Ejemplo n.º 1
0
int _declspec(noinline) _stdcall xts_aes_ni_available()
{
	int           CPUInfo[4], res = 0;
	__m128i       enc;
#ifdef _M_IX86
	unsigned char fpustate[32];
#endif

	// check for AES-NI support via CPUID.01H:ECX.AES[bit 25]
	__cpuid(CPUInfo, 1);
	if ( CPUInfo[2] & 0x02000000 ) return 1;

	// Special workaround for AES-NI on Hyper-V server and virtual machines
	if ( (CPUInfo[2] & 0x80000000) == 0 ) return 0;
	__cpuid(CPUInfo, 0x40000000);
	if ( CPUInfo[1] != 'rciM' || CPUInfo[2] != 'foso' || CPUInfo[3] != 'vH t' ) return 0;

#ifdef _M_IX86
	if (save_fpu_state(fpustate) >= 0)
	{
#endif
		__try {
			enc = _mm_aesenc_si128(_mm_set_epi32(0,1,2,3), _mm_set_epi32(4,5,6,7));
			res = enc.m128i_u64[0] == 0x5f77774d4b7b7b54 && enc.m128i_u64[1] == 0x63636367427c7c58;
		}
		__except(EXCEPTION_EXECUTE_HANDLER) {
			res = 0;
		}
#ifdef _M_IX86
		load_fpu_state(fpustate);
	}
Ejemplo n.º 2
0
void fpu_handler(void)
{
	task_t* task = per_core(current_task);
	uint32_t core_id = CORE_ID;

	task->flags |= TASK_FPU_USED;

	if (!(task->flags & TASK_FPU_INIT))  {
		// use the FPU at the first time => Initialize FPU
		fpu_init(&task->fpu);
		task->flags |= TASK_FPU_INIT;
	}

	if (readyqueues[core_id].fpu_owner == task->id)
		return;

	spinlock_irqsave_lock(&readyqueues[core_id].lock);
	// did another already use the the FPU? => save FPU state
	if (readyqueues[core_id].fpu_owner) {
		save_fpu_state(&(task_table[readyqueues[core_id].fpu_owner].fpu));
		task_table[readyqueues[core_id].fpu_owner].flags &= ~TASK_FPU_USED;
	}
	readyqueues[core_id].fpu_owner = task->id;
	spinlock_irqsave_unlock(&readyqueues[core_id].lock);

	restore_fpu_state(&task->fpu);
}
Ejemplo n.º 3
0
static int setup_sigcontext(struct rt_sigframe __user *frame,
	struct pt_regs *regs)
{
	struct sigcontext __user *sc = &frame->uc.uc_mcontext;
	int err = 0;

	err |= __copy_to_user(&sc->sc_pt_regs, regs, sizeof(struct pt_regs));
	err |= save_fpu_state(sc);

	return err;
}
Ejemplo n.º 4
0
static void _stdcall xts_serpent_decrypt(const unsigned char *in, unsigned char *out, size_t len, unsigned __int64 offset, xts_key *key)
{
	unsigned char fpustate[32];
	xts_proc      selected = serpent_selected_decrypt;

	if (selected != xts_serpent_basic_decrypt && save_fpu_state(fpustate) >= 0) {
		selected(in, out, len, offset, key);
		load_fpu_state(fpustate);
	} else {
		xts_serpent_basic_decrypt(in, out, len, offset, key);
	}
}
Ejemplo n.º 5
0
static void _stdcall xts_aes_decrypt(const unsigned char *in, unsigned char *out, size_t len, unsigned __int64 offset, xts_key *key)
{
	unsigned char fpustate[32];
	xts_proc      selected;

	if ( (selected = aes_selected_decrypt) == xts_aes_ni_decrypt )
	{
		if (save_fpu_state(fpustate) >= 0) {
			xts_aes_ni_decrypt(in, out, len, offset, key);
			load_fpu_state(fpustate);
		} else {
			xts_aes_basic_decrypt(in, out, len, offset, key);
		}
	} else {
		selected(in, out, len, offset, key);
	}
}
Ejemplo n.º 6
0
static inline int
setup_rt_frame(struct k_sigaction *ka, struct pt_regs *regs,
	       int signo, sigset_t *oldset, siginfo_t *info)
{
	struct rt_signal_frame __user *sf;
	int wsaved, err, sf_size;
	void __user *tail;

