status.flags.opt_flow) {
		// We are relying on GPS aiding to constrain attitude drift so after 10 seconds without aiding we need to do something
		if ((_time_last_imu - _time_last_pos_fuse > 10e6) && (_time_last_imu - _time_last_vel_fuse > 10e6)) {
			if (_time_last_imu - _time_last_gps > 5e5) {
				// if we don't have gps then we need to switch to the non-aiding mode, zero the velocity states
				// and set the synthetic GPS position to the current estimate
				_control_status.flags.gps = false;
				_last_known_posNE(0) = _state.pos(0);
				_last_known_posNE(1) = _state.pos(1);
				_state.vel.setZero();

			} else {
				// Reset states to the last GPS measurement
				resetPosition();
				resetVelocity();

				// Reset the timeout counters
				_time_last_pos_fuse = _time_last_imu;
				_time_last_vel_fuse = _time_last_imu;
			}
		}
	}
}
Ejemplo n.º 3
0
void Ekf::controlFusionModes()
{
	// Store the status to enable change detection
	_control_status_prev.value = _control_status.value;

	// Get the magnetic declination
	calcMagDeclination();

	// monitor the tilt alignment
	if (!_control_status.flags.tilt_align) {
		// whilst we are aligning the tilt, monitor the variances
		Vector3f angle_err_var_vec = calcRotVecVariances();

		// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
		// and declare the tilt alignment complete
		if ((angle_err_var_vec(0) + angle_err_var_vec(1)) < sq(0.05235f)) {
			_control_status.flags.tilt_align = true;
			_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
			ECL_INFO("EKF alignment complete");

		}

	}

	// check for arrival of new sensor data at the fusion time horizon
	_gps_data_ready = _gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed);
	_mag_data_ready = _mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed);
	_baro_data_ready = _baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed);
	_range_data_ready = _range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)
			&& (_R_to_earth(2, 2) > 0.7071f);
	_flow_data_ready = _flow_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_flow_sample_delayed)
			&&  (_R_to_earth(2, 2) > 0.7071f);
	_ev_data_ready = _ext_vision_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_ev_sample_delayed);
	_tas_data_ready = _airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed);

	// check for height sensor timeouts and reset and change sensor if necessary
	controlHeightSensorTimeouts();

	// control use of observations for aiding
	controlMagFusion();
	controlExternalVisionFusion();
	controlOpticalFlowFusion();
	controlGpsFusion();
	controlBaroFusion();
	controlRangeFinderFusion();
	controlAirDataFusion();

	// for efficiency, fusion of direct state observations for position ad velocity is performed sequentially
	// in a single function using sensor data from multiple sources (GPS, external vision, baro, range finder, etc)
	controlVelPosFusion();

}
Ejemplo n.º 4
0
void Ekf::controlMagFusion()
{
	// If we are using external vision data for heading then no magnetometer fusion is used
	if (_control_status.flags.ev_yaw) {
		return;
	}

	// If we are on ground, store the local position and time to use as a reference
	if (!_control_status.flags.in_air) {
		_last_on_ground_posD = _state.pos(2);

	}

	// checs for new magnetometer data tath has fallen beind the fusion time horizon
	if (_mag_data_ready) {

		// Determine if we should use simple magnetic heading fusion which works better when there are large external disturbances
		// or the more accurate 3-axis fusion
		if (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTO) {
			// start 3D fusion if in-flight and height has increased sufficiently
			// to be away from ground magnetic anomalies
			// don't switch back to heading fusion until we are back on the ground
			bool height_achieved = (_last_on_ground_posD - _state.pos(2)) > 1.5f;
			bool use_3D_fusion = _control_status.flags.in_air && (_control_status.flags.mag_3D || height_achieved);

			if (use_3D_fusion && _control_status.flags.tilt_align) {
				// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states
				if (!_control_status.flags.mag_3D) {
					_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
				}

				// use 3D mag fusion when airborne
				_control_status.flags.mag_hdg = false;
				_control_status.flags.mag_3D = true;

