static void InputAngle(TransInfo *UNUSED(t), MouseInput *mi, const int mval[2], float output[3]) { double dx2 = mval[0] - mi->center[0]; double dy2 = mval[1] - mi->center[1]; double B = sqrt(dx2*dx2+dy2*dy2); double dx1 = mi->imval[0] - mi->center[0]; double dy1 = mi->imval[1] - mi->center[1]; double A = sqrt(dx1*dx1+dy1*dy1); double dx3 = mval[0] - mi->imval[0]; double dy3 = mval[1] - mi->imval[1]; double *angle = mi->data; /* use doubles here, to make sure a "1.0" (no rotation) doesnt become 9.999999e-01, which gives 0.02 for acos */ double deler = ((dx1*dx1+dy1*dy1)+(dx2*dx2+dy2*dy2)-(dx3*dx3+dy3*dy3)) / (2.0 * ((A*B)?(A*B):1.0)); /* ((A*B)?(A*B):1.0) this takes care of potential divide by zero errors */ float dphi; dphi = saacos((float)deler); if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi; /* If the angle is zero, because of lack of precision close to the 1.0 value in acos * approximate the angle with the opposite side of the normalized triangle * This is a good approximation here since the smallest acos value seems to be around * 0.02 degree and lower values don't even have a 0.01% error compared to the approximation * */ if (dphi == 0) { double dx, dy; dx2 /= A; dy2 /= A; dx1 /= B; dy1 /= B; dx = dx1 - dx2; dy = dy1 - dy2; dphi = sqrt(dx*dx + dy*dy); if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi; } if(mi->precision) dphi = dphi/30.0f; /* if no delta angle, don't update initial position */ if (dphi != 0) { mi->imval[0] = mval[0]; mi->imval[1] = mval[1]; } *angle += (double)dphi; output[0] = *angle; }
static PyObject *Quaternion_angle_get(QuaternionObject *self, void *UNUSED(closure)) { float tquat[4]; float angle; if (BaseMath_ReadCallback(self) == -1) return NULL; normalize_qt_qt(tquat, self->quat); angle = 2.0f * saacos(tquat[0]); quat__axis_angle_sanitize(NULL, &angle); return PyFloat_FromDouble(angle); }
int BLI_lasso_is_point_inside(int mcords[][2], short moves, const int sx, const int sy, const int error_value) { /* we do the angle rule, define that all added angles should be about zero or (2 * PI) */ float angletot = 0.0, dot, ang, cross, fp1[2], fp2[2]; int a; int *p1, *p2; if (sx == error_value) { return 0; } p1 = mcords[moves - 1]; p2 = mcords[0]; /* first vector */ fp1[0] = (float)(p1[0] - sx); fp1[1] = (float)(p1[1] - sy); normalize_v2(fp1); for (a = 0; a < moves; a++) { /* second vector */ fp2[0] = (float)(p2[0] - sx); fp2[1] = (float)(p2[1] - sy); normalize_v2(fp2); /* dot and angle and cross */ dot = fp1[0] * fp2[0] + fp1[1] * fp2[1]; ang = fabs(saacos(dot)); cross = (float)((p1[1] - p2[1]) * (p1[0] - sx) + (p2[0] - p1[0]) * (p1[1] - sy)); if (cross < 0.0f) angletot -= ang; else angletot += ang; /* circulate */ fp1[0] = fp2[0]; fp1[1] = fp2[1]; p1 = p2; p2 = mcords[a + 1]; } if (fabs(angletot) > 4.0) return 1; return 0; }
float effector_falloff(EffectorCache *eff, EffectorData *efd, EffectedPoint *UNUSED(point), EffectorWeights *weights) { float temp[3]; float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f; float fac, r_fac; fac = dot_v3v3(efd->nor, efd->vec_to_point2); if (eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f) falloff=0.0f; else if (eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f) falloff=0.0f; else { switch (eff->pd->falloff) { case PFIELD_FALL_SPHERE: falloff*= falloff_func_dist(eff->pd, efd->distance); break; case PFIELD_FALL_TUBE: falloff*= falloff_func_dist(eff->pd, ABS(fac)); if (falloff == 0.0f) break; madd_v3_v3v3fl(temp, efd->vec_to_point, efd->nor, -fac); r_fac= len_v3(temp); falloff*= falloff_func_rad(eff->pd, r_fac); break; case PFIELD_FALL_CONE: falloff*= falloff_func_dist(eff->pd, ABS(fac)); if (falloff == 0.0f) break; r_fac= RAD2DEGF(saacos(fac/len_v3(efd->vec_to_point))); falloff*= falloff_func_rad(eff->pd, r_fac); break; } } return falloff; }