	/* 1. Make sure everything is clean */
	synchronize_user_stack();
	save_and_clear_fpu();
	
	wsaved = get_thread_wsaved();

	sf_size = sizeof(struct rt_signal_frame);
	if (current_thread_info()->fpsaved[0] & FPRS_FEF)
		sf_size += sizeof(__siginfo_fpu_t);
	if (wsaved)
		sf_size += sizeof(__siginfo_rwin_t);
	sf = (struct rt_signal_frame __user *)
		get_sigframe(ka, regs, sf_size);

	if (invalid_frame_pointer (sf))
		goto sigill;

	tail = (sf + 1);

	/* 2. Save the current process state */
	err = copy_to_user(&sf->regs, regs, sizeof (*regs));

	if (current_thread_info()->fpsaved[0] & FPRS_FEF) {
		__siginfo_fpu_t __user *fpu_save = tail;
		tail += sizeof(__siginfo_fpu_t);
		err |= save_fpu_state(regs, fpu_save);
		err |= __put_user((u64)fpu_save, &sf->fpu_save);
	} else {
		err |= __put_user(0, &sf->fpu_save);
	}
	if (wsaved) {
		__siginfo_rwin_t __user *rwin_save = tail;
		tail += sizeof(__siginfo_rwin_t);
		err |= save_rwin_state(wsaved, rwin_save);
		err |= __put_user((u64)rwin_save, &sf->rwin_save);
		set_thread_wsaved(0);
	} else {
		err |= __put_user(0, &sf->rwin_save);
	}
	
	/* Setup sigaltstack */
	err |= __put_user(current->sas_ss_sp, &sf->stack.ss_sp);
	err |= __put_user(sas_ss_flags(regs->u_regs[UREG_FP]), &sf->stack.ss_flags);
	err |= __put_user(current->sas_ss_size, &sf->stack.ss_size);

	err |= copy_to_user(&sf->mask, oldset, sizeof(sigset_t));

	if (!wsaved) {
		err |= copy_in_user((u64 __user *)sf,
				    (u64 __user *)(regs->u_regs[UREG_FP] +
						   STACK_BIAS),
				    sizeof(struct reg_window));
	} else {
		struct reg_window *rp;

		rp = &current_thread_info()->reg_window[wsaved - 1];
		err |= copy_to_user(sf, rp, sizeof(struct reg_window));
	}
	if (info)
		err |= copy_siginfo_to_user(&sf->info, info);
	else {
		err |= __put_user(signo, &sf->info.si_signo);
		err |= __put_user(SI_NOINFO, &sf->info.si_code);
	}
	if (err)
		goto sigsegv;
	
	/* 3. signal handler back-trampoline and parameters */
	regs->u_regs[UREG_FP] = ((unsigned long) sf) - STACK_BIAS;
	regs->u_regs[UREG_I0] = signo;
	regs->u_regs[UREG_I1] = (unsigned long) &sf->info;

	/* The sigcontext is passed in this way because of how it
	 * is defined in GLIBC's /usr/include/bits/sigcontext.h
	 * for sparc64.  It includes the 128 bytes of siginfo_t.
	 */
	regs->u_regs[UREG_I2] = (unsigned long) &sf->info;

	/* 5. signal handler */
	regs->tpc = (unsigned long) ka->sa.sa_handler;
	regs->tnpc = (regs->tpc + 4);
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	/* 4. return to kernel instructions */
	regs->u_regs[UREG_I7] = (unsigned long)ka->ka_restorer;
	return 0;

sigill:
	do_exit(SIGILL);
	return -EINVAL;

sigsegv:
	force_sigsegv(signo, current);
	return -EFAULT;
}
Ejemplo n.º 7
0
static int setup_rt_frame(struct k_sigaction *ka, struct pt_regs *regs,
			  int signo, sigset_t *oldset, siginfo_t *info)
{
	struct rt_signal_frame __user *sf;
	int sigframe_size, wsaved;
	void __user *tail;
	unsigned int psr;
	int err;