			} else {
				// use heading fusion when on the ground
				_control_status.flags.mag_hdg = true;
				_control_status.flags.mag_3D = false;
			}

		} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_HEADING) {
			// always use heading fusion
			_control_status.flags.mag_hdg = true;
			_control_status.flags.mag_3D = false;

		} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_3D) {
			// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states
			if (!_control_status.flags.mag_3D) {
				_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
			}

			// always use 3-axis mag fusion
			_control_status.flags.mag_hdg = false;
			_control_status.flags.mag_3D = true;

		} else {
			// do no magnetometer fusion at all
			_control_status.flags.mag_hdg = false;
			_control_status.flags.mag_3D = false;
		}

		// if we are using 3-axis magnetometer fusion, but without external aiding, then the declination must be fused as an observation to prevent long term heading drift
		// fusing declination when gps aiding is available is optional, but recommneded to prevent problem if the vehicle is static for extended periods of time
		if (_control_status.flags.mag_3D && (!_control_status.flags.gps || (_params.mag_declination_source & MASK_FUSE_DECL))) {
			_control_status.flags.mag_dec = true;

		} else {
			_control_status.flags.mag_dec = false;
		}

		// fuse magnetometer data using the selected methods
		if (_control_status.flags.mag_3D && _control_status.flags.yaw_align) {
			fuseMag();

			if (_control_status.flags.mag_dec) {
				fuseDeclination();
			}

		} else if (_control_status.flags.mag_hdg && _control_status.flags.yaw_align) {
			// fusion of an Euler yaw angle from either a 321 or 312 rotation sequence
			fuseHeading();

		} else {
			// do no fusion at all
		}
	}
}
Ejemplo n.º 5
0
void Ekf::controlGpsFusion()
{
	// Check for new GPS data that has fallen behind the fusion time horizon
	if (_gps_data_ready) {

		// Determine if we should use GPS aiding for velocity and horizontal position
		// To start using GPS we need angular alignment completed, the local NED origin set and GPS data that has not failed checks recently
		if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) {
			if (_control_status.flags.tilt_align && _NED_origin_initialised && (_time_last_imu - _last_gps_fail_us > 5e6)) {
				// If the heading is not aligned, reset the yaw and magnetic field states
				if (!_control_status.flags.yaw_align) {
					_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);

				}

				// If the heading is valid start using gps aiding
				if (_control_status.flags.yaw_align) {
					_control_status.flags.gps = true;
					_time_last_gps = _time_last_imu;

					// if we are not already aiding with optical flow, then we need to reset the position and velocity
					if (!_control_status.flags.opt_flow) {
						if (resetPosition() && resetVelocity()) {
							_control_status.flags.gps = true;

						} else {
							_control_status.flags.gps = false;

						}
					}
					if (_control_status.flags.gps) {
						ECL_INFO("EKF commencing GPS aiding");

					}
				}
			}

		}  else if (!(_params.fusion_mode & MASK_USE_GPS)) {
			_control_status.flags.gps = false;

		}

		// handle the case when we are relying on GPS fusion and lose it
		if (_control_status.flags.gps && !_control_status.flags.opt_flow) {
			// We are relying on GPS aiding to constrain attitude drift so after 10 seconds without aiding we need to do something
			if ((_time_last_imu - _time_last_pos_fuse > 10e6) && (_time_last_imu - _time_last_vel_fuse > 10e6)) {
				if (_time_last_imu - _time_last_gps > 5e5) {
					// if we don't have gps then we need to switch to the non-aiding mode, zero the velocity states
					// and set the synthetic GPS position to the current estimate
					_control_status.flags.gps = false;
					_last_known_posNE(0) = _state.pos(0);
					_last_known_posNE(1) = _state.pos(1);
					_state.vel.setZero();
					ECL_WARN("EKF GPS fusion timout - stopping GPS aiding");

				} else {
					// Reset states to the last GPS measurement
					resetPosition();
					resetVelocity();
					ECL_WARN("EKF GPS fusion timout - resetting to GPS");