/* Gets the lens and clipping values from a camera of lamp type object */ void ED_view3d_ob_clip_range_get(Object *ob, float *lens, float *clipsta, float *clipend) { if(ob->type==OB_LAMP ) { Lamp *la = ob->data; if (lens) { float x1, fac; fac= cosf((float)M_PI*la->spotsize/360.0f); x1= saacos(fac); *lens= 16.0f*fac/sinf(x1); } if (clipsta) *clipsta= la->clipsta; if (clipend) *clipend= la->clipend; } else if(ob->type==OB_CAMERA) { Camera *cam= ob->data; if (lens) *lens= cam->lens; if (clipsta) *clipsta= cam->clipsta; if (clipend) *clipend= cam->clipend; } else { if (lens) *lens= 35.0f; } }
static DerivedMesh * applyModifier(ModifierData *md, Object *ob, DerivedMesh *derivedData, int UNUSED(useRenderParams), int UNUSED(isFinalCalc)) { DerivedMesh *dm = derivedData, *result; ParticleInstanceModifierData *pimd= (ParticleInstanceModifierData*) md; ParticleSimulationData sim; ParticleSystem *psys= NULL; ParticleData *pa= NULL, *pars= NULL; MFace *mface, *orig_mface; MVert *mvert, *orig_mvert; int i,totvert, totpart=0, totface, maxvert, maxface, first_particle=0; short track=ob->trackflag%3, trackneg, axis = pimd->axis; float max_co=0.0, min_co=0.0, temp_co[3], cross[3]; float *size=NULL; trackneg=((ob->trackflag>2)?1:0); if(pimd->ob==ob){ pimd->ob= NULL; return derivedData; } if(pimd->ob){ psys = BLI_findlink(&pimd->ob->particlesystem,pimd->psys-1); if(psys==NULL || psys->totpart==0) return derivedData; } else return derivedData; if(pimd->flag & eParticleInstanceFlag_Parents) totpart+=psys->totpart; if(pimd->flag & eParticleInstanceFlag_Children){ if(totpart==0) first_particle=psys->totpart; totpart+=psys->totchild; } if(totpart==0) return derivedData; sim.scene = md->scene; sim.ob = pimd->ob; sim.psys = psys; sim.psmd = psys_get_modifier(pimd->ob, psys); if(pimd->flag & eParticleInstanceFlag_UseSize) { int p; float *si; si = size = MEM_callocN(totpart * sizeof(float), "particle size array"); if(pimd->flag & eParticleInstanceFlag_Parents) { for(p=0, pa= psys->particles; p<psys->totpart; p++, pa++, si++) *si = pa->size; } if(pimd->flag & eParticleInstanceFlag_Children) { ChildParticle *cpa = psys->child; for(p=0; p<psys->totchild; p++, cpa++, si++) { *si = psys_get_child_size(psys, cpa, 0.0f, NULL); } } } pars=psys->particles; totvert=dm->getNumVerts(dm); totface=dm->getNumFaces(dm); maxvert=totvert*totpart; maxface=totface*totpart; psys->lattice=psys_get_lattice(&sim); if(psys->flag & (PSYS_HAIR_DONE|PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED){ float min_r[3], max_r[3]; INIT_MINMAX(min_r, max_r); dm->getMinMax(dm, min_r, max_r); min_co=min_r[track]; max_co=max_r[track]; } result = CDDM_from_template(dm, maxvert,dm->getNumEdges(dm)*totpart,maxface); mvert=result->getVertArray(result); orig_mvert=dm->getVertArray(dm); for(i=0; i<maxvert; i++){ MVert *inMV; MVert *mv = mvert + i; ParticleKey state; inMV = orig_mvert + i%totvert; DM_copy_vert_data(dm, result, i%totvert, i, 1); *mv = *inMV; /*change orientation based on object trackflag*/ copy_v3_v3(temp_co, mv->co); mv->co[axis]=temp_co[track]; mv->co[(axis+1)%3]=temp_co[(track+1)%3]; mv->co[(axis+2)%3]=temp_co[(track+2)%3]; if((psys->flag & (PSYS_HAIR_DONE|PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED) && pimd->flag & eParticleInstanceFlag_Path){ float ran = 0.0f; if(pimd->random_position != 0.0f) { BLI_srandom(psys->seed + (i/totvert)%totpart); ran = pimd->random_position * BLI_frand(); } if(pimd->flag & eParticleInstanceFlag_KeepShape) { state.time = pimd->position * (1.0f - ran); } else { state.time=(mv->co[axis]-min_co)/(max_co-min_co) * pimd->position * (1.0f - ran); if(trackneg) state.time=1.0f-state.time; mv->co[axis] = 0.0; } psys_get_particle_on_path(&sim, first_particle + i/totvert, &state,1); normalize_v3(state.vel); /* TODO: incremental rotations somehow */ if(state.vel[axis] < -0.9999f || state.vel[axis] > 0.9999f) { state.rot[0] = 1; state.rot[1] = state.rot[2] = state.rot[3] = 0.0f; } else { float temp[3] = {0.0f,0.0f,0.0f}; temp[axis] = 1.0f; cross_v3_v3v3(cross, temp, state.vel); /* state.vel[axis] is the only component surviving from a dot product with the axis */ axis_angle_to_quat(state.rot,cross,saacos(state.vel[axis])); } } else{ state.time=-1.0; psys_get_particle_state(&sim, first_particle + i/totvert, &state,1); } mul_qt_v3(state.rot,mv->co); if(pimd->flag & eParticleInstanceFlag_UseSize) mul_v3_fl(mv->co, size[i/totvert]); VECADD(mv->co,mv->co,state.co); } mface=result->getFaceArray(result); orig_mface=dm->getFaceArray(dm); for(i=0; i<maxface; i++){ MFace *inMF; MFace *mf = mface + i; if(pimd->flag & eParticleInstanceFlag_Parents){ if(i/totface>=psys->totpart){ if(psys->part->childtype==PART_CHILD_PARTICLES) pa=psys->particles+(psys->child+i/totface-psys->totpart)->parent; else pa= NULL; } else pa=pars+i/totface; } else{ if(psys->part->childtype==PART_CHILD_PARTICLES) pa=psys->particles+(psys->child+i/totface)->parent; else pa= NULL; } if(pa){ if(pa->alive==PARS_UNBORN && (pimd->flag&eParticleInstanceFlag_Unborn)==0) continue; if(pa->alive==PARS_ALIVE && (pimd->flag&eParticleInstanceFlag_Alive)==0) continue; if(pa->alive==PARS_DEAD && (pimd->flag&eParticleInstanceFlag_Dead)==0) continue; } inMF = orig_mface + i%totface; DM_copy_face_data(dm, result, i%totface, i, 1); *mf = *inMF; mf->v1+=(i/totface)*totvert; mf->v2+=(i/totface)*totvert; mf->v3+=(i/totface)*totvert; if(mf->v4) mf->v4+=(i/totface)*totvert; } CDDM_calc_edges(result); CDDM_calc_normals(result); if(psys->lattice){ end_latt_deform(psys->lattice); psys->lattice= NULL; } if(size) MEM_freeN(size); return result; }
/* tries to realize the wanted velocity taking all constraints into account */ void boid_body(BoidBrainData *bbd, ParticleData *pa) { BoidSettings *boids = bbd->part->boids; BoidParticle *bpa = pa->boid; BoidValues val; EffectedPoint epoint; float acc[3] = {0.0f, 0.0f, 0.0f}, tan_acc[3], nor_acc[3]; float dvec[3], bvec[3]; float new_dir[3], new_speed; float old_dir[3], old_speed; float wanted_dir[3]; float q[4], mat[3][3]; /* rotation */ float ground_co[3] = {0.0f, 0.0f, 0.0f}, ground_nor[3] = {0.0f, 0.0f, 1.0f}; float force[3] = {0.0f, 0.0f, 0.0f}; float pa_mass=bbd->part->mass, dtime=bbd->dfra*bbd->timestep; set_boid_values(&val, boids, pa); /* make sure there's something in new velocity, location & rotation */ copy_particle_key(&pa->state, &pa->prev_state, 0); if (bbd->part->flag & PART_SIZEMASS) pa_mass*=pa->size; /* if boids can't fly they fall to the ground */ if ((boids->options & BOID_ALLOW_FLIGHT)==0 && ELEM(bpa->data.mode, eBoidMode_OnLand, eBoidMode_Climbing)==0 && psys_uses_gravity(bbd->sim)) bpa->data.mode = eBoidMode_Falling; if (bpa->data.mode == eBoidMode_Falling) { /* Falling boids are only effected by gravity. */ acc[2] = bbd->sim->scene->physics_settings.gravity[2]; } else { /* figure out acceleration */ float landing_level = 2.0f; float level = landing_level + 1.0f; float new_vel[3]; if (bpa->data.mode == eBoidMode_Liftoff) { bpa->data.mode = eBoidMode_InAir; bpa->ground = boid_find_ground(bbd, pa, ground_co, ground_nor); } else if (bpa->data.mode == eBoidMode_InAir && boids->options & BOID_ALLOW_LAND) { /* auto-leveling & landing if close to ground */ bpa->ground = boid_find_ground(bbd, pa, ground_co, ground_nor); /* level = how many particle sizes above ground */ level = (pa->prev_state.co[2] - ground_co[2])/(2.0f * pa->size) - 0.5f; landing_level = - boids->landing_smoothness * pa->prev_state.vel[2] * pa_mass; if (pa->prev_state.vel[2] < 0.0f) { if (level < 1.0f) { bbd->wanted_co[0] = bbd->wanted_co[1] = bbd->wanted_co[2] = 0.0f; bbd->wanted_speed = 0.0f; bpa->data.mode = eBoidMode_Falling; } else if (level < landing_level) { bbd->wanted_speed *= (level - 1.0f)/landing_level; bbd->wanted_co[2] *= (level - 1.0f)/landing_level; } } } copy_v3_v3(old_dir, pa->prev_state.ave); new_speed = normalize_v3_v3(wanted_dir, bbd->wanted_co); /* first check if we have valid direction we want to go towards */ if (new_speed == 0.0f) { copy_v3_v3(new_dir, old_dir); } else { float old_dir2[2], wanted_dir2[2], nor[3], angle; copy_v2_v2(old_dir2, old_dir); normalize_v2(old_dir2); copy_v2_v2(wanted_dir2, wanted_dir); normalize_v2(wanted_dir2); /* choose