	synchronize_user_stack();
	wsaved = current_thread_info()->w_saved;
	sigframe_size = sizeof(*sf);
	if (used_math())
		sigframe_size += sizeof(__siginfo_fpu_t);
	if (wsaved)
		sigframe_size += sizeof(__siginfo_rwin_t);
	sf = (struct rt_signal_frame __user *)
		get_sigframe(&ka->sa, regs, sigframe_size);
	if (invalid_frame_pointer(sf, sigframe_size))
		goto sigill;

	tail = sf + 1;
	err  = __put_user(regs->pc, &sf->regs.pc);
	err |= __put_user(regs->npc, &sf->regs.npc);
	err |= __put_user(regs->y, &sf->regs.y);
	psr = regs->psr;
	if (used_math())
		psr |= PSR_EF;
	err |= __put_user(psr, &sf->regs.psr);
	err |= __copy_to_user(&sf->regs.u_regs, regs->u_regs, sizeof(regs->u_regs));
	err |= __put_user(0, &sf->extra_size);

	if (psr & PSR_EF) {
		__siginfo_fpu_t *fp = tail;
		tail += sizeof(*fp);
		err |= save_fpu_state(regs, fp);
		err |= __put_user(fp, &sf->fpu_save);
	} else {
		err |= __put_user(0, &sf->fpu_save);
	}
	if (wsaved) {
		__siginfo_rwin_t *rwp = tail;
		tail += sizeof(*rwp);
		err |= save_rwin_state(wsaved, rwp);
		err |= __put_user(rwp, &sf->rwin_save);
	} else {
		err |= __put_user(0, &sf->rwin_save);
	}
	err |= __copy_to_user(&sf->mask, &oldset->sig[0], sizeof(sigset_t));
	
	/* Setup sigaltstack */
	err |= __put_user(current->sas_ss_sp, &sf->stack.ss_sp);
	err |= __put_user(sas_ss_flags(regs->u_regs[UREG_FP]), &sf->stack.ss_flags);
	err |= __put_user(current->sas_ss_size, &sf->stack.ss_size);
	
	if (!wsaved) {
		err |= __copy_to_user(sf, (char *) regs->u_regs[UREG_FP],
				      sizeof(struct reg_window32));
	} else {
		struct reg_window32 *rp;

		rp = &current_thread_info()->reg_window[wsaved - 1];
		err |= __copy_to_user(sf, rp, sizeof(struct reg_window32));
	}

	err |= copy_siginfo_to_user(&sf->info, info);

	if (err)
		goto sigsegv;

	regs->u_regs[UREG_FP] = (unsigned long) sf;
	regs->u_regs[UREG_I0] = signo;
	regs->u_regs[UREG_I1] = (unsigned long) &sf->info;
	regs->u_regs[UREG_I2] = (unsigned long) &sf->regs;

	regs->pc = (unsigned long) ka->sa.sa_handler;
	regs->npc = (regs->pc + 4);

	if (ka->ka_restorer)
		regs->u_regs[UREG_I7] = (unsigned long)ka->ka_restorer;
	else {
		regs->u_regs[UREG_I7] = (unsigned long)(&(sf->insns[0]) - 2);

		/* mov __NR_sigreturn, %g1 */
		err |= __put_user(0x821020d8, &sf->insns[0]);

		/* t 0x10 */
		err |= __put_user(0x91d02010, &sf->insns[1]);
		if (err)
			goto sigsegv;

		/* Flush instruction space. */
		flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
	}
	return 0;

sigill:
	do_exit(SIGILL);
	return -EINVAL;

sigsegv:
	force_sigsegv(signo, current);
	return -EFAULT;
}
Ejemplo n.º 8
0
static int setup_frame(struct k_sigaction *ka, struct pt_regs *regs,
		       int signo, sigset_t *oldset)
{
	struct signal_frame __user *sf;
	int sigframe_size, err, wsaved;
	void __user *tail;