					// Reset the timeout counters
					_time_last_pos_fuse = _time_last_imu;
					_time_last_vel_fuse = _time_last_imu;

				}
			}
		}

		// Only use GPS data for position and velocity aiding if enabled
		if (_control_status.flags.gps) {
			_fuse_pos = true;
			_fuse_vert_vel = true;
			_fuse_hor_vel = true;

			// correct velocity for offset relative to IMU
			Vector3f ang_rate = _imu_sample_delayed.delta_ang * (1.0f/_imu_sample_delayed.delta_ang_dt);
			Vector3f pos_offset_body = _params.gps_pos_body - _params.imu_pos_body;
			Vector3f vel_offset_body = cross_product(ang_rate,pos_offset_body);
			Vector3f vel_offset_earth = _R_to_earth * vel_offset_body;
			_gps_sample_delayed.vel -= vel_offset_earth;

			// correct position and height for offset relative to IMU
			Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
			_gps_sample_delayed.pos(0) -= pos_offset_earth(0);
			_gps_sample_delayed.pos(1) -= pos_offset_earth(1);
			_gps_sample_delayed.hgt += pos_offset_earth(2);

		}

		// Determine if GPS should be used as the height source
		if (((_params.vdist_sensor_type == VDIST_SENSOR_GPS)) && !_gps_hgt_faulty) {
			_control_status.flags.baro_hgt = false;
			_control_status.flags.gps_hgt = true;
			_control_status.flags.rng_hgt = false;
			_control_status.flags.ev_hgt = false;
			_fuse_height = true;

		}
	}
}
Ejemplo n.º 6
0
void Ekf::controlOpticalFlowFusion()
{
	// Check for new optical flow data that has fallen behind the fusion time horizon
	if (_flow_data_ready) {

		// optical flow fusion mode selection logic
		if ((_params.fusion_mode & MASK_USE_OF) // optical flow has been selected by the user
				&& !_control_status.flags.opt_flow // we are not yet using flow data
				&& _control_status.flags.tilt_align // we know our tilt attitude
				&& (_time_last_imu - _time_last_hagl_fuse) < 5e5) // we have a valid distance to ground estimate
		{

			// If the heading is not aligned, reset the yaw and magnetic field states
			if (!_control_status.flags.yaw_align) {
				_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
			}

			// If the heading is valid, start using optical flow aiding
			if (_control_status.flags.yaw_align) {
				// set the flag and reset the fusion timeout
				_control_status.flags.opt_flow = true;
				_time_last_of_fuse = _time_last_imu;

				// if we are not using GPS then the velocity and position states and covariances need to be set
				if (!_control_status.flags.gps) {
					// constrain height above ground to be above minimum possible
					float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance);

					// calculate absolute distance from focal point to centre of frame assuming a flat earth
					float range = heightAboveGndEst / _R_to_earth(2, 2);

					if ((range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) {
						// we should have reliable OF measurements so
						// calculate X and Y body relative velocities from OF measurements
						Vector3f vel_optflow_body;
						vel_optflow_body(0) = - range * _flow_sample_delayed.flowRadXYcomp(1) / _flow_sample_delayed.dt;
						vel_optflow_body(1) =   range * _flow_sample_delayed.flowRadXYcomp(0) / _flow_sample_delayed.dt;
						vel_optflow_body(2) = 0.0f;

						// rotate from body to earth frame
						Vector3f vel_optflow_earth;
						vel_optflow_earth = _R_to_earth * vel_optflow_body;

						// take x and Y components
						_state.vel(0) = vel_optflow_earth(0);
						_state.vel(1) = vel_optflow_earth(1);

					} else {
						_state.vel(0) = 0.0f;
						_state.vel(1) = 0.0f;
					}

					// reset the velocity covariance terms
					zeroRows(P,4,5);
					zeroCols(P,4,5);

					// reset the horizontal velocity variance using the optical flow noise variance
					P[5][5] = P[4][4] = sq(range) * calcOptFlowMeasVar();

					if (!_control_status.flags.in_air) {
						// we are likely starting OF for the first time so reset the horizontal position and vertical velocity states
						_state.pos(0) = 0.0f;
						_state.pos(1) = 0.0f;