random direction to turn if wanted velocity */ /* is directly behind regardless of z-coordinate */ if (dot_v2v2(old_dir2, wanted_dir2) < -0.99f) { wanted_dir[0] = 2.0f*(0.5f - BLI_rng_get_float(bbd->rng)); wanted_dir[1] = 2.0f*(0.5f - BLI_rng_get_float(bbd->rng)); wanted_dir[2] = 2.0f*(0.5f - BLI_rng_get_float(bbd->rng)); normalize_v3(wanted_dir); } /* constrain direction with maximum angular velocity */ angle = saacos(dot_v3v3(old_dir, wanted_dir)); angle = min_ff(angle, val.max_ave); cross_v3_v3v3(nor, old_dir, wanted_dir); axis_angle_to_quat(q, nor, angle); copy_v3_v3(new_dir, old_dir); mul_qt_v3(q, new_dir); normalize_v3(new_dir); /* save direction in case resulting velocity too small */ axis_angle_to_quat(q, nor, angle*dtime); copy_v3_v3(pa->state.ave, old_dir); mul_qt_v3(q, pa->state.ave); normalize_v3(pa->state.ave); } /* constrain speed with maximum acceleration */ old_speed = len_v3(pa->prev_state.vel); if (bbd->wanted_speed < old_speed) new_speed = MAX2(bbd->wanted_speed, old_speed - val.max_acc); else new_speed = MIN2(bbd->wanted_speed, old_speed + val.max_acc); /* combine direction and speed */ copy_v3_v3(new_vel, new_dir); mul_v3_fl(new_vel, new_speed); /* maintain minimum flying velocity if not landing */ if (level >= landing_level) { float len2 = dot_v2v2(new_vel, new_vel); float root; len2 = MAX2(len2, val.min_speed*val.min_speed); root = sasqrt(new_speed*new_speed - len2); new_vel[2] = new_vel[2] < 0.0f ? -root : root; normalize_v2(new_vel); mul_v2_fl(new_vel, sasqrt(len2)); } /* finally constrain speed to max speed */ new_speed = normalize_v3(new_vel); mul_v3_fl(new_vel, MIN2(new_speed, val.max_speed)); /* get acceleration from difference of velocities */ sub_v3_v3v3(acc, new_vel, pa->prev_state.vel); /* break acceleration to components */ project_v3_v3v3(tan_acc, acc, pa->prev_state.ave); sub_v3_v3v3(nor_acc, acc, tan_acc); } /* account for effectors */ pd_point_from_particle(bbd->sim, pa, &pa->state, &epoint); pdDoEffectors(bbd->sim->psys->effectors, bbd->sim->colliders, bbd->part->effector_weights, &epoint, force, NULL); if (ELEM(bpa->data.mode, eBoidMode_OnLand, eBoidMode_Climbing)) { float length = normalize_v3(force); length = MAX2(0.0f, length - boids->land_stick_force); mul_v3_fl(force, length); } add_v3_v3(acc, force); /* store smoothed acceleration for nice banking etc. */ madd_v3_v3fl(bpa->data.acc, acc, dtime); mul_v3_fl(bpa->data.acc, 1.0f / (1.0f + dtime)); /* integrate new location & velocity */ /* by regarding the acceleration as a force at this stage we*/ /* can get better control allthough it's a bit unphysical */ mul_v3_fl(acc, 1.0f/pa_mass); copy_v3_v3(dvec, acc); mul_v3_fl(dvec, dtime*dtime*0.5f); copy_v3_v3(bvec, pa->prev_state.vel); mul_v3_fl(bvec, dtime); add_v3_v3(dvec, bvec); add_v3_v3(pa->state.co, dvec); madd_v3_v3fl(pa->state.vel, acc, dtime); //if (bpa->data.mode != eBoidMode_InAir) bpa->ground = boid_find_ground(bbd, pa, ground_co, ground_nor); /* change modes, constrain movement & keep track of down vector */ switch (bpa->data.mode) { case eBoidMode_InAir: { float grav[3]; grav[0] = 0.0f; grav[1] = 0.0f; grav[2] = bbd->sim->scene->physics_settings.gravity[2] < 0.0f ? -1.0f : 0.0f; /* don't take forward acceleration into account (better banking) */ if (dot_v3v3(bpa->data.acc, pa->state.vel) > 0.0f) { project_v3_v3v3(dvec, bpa->data.acc, pa->state.vel); sub_v3_v3v3(dvec, bpa->data.acc, dvec); } else { copy_v3_v3(dvec, bpa->data.acc); } /* gather apparent gravity */ madd_v3_v3v3fl(bpa->gravity, grav, dvec, -boids->banking); normalize_v3(bpa->gravity); /* stick boid on goal when close enough */ if (bbd->goal_ob && boid_goal_signed_dist(pa->state.co, bbd->goal_co, bbd->goal_nor) <= pa->size * boids->height) { bpa->data.mode = eBoidMode_Climbing; bpa->ground = bbd->goal_ob; boid_find_ground(bbd, pa, ground_co, ground_nor); boid_climb(boids, pa, ground_co, ground_nor); } else if (pa->state.co[2] <= ground_co[2] + pa->size * boids->height) { /* land