	/* 1. Make sure everything is clean */
	synchronize_user_stack();

	wsaved = current_thread_info()->w_saved;

	sigframe_size = sizeof(*sf);
	if (used_math())
		sigframe_size += sizeof(__siginfo_fpu_t);
	if (wsaved)
		sigframe_size += sizeof(__siginfo_rwin_t);

	sf = (struct signal_frame __user *)
		get_sigframe(&ka->sa, regs, sigframe_size);

	if (invalid_frame_pointer(sf, sigframe_size))
		goto sigill_and_return;

	tail = sf + 1;

	/* 2. Save the current process state */
	err = __copy_to_user(&sf->info.si_regs, regs, sizeof(struct pt_regs));
	
	err |= __put_user(0, &sf->extra_size);

	if (used_math()) {
		__siginfo_fpu_t __user *fp = tail;
		tail += sizeof(*fp);
		err |= save_fpu_state(regs, fp);
		err |= __put_user(fp, &sf->fpu_save);
	} else {
		err |= __put_user(0, &sf->fpu_save);
	}
	if (wsaved) {
		__siginfo_rwin_t __user *rwp = tail;
		tail += sizeof(*rwp);
		err |= save_rwin_state(wsaved, rwp);
		err |= __put_user(rwp, &sf->rwin_save);
	} else {
		err |= __put_user(0, &sf->rwin_save);
	}

	err |= __put_user(oldset->sig[0], &sf->info.si_mask);
	err |= __copy_to_user(sf->extramask, &oldset->sig[1],
			      (_NSIG_WORDS - 1) * sizeof(unsigned int));
	if (!wsaved) {
		err |= __copy_to_user(sf, (char *) regs->u_regs[UREG_FP],
				      sizeof(struct reg_window32));
	} else {
		struct reg_window32 *rp;

		rp = &current_thread_info()->reg_window[wsaved - 1];
		err |= __copy_to_user(sf, rp, sizeof(struct reg_window32));
	}
	if (err)
		goto sigsegv;
	
	/* 3. signal handler back-trampoline and parameters */
	regs->u_regs[UREG_FP] = (unsigned long) sf;
	regs->u_regs[UREG_I0] = signo;
	regs->u_regs[UREG_I1] = (unsigned long) &sf->info;
	regs->u_regs[UREG_I2] = (unsigned long) &sf->info;

	/* 4. signal handler */
	regs->pc = (unsigned long) ka->sa.sa_handler;
	regs->npc = (regs->pc + 4);

	/* 5. return to kernel instructions */
	if (ka->ka_restorer)
		regs->u_regs[UREG_I7] = (unsigned long)ka->ka_restorer;
	else {
		regs->u_regs[UREG_I7] = (unsigned long)(&(sf->insns[0]) - 2);

		/* mov __NR_sigreturn, %g1 */
		err |= __put_user(0x821020d8, &sf->insns[0]);

		/* t 0x10 */
		err |= __put_user(0x91d02010, &sf->insns[1]);
		if (err)
			goto sigsegv;

		/* Flush instruction space. */
		flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
	}
	return 0;

sigill_and_return:
	do_exit(SIGILL);
	return -EINVAL;

sigsegv:
	force_sigsegv(signo, current);
	return -EFAULT;
}
Ejemplo n.º 9
0
void
sigtrap_handler(HANDLER_ARGS)
{
    unsigned int trap;
    os_context_t* os_context = (os_context_t *) context;
#if 0
    fprintf(stderr, "x86sigtrap: %8x %x\n",
            SC_PC(os_os_context), *(unsigned char *) (SC_PC(os_context) - 1));
    fprintf(stderr, "sigtrap(%d %d %x)\n", signal, CODE(code), os_context);
#endif

    if (single_stepping && (signal == SIGTRAP)) {
#if 0
	fprintf(stderr, "* Single step trap %p\n", single_stepping);
#endif

#ifdef SC_EFLAGS
	/* Disable single-stepping */
	SC_EFLAGS(os_context) ^= 0x100;
#else
	/* Un-install single step helper instructions. */
	*(single_stepping - 3) = single_step_save1;
	*(single_stepping - 2) = single_step_save2;
	*(single_stepping - 1) = single_step_save3;
        DPRINTF(0, (stderr, "Uninstalling helper instructions\n"));
#endif