						// reset the corresponding covariances
						// we are by definition at the origin at commencement so variances are also zeroed
						zeroRows(P,7,8);
						zeroCols(P,7,8);

						// align the output observer to the EKF states
						alignOutputFilter();

					}
				}
			}

		} else if (!(_params.fusion_mode & MASK_USE_OF)) {
			_control_status.flags.opt_flow = false;

		}

		// handle the case when we are relying on optical flow fusion and lose it
		if (_control_status.flags.opt_flow && !_control_status.flags.gps) {
			// We are relying on flow aiding to constrain attitude drift so after 5s without aiding we need to do something
			if ((_time_last_imu - _time_last_of_fuse > 5e6)) {
				// Switch to the non-aiding mode, zero the velocity states
				// and set the synthetic position to the current estimate
				_control_status.flags.opt_flow = false;
				_last_known_posNE(0) = _state.pos(0);
				_last_known_posNE(1) = _state.pos(1);
				_state.vel.setZero();

			}
		}

		// fuse the data
		if (_control_status.flags.opt_flow) {
			// Update optical flow bias estimates
			calcOptFlowBias();

			// Fuse optical flow LOS rate observations into the main filter
			fuseOptFlow();
			_last_known_posNE(0) = _state.pos(0);
			_last_known_posNE(1) = _state.pos(1);

		}
	}
}
Ejemplo n.º 7
0
void Ekf::controlMagAiding()
{
	// If we are using external vision data for heading then no magnetometer fusion is used
	if (_control_status.flags.ev_yaw) {
		return;
	}

	// Determine if we should use simple magnetic heading fusion which works better when there are large external disturbances
	// or the more accurate 3-axis fusion
	if (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTO) {

	if (_control_status.flags.in_air && _control_status.flags.tilt_align) {
		// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states
		if (!_control_status.flags.mag_3D) {
			_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
		}

		// use 3D mag fusion when airborne
		_control_status.flags.mag_hdg = false;
		_control_status.flags.mag_3D = true;

	} else {
		// use heading fusion when on the ground
		_control_status.flags.mag_hdg = true;
		_control_status.flags.mag_3D = false;
	}

	} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_HEADING) {
		// always use heading fusion
		_control_status.flags.mag_hdg = true;
		_control_status.flags.mag_3D = false;

	} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_3D) {
		// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states
		if (!_control_status.flags.mag_3D) {
			_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
		}

		// always use 3-axis mag fusion
		_control_status.flags.mag_hdg = false;
		_control_status.flags.mag_3D = true;

	} else {
		// do no magnetometer fusion at all
		_control_status.flags.mag_hdg = false;
		_control_status.flags.mag_3D = false;
	}

	// if we are using 3-axis magnetometer fusion, but without external aiding, then the declination must be fused as an observation to prevent long term heading drift
	// fusing declination when gps aiding is available is optional, but recommneded to prevent problem if the vehicle is static for extended periods of time
	if (_control_status.flags.mag_3D && (!_control_status.flags.gps || (_params.mag_declination_source & MASK_FUSE_DECL))) {
		_control_status.flags.mag_dec = true;

	} else {
		_control_status.flags.mag_dec = false;
	}

	// if the airspeed measurements have timed out for 10 seconds we declare the wind estimate to be invalid
	if (_time_last_imu - _time_last_arsp_fuse > 10e6 || _time_last_arsp_fuse == 0) {
		_control_status.flags.wind = false;
	} else {
		_control_status.flags.wind = true;
	}
}
Ejemplo n.º 8
0
Archivo: ekf.cpp Proyecto: 9DSmart/ecl
bool Ekf::initialiseFilter(void)
{
	// Keep accumulating measurements until we have a minimum of 10 samples for the baro and magnetoemter

	// Sum the IMU delta angle measurements
	imuSample imu_init = _imu_buffer.get_newest();
	_delVel_sum += imu_init.delta_vel;