boid when below ground */ if (boids->options & BOID_ALLOW_LAND) { pa->state.co[2] = ground_co[2] + pa->size * boids->height; pa->state.vel[2] = 0.0f; bpa->data.mode = eBoidMode_OnLand; } /* fly above ground */ else if (bpa->ground) { pa->state.co[2] = ground_co[2] + pa->size * boids->height; pa->state.vel[2] = 0.0f; } } break; } case eBoidMode_Falling: { float grav[3]; grav[0] = 0.0f; grav[1] = 0.0f; grav[2] = bbd->sim->scene->physics_settings.gravity[2] < 0.0f ? -1.0f : 0.0f; /* gather apparent gravity */ madd_v3_v3fl(bpa->gravity, grav, dtime); normalize_v3(bpa->gravity); if (boids->options & BOID_ALLOW_LAND) { /* stick boid on goal when close enough */ if (bbd->goal_ob && boid_goal_signed_dist(pa->state.co, bbd->goal_co, bbd->goal_nor) <= pa->size * boids->height) { bpa->data.mode = eBoidMode_Climbing; bpa->ground = bbd->goal_ob; boid_find_ground(bbd, pa, ground_co, ground_nor); boid_climb(boids, pa, ground_co, ground_nor); } /* land boid when really near ground */ else if (pa->state.co[2] <= ground_co[2] + 1.01f * pa->size * boids->height) { pa->state.co[2] = ground_co[2] + pa->size * boids->height; pa->state.vel[2] = 0.0f; bpa->data.mode = eBoidMode_OnLand; } /* if we're falling, can fly and want to go upwards lets fly */ else if (boids->options & BOID_ALLOW_FLIGHT && bbd->wanted_co[2] > 0.0f) bpa->data.mode = eBoidMode_InAir; } else bpa->data.mode = eBoidMode_InAir; break; } case eBoidMode_Climbing: { boid_climb(boids, pa, ground_co, ground_nor); //float nor[3]; //copy_v3_v3(nor, ground_nor); ///* gather apparent gravity to r_ve */ //madd_v3_v3fl(pa->r_ve, ground_nor, -1.0); //normalize_v3(pa->r_ve); ///* raise boid it's size from surface */ //mul_v3_fl(nor, pa->size * boids->height); //add_v3_v3v3(pa->state.co, ground_co, nor); ///* remove normal component from velocity */ //project_v3_v3v3(v, pa->state.vel, ground_nor); //sub_v3_v3v3(pa->state.vel, pa->state.vel, v); break; } case eBoidMode_OnLand: { /* stick boid on goal when close enough */ if (bbd->goal_ob && boid_goal_signed_dist(pa->state.co, bbd->goal_co, bbd->goal_nor) <= pa->size * boids->height) { bpa->data.mode = eBoidMode_Climbing; bpa->ground = bbd->goal_ob; boid_find_ground(bbd, pa, ground_co, ground_nor); boid_climb(boids, pa, ground_co, ground_nor); } /* ground is too far away so boid falls */ else if (pa->state.co[2]-ground_co[2] > 1.1f * pa->size * boids->height) bpa->data.mode = eBoidMode_Falling; else { /* constrain to surface */ pa->state.co[2] = ground_co[2] + pa->size * boids->height; pa->state.vel[2] = 0.0f; } if (boids->banking > 0.0f) { float grav[3]; /* Don't take gravity's strength in to account, */ /* otherwise amount of banking is hard to control. */ negate_v3_v3(grav, ground_nor); project_v3_v3v3(dvec, bpa->data.acc, pa->state.vel); sub_v3_v3v3(dvec, bpa->data.acc, dvec); /* gather apparent gravity */ madd_v3_v3v3fl(bpa->gravity, grav, dvec, -boids->banking); normalize_v3(bpa->gravity); } else { /* gather negative surface normal */ madd_v3_v3fl(bpa->gravity, ground_nor, -1.0f); normalize_v3(bpa->gravity); } break; } } /* save direction to state.ave unless the boid is falling */ /* (boids can't effect their direction when falling) */ if (bpa->data.mode!=eBoidMode_Falling && len_v3(pa->state.vel) > 0.1f*pa->size) { copy_v3_v3(pa->state.ave, pa->state.vel); pa->state.ave[2] *= bbd->part->boids->pitch; normalize_v3(pa->state.ave); } /* apply damping */ if (ELEM(bpa->data.mode, eBoidMode_OnLand, eBoidMode_Climbing)) mul_v3_fl(pa->state.vel, 1.0f - 0.2f*bbd->part->dampfac); /* calculate rotation matrix based on forward & down vectors */ if (bpa->data.mode == eBoidMode_InAir) { copy_v3_v3(mat[0], pa->state.ave); project_v3_v3v3(dvec, bpa->gravity, pa->state.ave); sub_v3_v3v3(mat[2], bpa->gravity, dvec); normalize_v3(mat[2]); } else { project_v3_v3v3(dvec, pa->state.ave, bpa->gravity); sub_v3_v3v3(mat[0], pa->state.ave, dvec); normalize_v3(mat[0]); copy_v3_v3(mat[2], bpa->gravity); } negate_v3(mat[2]); cross_v3_v3v3(mat[1], mat[2], mat[0]); /* apply rotation */ mat3_to_quat_is_ok(q, mat); copy_qt_qt(pa->state.rot, q); }