	// Sum the magnetometer measurements
	if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) {
		if (_mag_counter == 0) {
			_mag_filt_state = _mag_sample_delayed.mag;
		}

		_mag_counter ++;
		_mag_filt_state = _mag_filt_state * 0.9f + _mag_sample_delayed.mag * 0.1f;
	}

	// set the default height source from the adjustable parameter
	if (_hgt_counter == 0) {
		_primary_hgt_source = _params.vdist_sensor_type;
	}

	if (_primary_hgt_source == VDIST_SENSOR_RANGE) {
		if (_range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)) {
			if (_hgt_counter == 0) {
				_control_status.flags.baro_hgt = false;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = true;
				_hgt_filt_state = _range_sample_delayed.rng;
			}

			_hgt_counter ++;
			_hgt_filt_state = 0.9f * _hgt_filt_state + 0.1f * _range_sample_delayed.rng;
		}

	} else if (_primary_hgt_source == VDIST_SENSOR_BARO || _primary_hgt_source == VDIST_SENSOR_GPS) {
		if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) {
			if (_hgt_counter == 0) {
				_control_status.flags.baro_hgt = true;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = false;
				_hgt_filt_state = _baro_sample_delayed.hgt;
			}

			_hgt_counter ++;
			_hgt_filt_state = 0.9f * _hgt_filt_state + 0.1f * _baro_sample_delayed.hgt;
		}

	} else {
		return false;
	}

	// check to see if we have enough measurements and return false if not
	if (_hgt_counter <= 10 || _mag_counter <= 10) {
		return false;

	} else {
		// reset variables that are shared with post alignment GPS checks
		_gps_drift_velD = 0.0f;
		_gps_alt_ref = 0.0f;

		// Zero all of the states
		_state.ang_error.setZero();
		_state.vel.setZero();
		_state.pos.setZero();
		_state.gyro_bias.setZero();
		_state.gyro_scale(0) = _state.gyro_scale(1) = _state.gyro_scale(2) = 1.0f;
		_state.accel_z_bias = 0.0f;
		_state.mag_I.setZero();
		_state.mag_B.setZero();
		_state.wind_vel.setZero();

		// get initial roll and pitch estimate from delta velocity vector, assuming vehicle is static
		float pitch = 0.0f;
		float roll = 0.0f;

		if (_delVel_sum.norm() > 0.001f) {
			_delVel_sum.normalize();
			pitch = asinf(_delVel_sum(0));
			roll = atan2f(-_delVel_sum(1), -_delVel_sum(2));

		} else {
			return false;
		}

		// calculate initial tilt alignment
		matrix::Euler<float> euler_init(roll, pitch, 0.0f);
		_state.quat_nominal = Quaternion(euler_init);
		_output_new.quat_nominal = _state.quat_nominal;

		// initialise the filtered alignment error estimate to a larger starting value
		_tilt_err_length_filt = 1.0f;

		// calculate the averaged magnetometer reading
		Vector3f mag_init = _mag_filt_state;

		// calculate the initial magnetic field and yaw alignment
		resetMagHeading(mag_init);

		// calculate the averaged height reading to calulate the height of the origin
		_hgt_sensor_offset = _hgt_filt_state;

		// if we are not using the baro height as the primary source, then calculate an offset relative to the origin
		// so it can be used as a backup
		if (!_control_status.flags.baro_hgt) {
			baroSample baro_newest = _baro_buffer.get_newest();
			_baro_hgt_offset = baro_newest.hgt - _hgt_sensor_offset;

		} else {
			_baro_hgt_offset = 0.0f;
		}

		// initialise the state covariance matrix
		initialiseCovariance();

		// initialise the terrain estimator
		initHagl();

		return true;
	}
}
Ejemplo n.º 9
0
void Ekf::controlFusionModes()
{
	// Determine the vehicle status
	calculateVehicleStatus();

	// Get the magnetic declination
	calcMagDeclination();

	// Check for tilt convergence during initial alignment
	// filter the tilt error vector using a 1 sec time constant LPF
	float filt_coef = 1.0f * _imu_sample_delayed.delta_ang_dt;
	_tilt_err_length_filt = filt_coef * _tilt_err_vec.norm() + (1.0f - filt_coef) * _tilt_err_length_filt;

	// Once the tilt error has reduced sufficiently, initialise the yaw and magnetic field states
	if (_tilt_err_length_filt < 0.005f && !_control_status.flags.tilt_align) {
		_control_status.flags.tilt_align = true;
		_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
	}

	// optical flow fusion mode selection logic
	// to start using optical flow data we need angular alignment complete, and fresh optical flow and height above terrain data
	if ((_params.fusion_mode & MASK_USE_OF) && !_control_status.flags.opt_flow && _control_status.flags.tilt_align
	    && (_time_last_imu - _time_last_optflow) < 5e5 && (_time_last_imu - _time_last_hagl_fuse) < 5e5) {
		// If the heading is not aligned, reset the yaw and magnetic field states
		if (!_control_status.flags.yaw_align) {
			_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
		}

		// If the heading is valid, start using optical flow aiding
		if (_control_status.flags.yaw_align) {
			// set the flag and reset the fusion timeout
			_control_status.flags.opt_flow = true;
			_time_last_of_fuse = _time_last_imu;

			// if we are not using GPS and are in air, then we need to reset the velocity to be consistent with the optical flow reading
			if (!_control_status.flags.gps) {
				// calculate the rotation matrix from body to earth frame
				matrix::Dcm<float> body_to_earth(_state.quat_nominal);

				// constrain height above ground to be above minimum possible
				float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance);

				// calculate absolute distance from focal point to centre of frame assuming a flat earth
				float range = heightAboveGndEst / body_to_earth(2, 2);

				if (_in_air && (range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) {
					// calculate X and Y body relative velocities from OF measurements
					Vector3f vel_optflow_body;
					vel_optflow_body(0) = - range * _flow_sample_delayed.flowRadXYcomp(1) / _flow_sample_delayed.dt;
					vel_optflow_body(1) =   range * _flow_sample_delayed.flowRadXYcomp(0) / _flow_sample_delayed.dt;
					vel_optflow_body(2) = 0.0f;

					// rotate from body to earth frame
					Vector3f vel_optflow_earth;
					vel_optflow_earth = body_to_earth * vel_optflow_body;

					// take x and Y components
					_state.vel(0) = vel_optflow_earth(0);
					_state.vel(1) = vel_optflow_earth(1);

				} else {
					_state.vel.setZero();
				}
			}
		}

	} else if (!(_params.fusion_mode & MASK_USE_OF)) {
		_control_status.flags.opt_flow = false;
	}

	// GPS fusion mode selection logic
	// To start use GPS we need angular alignment completed, the local NED origin set and fresh GPS data
	if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) {
		if (_control_status.flags.tilt_align && (_time_last_imu - _time_last_gps) < 5e5 && _NED_origin_initialised
		    && (_time_last_imu - _last_gps_fail_us > 5e6)) {
			// If the heading is not aligned, reset the yaw and magnetic field states
			if (!_control_status.flags.yaw_align) {
				_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
			}

			// If the heading is valid start using gps aiding
			if (_control_status.flags.yaw_align) {
				_control_status.flags.gps = true;
				_time_last_gps = _time_last_imu;

				// if we are not already aiding with optical flow, then we need to reset the position and velocity
				if (!_control_status.flags.opt_flow) {
					_control_status.flags.gps = resetPosition();
					_control_status.flags.gps = resetVelocity();
				}
			}
		}

	}  else if (!(_params.fusion_mode & MASK_USE_GPS)) {
		_control_status.flags.gps = false;
	}