static DerivedMesh *applyModifier(ModifierData *md, Object *ob, DerivedMesh *derivedData, ModifierApplyFlag UNUSED(flag)) { DerivedMesh *dm = derivedData, *result; ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *) md; ParticleSimulationData sim; ParticleSystem *psys = NULL; ParticleData *pa = NULL; MPoly *mpoly, *orig_mpoly; MLoop *mloop, *orig_mloop; MVert *mvert, *orig_mvert; int totvert, totpoly, totloop /* , totedge */; int maxvert, maxpoly, maxloop, totpart = 0, first_particle = 0; int k, p, p_skip; short track = ob->trackflag % 3, trackneg, axis = pimd->axis; float max_co = 0.0, min_co = 0.0, temp_co[3]; float *size = NULL; trackneg = ((ob->trackflag > 2) ? 1 : 0); if (pimd->ob == ob) { pimd->ob = NULL; return derivedData; } if (pimd->ob) { psys = BLI_findlink(&pimd->ob->particlesystem, pimd->psys - 1); if (psys == NULL || psys->totpart == 0) return derivedData; } else { return derivedData; } if (pimd->flag & eParticleInstanceFlag_Parents) totpart += psys->totpart; if (pimd->flag & eParticleInstanceFlag_Children) { if (totpart == 0) first_particle = psys->totpart; totpart += psys->totchild; } if (totpart == 0) return derivedData; sim.scene = md->scene; sim.ob = pimd->ob; sim.psys = psys; sim.psmd = psys_get_modifier(pimd->ob, psys); if (pimd->flag & eParticleInstanceFlag_UseSize) { float *si; si = size = MEM_callocN(totpart * sizeof(float), "particle size array"); if (pimd->flag & eParticleInstanceFlag_Parents) { for (p = 0, pa = psys->particles; p < psys->totpart; p++, pa++, si++) *si = pa->size; } if (pimd->flag & eParticleInstanceFlag_Children) { ChildParticle *cpa = psys->child; for (p = 0; p < psys->totchild; p++, cpa++, si++) { *si = psys_get_child_size(psys, cpa, 0.0f, NULL); } } } totvert = dm->getNumVerts(dm); totpoly = dm->getNumPolys(dm); totloop = dm->getNumLoops(dm); /* totedge = dm->getNumEdges(dm); */ /* UNUSED */ /* count particles */ maxvert = 0; maxpoly = 0; maxloop = 0; for (p = 0; p < totpart; p++) { if (particle_skip(pimd, psys, p)) continue; maxvert += totvert; maxpoly += totpoly; maxloop += totloop; } psys->lattice_deform_data = psys_create_lattice_deform_data(&sim); if (psys->flag & (PSYS_HAIR_DONE | PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED) { float min[3], max[3]; INIT_MINMAX(min, max); dm->getMinMax(dm, min, max); min_co = min[track]; max_co = max[track]; } result = CDDM_from_template(dm, maxvert, 0, 0, maxloop, maxpoly); mvert = result->getVertArray(result); orig_mvert = dm->getVertArray(dm); mpoly = result->getPolyArray(result); orig_mpoly = dm->getPolyArray(dm); mloop = result->getLoopArray(result); orig_mloop = dm->getLoopArray(dm); for (p = 0, p_skip = 0; p < totpart; p++) { float prev_dir[3]; float frame[4]; /* frame orientation quaternion */ /* skip particle? */ if (particle_skip(pimd, psys, p)) continue; /* set vertices coordinates */ for (k = 0; k < totvert; k++) { ParticleKey state; MVert *inMV; MVert *mv = mvert + p_skip * totvert + k; inMV = orig_mvert + k; DM_copy_vert_data(dm, result, k, p_skip * totvert + k, 1); *mv = *inMV; /*change orientation based on object trackflag*/ copy_v3_v3(temp_co, mv->co); mv->co[axis] = temp_co[track]; mv->co[(axis + 1) % 3] = temp_co[(track + 1) % 3]; mv->co[(axis + 2) % 3] = temp_co[(track + 2) % 3]; /* get particle state */ if ((psys->flag & (PSYS_HAIR_DONE | PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED) && (pimd->flag & eParticleInstanceFlag_Path)) { float ran = 0.0f; if (pimd->random_position != 0.0f) { ran = pimd->random_position * BLI_hash_frand(psys->seed + p); } if (pimd->flag & eParticleInstanceFlag_KeepShape) { state.time = pimd->position * (1.0f - ran); } else { state.time = (mv->co[axis] - min_co) / (max_co - min_co) * pimd->position * (1.0f - ran); if (trackneg) state.time = 1.0f - state.time; mv->co[axis] = 0.0; } psys_get_particle_on_path(&sim, first_particle + p, &state, 