	// handle the case when we are relying on GPS fusion and lose it
	if (_control_status.flags.gps && !_control_status.flags.opt_flow) {
		// We are relying on GPS aiding to constrain attitude drift so after 10 seconds without aiding we need to do something
		if ((_time_last_imu - _time_last_pos_fuse > 10e6) && (_time_last_imu - _time_last_vel_fuse > 10e6)) {
			if (_time_last_imu - _time_last_gps > 5e5) {
				// if we don't have gps then we need to switch to the non-aiding mode, zero the veloity states
				// and set the synthetic GPS position to the current estimate
				_control_status.flags.gps = false;
				_last_known_posNE(0) = _state.pos(0);
				_last_known_posNE(1) = _state.pos(1);
				_state.vel.setZero();

			} else {
				// Reset states to the last GPS measurement
				resetPosition();
				resetVelocity();
			}
		}
	}

	/*
	 * Handle the case where we have not fused height measurements recently and
	 * uncertainty exceeds the max allowable. Reset using the best available height
	 * measurement source, continue using it after the reset and declare the current
	 * source failed if we have switched.
	*/
	if ((P[8][8] > sq(_params.hgt_reset_lim)) && ((_time_last_imu - _time_last_hgt_fuse) > 5e6)) {
		// handle the case where we are using baro for height
		if (_control_status.flags.baro_hgt) {
			// check if GPS height is available
			gpsSample gps_init = _gps_buffer.get_newest();
			bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL);
			bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);
			baroSample baro_init = _baro_buffer.get_newest();
			bool baro_hgt_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);

			// use the gps if it is accurate or there is no baro data available
			if (gps_hgt_available && (gps_hgt_accurate || !baro_hgt_available)) {
				// declare the baro as unhealthy
				_baro_hgt_faulty = true;
				// set the height mode to the GPS
				_control_status.flags.baro_hgt = false;
				_control_status.flags.gps_hgt = true;
				_control_status.flags.rng_hgt = false;
				// adjust the height offset so we can use the GPS
				_hgt_sensor_offset = _state.pos(2) + gps_init.hgt - _gps_alt_ref;
				if (!baro_hgt_available) {
					printf("EKF baro hgt timeout - switching to gps\n");
				}
			}
		}

		// handle the case we are using GPS for height
		if (_control_status.flags.gps_hgt) {
			// check if GPS height is available
			gpsSample gps_init = _gps_buffer.get_newest();
			bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL);
			bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);
			// check the baro height source for consistency and freshness
			baroSample baro_init = _baro_buffer.get_newest();
			bool baro_data_fresh = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);
			float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset);
			bool baro_data_consistent = fabsf(baro_innov) < (sq(_params.baro_noise) + P[8][8]) * sq(_params.baro_innov_gate);

			// if baro data is consistent and fresh or GPS height is unavailable or inaccurate, we switch to baro for height
			if ((baro_data_consistent && baro_data_fresh) || !gps_hgt_available || !gps_hgt_accurate) {
				// declare the GPS height unhealthy
				_gps_hgt_faulty = true;
				// set the height mode to the baro
				_control_status.flags.baro_hgt = true;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = false;
				printf("EKF gps hgt timeout - switching to baro\n");
			}
		}

		// handle the case we are using range finder for height
		if (_control_status.flags.rng_hgt) {
			// check if range finder data is available
			rangeSample rng_init = _range_buffer.get_newest();
			bool rng_data_available = ((_time_last_imu - rng_init.time_us) < 2 * RNG_MAX_INTERVAL);
			// check if baro data is available
			baroSample baro_init = _baro_buffer.get_newest();
			bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);
			// check if baro data is consistent
			float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset);
			bool baro_data_consistent = sq(baro_innov) < (sq(_params.baro_noise) + P[8][8]) * sq(_params.baro_innov_gate);
			// switch to baro if necessary or preferable
			bool switch_to_baro = (!rng_data_available && baro_data_available) || (baro_data_consistent && baro_data_available);

			if (switch_to_baro) {
				// declare the range finder height unhealthy
				_rng_hgt_faulty = true;
				// set the height mode to the baro
				_control_status.flags.baro_hgt = true;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = false;
				printf("EKF rng hgt timeout - switching to baro\n");
			}
		}

		// Reset vertical position and velocity states to the last measurement
		resetHeight();
	}

	// handle the case when we are relying on optical flow fusion and lose it
	if (_control_status.flags.opt_flow && !_control_status.flags.gps) {
		// We are relying on flow aiding to constrain attitude drift so after 5s without aiding we need to do something
		if ((_time_last_imu - _time_last_of_fuse > 5e6)) {
			// Switch to the non-aiding mode, zero the veloity states
			// and set the synthetic position to the current estimate
			_control_status.flags.opt_flow = false;
			_last_known_posNE(0) = _state.pos(0);
			_last_known_posNE(1) = _state.pos(1);
			_state.vel.setZero();
		}
	}

	// Determine if we should use simple magnetic heading fusion which works better when there are large external disturbances
	// or the more accurate 3-axis fusion
	if (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTO) {
		if (!_control_status.flags.armed) {
			// use heading fusion for initial startup
			_control_status.flags.mag_hdg = true;
			_control_status.flags.mag_2D = false;
			_control_status.flags.mag_3D = false;

		} else {
			if (_control_status.flags.in_air) {
				// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states
				if (!_control_status.flags.mag_3D) {
					_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
				}

				// use 3D mag fusion when airborne
				_control_status.flags.mag_hdg = false;
				_control_status.flags.mag_2D = false;
				_control_status.flags.mag_3D = true;

			} else {
				// use heading fusion when on the ground
				_control_status.flags.mag_hdg = true;
				_control_status.flags.mag_2D = false;
				_control_status.flags.mag_3D = false;
			}
		}

	} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_HEADING) {
		// always use heading fusion
		_control_status.flags.mag_hdg = true;
		_control_status.flags.mag_2D = false;
		_control_status.flags.mag_3D = false;

	} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_2D) {
		// always use 2D mag fusion
		_control_status.flags.mag_hdg = false;
		_control_status.flags.mag_2D = true;
		_control_status.flags.mag_3D = false;

	} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_3D) {
		// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states
		if (!_control_status.flags.mag_3D) {
			_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
		}

		// always use 3-axis mag fusion
		_control_status.flags.mag_hdg = false;
		_control_status.flags.mag_2D = false;
		_control_status.flags.mag_3D = true;

	} else {
		// do no magnetometer fusion at all
		_control_status.flags.mag_hdg = false;
		_control_status.flags.mag_2D = false;
		_control_status.flags.mag_3D = false;
	}

	// if we are using 3-axis magnetometer fusion, but without external aiding, then the declination must be fused as an observation to prevent long term heading drift
	// fusing declination when gps aiding is available is optional, but recommneded to prevent problem if the vehicle is static for extended periods of time
	if (_control_status.flags.mag_3D && (!_control_status.flags.gps || (_params.mag_declination_source & MASK_FUSE_DECL))) {
		_control_status.flags.mag_dec = true;

	} else {
		_control_status.flags.mag_dec = false;
	}

	// Control the soure of height measurements for the main filter
	if ((_params.vdist_sensor_type == VDIST_SENSOR_BARO && !_baro_hgt_faulty) || _control_status.flags.baro_hgt) {
		_control_status.flags.baro_hgt = true;
		_control_status.flags.gps_hgt = false;
		_control_status.flags.rng_hgt = false;

	} else if ((_params.vdist_sensor_type == VDIST_SENSOR_GPS && !_gps_hgt_faulty) || _control_status.flags.gps_hgt) {
		_control_status.flags.baro_hgt = false;
		_control_status.flags.gps_hgt = true;
		_control_status.flags.rng_hgt = false;

	} else if (_params.vdist_sensor_type == VDIST_SENSOR_RANGE && !_rng_hgt_faulty) {
		_control_status.flags.baro_hgt = false;
		_control_status.flags.gps_hgt = false;
		_control_status.flags.rng_hgt = true;
	}

	// Placeholder for control of wind velocity states estimation
	// TODO add methods for true airspeed and/or sidelsip fusion or some type of drag force measurement
	if (false) {
		_control_status.flags.wind = false;
	}

	// Store the status to enable change detection
	_control_status_prev.value = _control_status.value;
}