1); normalize_v3(state.vel); /* Incrementally Rotating Frame (Bishop Frame) */ if (k == 0) { float hairmat[4][4]; float mat[3][3]; if (first_particle + p < psys->totpart) pa = psys->particles + first_particle + p; else { ChildParticle *cpa = psys->child + (p - psys->totpart); pa = psys->particles + cpa->parent; } psys_mat_hair_to_global(sim.ob, sim.psmd->dm, sim.psys->part->from, pa, hairmat); copy_m3_m4(mat, hairmat); /* to quaternion */ mat3_to_quat(frame, mat); /* note: direction is same as normal vector currently, * but best to keep this separate so the frame can be * rotated later if necessary */ copy_v3_v3(prev_dir, state.vel); } else { float rot[4]; /* incrementally rotate along bend direction */ rotation_between_vecs_to_quat(rot, prev_dir, state.vel); mul_qt_qtqt(frame, rot, frame); copy_v3_v3(prev_dir, state.vel); } copy_qt_qt(state.rot, frame); #if 0 /* Absolute Frame (Frenet Frame) */ if (state.vel[axis] < -0.9999f || state.vel[axis] > 0.9999f) { unit_qt(state.rot); } else { float cross[3]; float temp[3] = {0.0f, 0.0f, 0.0f}; temp[axis] = 1.0f; cross_v3_v3v3(cross, temp, state.vel); /* state.vel[axis] is the only component surviving from a dot product with the axis */ axis_angle_to_quat(state.rot, cross, saacos(state.vel[axis])); } #endif } else { state.time = -1.0; psys_get_particle_state(&sim, first_particle + p, &state, 1); } mul_qt_v3(state.rot, mv->co); if (pimd->flag & eParticleInstanceFlag_UseSize) mul_v3_fl(mv->co, size[p]); add_v3_v3(mv->co, state.co); } /* create polys and loops */ for (k = 0; k < totpoly; k++) { MPoly *inMP = orig_mpoly + k; MPoly *mp = mpoly + p_skip * totpoly + k; DM_copy_poly_data(dm, result, k, p_skip * totpoly + k, 1); *mp = *inMP; mp->loopstart += p_skip * totloop; { MLoop *inML = orig_mloop + inMP->loopstart; MLoop *ml = mloop + mp->loopstart; int j = mp->totloop; DM_copy_loop_data(dm, result, inMP->loopstart, mp->loopstart, j); for (; j; j--, ml++, inML++) { ml->v = inML->v + (p_skip * totvert); } } } p_skip++; } CDDM_calc_edges(result); if (psys->lattice_deform_data) { end_latt_deform(psys->lattice_deform_data); psys->lattice_deform_data = NULL; } if (size) MEM_freeN(size); result->dirty |= DM_DIRTY_NORMALS; return result; }
static int dupli_extrude_cursor(bContext *C, wmOperator *op, wmEvent *event) { ViewContext vc; EditVert *eve; float min[3], max[3]; int done= 0; short use_proj; em_setup_viewcontext(C, &vc); use_proj= (vc.scene->toolsettings->snap_flag & SCE_SNAP) && (vc.scene->toolsettings->snap_mode==SCE_SNAP_MODE_FACE); invert_m4_m4(vc.obedit->imat, vc.obedit->obmat); INIT_MINMAX(min, max); for(eve= vc.em->verts.first; eve; eve= eve->next) { if(eve->f & SELECT) { DO_MINMAX(eve->co, min, max); done= 1; } } /* call extrude? */ if(done) { const short rot_src= RNA_boolean_get(op->ptr, "rotate_source"); EditEdge *eed; float vec[3], cent[3], mat[3][3]; float nor[3]= {0.0, 0.0, 0.0}; /* 2D normal calc */ float mval_f[2]; mval_f[0]= (float)event->mval[0]; mval_f[1]= (float)event->mval[1]; done= 0; /* calculate the normal for selected edges */ for(eed= vc.em->edges.first; eed; eed= eed->next) { if(eed->f & SELECT) { float co1[3], co2[3]; mul_v3_m4v3(co1, vc.obedit->obmat, eed->v1->co); mul_v3_m4v3(co2, vc.obedit->obmat, eed->v2->co); project_float_noclip(vc.ar, co1, co1); project_float_noclip(vc.ar, co2, co2); /* 2D rotate by 90d while adding. * (x, y) = (y, -x) * * accumulate the screenspace normal in 2D, * with screenspace edge length weighting the result. */ if(line_point_side_v2(co1, co2, mval_f) >= 0.0f) { nor[0] += (co1[1] - co2[1]); nor[1] += -(co1[0] - co2[0]); } else { nor[0] += (co2[1] - co1[1]); nor[1] += -(co2[0] - co1[0]); } done= 1; } } if(done) { float view_vec[3], cross[3]; /* convert the 2D nomal into 3D */ mul_mat3_m4_v3(vc.rv3d->viewinv, nor); /* worldspace */ mul_mat3_m4_v3(vc.obedit->imat, nor); /* local space */ /* correct the normal to be aligned on the view plane */ copy_v3_v3(view_vec, vc.rv3d->viewinv[2]); mul_mat3_m4_v3(vc.obedit->imat, view_vec); cross_v3_v3v3(cross, nor, view_vec); cross_v3_v3v3(nor, view_vec, cross); normalize_v3(nor); } /* center */ mid_v3_v3v3(cent, min, max); copy_v3_v3(min, cent); mul_m4_v3(vc.obedit->obmat, min); // view space view3d_get_view_aligned_coordinate(&vc, min, event->mval, TRUE); mul_m4_v3(vc.obedit->imat, min); // back in object space sub_v3_v3(min, cent); /* calculate rotation */ unit_m3(mat); if(done) { float dot; copy_v3_v3(vec, min); normalize_v3(vec); dot= dot_v3v3(vec, nor); if( fabs(dot)<0.999) { float cross[3], si, q1[4]; cross_v3_v3v3(cross, nor, vec); normalize_v3(cross); dot= 0.5f*saacos(dot); /* halve the rotation if its applied twice */ if(rot_src) dot *= 0.5f; si= (float)sin(dot); q1[0]= (float)cos(dot); q1[1]= cross[0]*si; q1[2]= cross[1]*si; q1[3]= cross[2]*si; quat_to_mat3( mat,q1); } } if(rot_src) { rotateflag(vc.em, SELECT, cent, mat); /* also project the source, for retopo workflow */ if(use_proj) EM_project_snap_verts(C, vc.ar, vc.obedit, vc.em); } extrudeflag(vc.obedit, vc.em, SELECT, nor, 0); rotateflag(vc.em, SELECT, cent, mat); translateflag(vc.em, SELECT, min); recalc_editnormals(vc.em); } else if(vc.em->selectmode & SCE_SELECT_VERTEX) { float imat[4][4]; const float *curs= give_cursor(vc.scene, vc.v3d); copy_v3_v3(min, curs); view3d_get_view_aligned_coordinate(&vc, min, event->mval, TRUE); eve= addvertlist(vc.em, 0, NULL); invert_m4_m4(imat, vc.obedit->obmat); mul_v3_m4v3(eve->co, imat, min); eve->f= SELECT; } if(use_proj) EM_project_snap_verts(C, vc.ar, vc.obedit, vc.em); WM_event_add_notifier(C, NC_GEOM|ND_DATA, vc.obedit->data); DAG_id_tag_update(vc.obedit->data, 0); return OPERATOR_FINISHED; }
/* also exposed in previewrender.c */ int ED_view3d_viewplane_get(View3D *v3d, RegionView3D *rv3d, int winxi, int winyi, rctf *viewplane, float *clipsta, float *clipend, float *pixsize) { Camera *cam=NULL; float lens, fac, x1, y1, x2, y2; float winx= (float)winxi, winy= (float)winyi; int orth= 0; lens= v3d->lens; *clipsta= v3d->near; *clipend= v3d->far; if(rv3d->persp==RV3D_CAMOB) { if(v3d->camera) { if(v3d->camera->type==OB_LAMP ) { Lamp *la; la= v3d->camera->data; fac= cosf(((float)M_PI)*la->spotsize/360.0f); x1= saacos(fac); lens= 16.0f*fac/sinf(x1); *clipsta= la->clipsta; *clipend= la->clipend; } else if(v3d->camera->type==OB_CAMERA) { cam= v3d->camera->data; lens= cam->lens; *clipsta= cam->clipsta; *clipend= cam->clipend; } } } if(rv3d->persp==RV3D_ORTHO) { if(winx>winy) x1= -rv3d->dist; else x1= -winx*rv3d->dist/winy; x2= -x1; if(winx>winy) y1= -winy*rv3d->dist/winx; else y1= -rv3d->dist; y2= -y1; *clipend *= 0.5f; // otherwise too extreme low zbuffer quality *clipsta= - *clipend; orth= 1; } else { /* fac for zoom, also used for camdx */ if(rv3d->persp==RV3D_CAMOB) { fac= BKE_screen_view3d_zoom_to_fac((float)rv3d->camzoom) * 4.0f; } else { fac= 2.0; } /* viewplane size depends... */ if(cam && cam->type==CAM_ORTHO) { /* ortho_scale == 1 means exact 1 to 1 mapping */ float dfac= 2.0f*cam->ortho_scale/fac; if(winx>winy) x1= -dfac; else x1= -winx*dfac/winy; x2= -x1; if(winx>winy) y1= -winy*dfac/winx; else y1= -dfac; y2= -y1; orth= 1; } else { float dfac; if(winx>winy) dfac= 64.0f/(fac*winx*lens); else dfac= 64.0f/(fac*winy*lens); x1= - *clipsta * winx*dfac; x2= -x1; y1= - *clipsta * winy*dfac; y2= -y1; orth= 0; } /* cam view offset */ if(cam) { float dx= 0.5f*fac*rv3d->camdx*(x2-x1); float dy= 0.5f*fac*rv3d->camdy*(y2-y1); /* shift offset */ if(cam->type==CAM_ORTHO) { dx += cam->shiftx * cam->ortho_scale; dy += cam->shifty * cam->ortho_scale; } else { dx += cam->shiftx * (cam->clipsta / cam->lens) * 32.0f; dy += cam->shifty * (cam->clipsta / cam->lens) * 32.0f; } x1+= dx; x2+= dx; y1+= dy; y2+= dy; } } if(pixsize) { float viewfac; if(orth) { viewfac= (winx >= winy)? winx: winy; *pixsize= 1.0f/viewfac; } else { viewfac= (((winx >= winy)? winx: winy)*lens)/32.0f; *pixsize= *clipsta/viewfac; } } viewplane->xmin= x1; viewplane->ymin= y1; viewplane->xmax= x2; viewplane->ymax= y2; return orth; }