	/*
	 * Re-install the breakpoint if possible.
	 */
	if ((int) SC_PC(os_context) == (int) single_stepping + 1)
	    fprintf(stderr, "* Breakpoint not re-install\n");
	else {
	    char *ptr = (char *) single_stepping;

	    ptr[0] = BREAKPOINT_INST;	/* x86 INT3 */
	    ptr[1] = trap_Breakpoint;
	}

	single_stepping = NULL;
	return;
    }

    /* This is just for info in case monitor wants to print an approx */
    current_control_stack_pointer = (unsigned long *) SC_SP(os_context);

    RESTORE_FPU(os_context);

    /*
     * On entry %eip points just after the INT3 byte and aims at the
     * 'kind' value (eg trap_Cerror). For error-trap and Cerror-trap a
     * number of bytes will follow, the first is the length of the byte
     * arguments to follow.
     */

    trap = *(unsigned char *) SC_PC(os_context);

    switch (trap) {
      case trap_PendingInterrupt:
	  DPRINTF(0, (stderr, "<trap Pending Interrupt.>\n"));
	  arch_skip_instruction(os_context);
	  interrupt_handle_pending(os_context);
	  break;

      case trap_Halt:
	  {
              FPU_STATE(fpu_state);
              save_fpu_state(fpu_state);

	      fake_foreign_function_call(os_context);
	      lose("%%primitive halt called; the party is over.\n");
	      undo_fake_foreign_function_call(os_context);

              restore_fpu_state(fpu_state);
	      arch_skip_instruction(os_context);
	      break;
	  }

      case trap_Error:
      case trap_Cerror:
	  DPRINTF(0, (stderr, "<trap Error %x>\n", CODE(code)));
	  interrupt_internal_error(signal, code, os_context, CODE(code) == trap_Cerror);
	  break;

      case trap_Breakpoint:
#if 0
	  fprintf(stderr, "*C break\n");
#endif
	  SC_PC(os_context) -= 1;

	  handle_breakpoint(signal, CODE(code), os_context);
#if 0
	  fprintf(stderr, "*C break return\n");
#endif
	  break;

      case trap_FunctionEndBreakpoint:
	  SC_PC(os_context) -= 1;
	  SC_PC(os_context) =
	      (int) handle_function_end_breakpoint(signal, CODE(code), os_context);
	  break;

#ifdef trap_DynamicSpaceOverflowWarning
      case trap_DynamicSpaceOverflowWarning:
	  interrupt_handle_space_overflow(SymbolFunction
					  (DYNAMIC_SPACE_OVERFLOW_WARNING_HIT),
					  os_context);
	  break;
#endif
#ifdef trap_DynamicSpaceOverflowError
      case trap_DynamicSpaceOverflowError:
	  interrupt_handle_space_overflow(SymbolFunction
					  (DYNAMIC_SPACE_OVERFLOW_ERROR_HIT),
					  os_context);
	  break;
#endif
      default:
	  DPRINTF(0,
		  (stderr, "[C--trap default %d %d %p]\n", signal, CODE(code),
		   os_context));
	  interrupt_handle_now(signal, code, os_context);
	  break;
    }
}
Ejemplo n.º 10
0
static inline void
setup_rt_frame(struct k_sigaction *ka, struct pt_regs *regs,
	       int signo, sigset_t *oldset, siginfo_t *info)
{
	struct rt_signal_frame *sf;
	int sigframe_size, err;

	/* 1. Make sure everything is clean */
	synchronize_user_stack();
	save_and_clear_fpu();
	
	sigframe_size = RT_ALIGNEDSZ;
	if (!(current->thread.fpsaved[0] & FPRS_FEF))
		sigframe_size -= sizeof(__siginfo_fpu_t);

	sf = (struct rt_signal_frame *)get_sigframe(ka, regs, sigframe_size);
	
	if (invalid_frame_pointer (sf, sigframe_size))
		goto sigill;

	if (current->thread.w_saved != 0) {
#ifdef DEBUG_SIGNALS
		printk ("%s[%d]: Invalid user stack frame for "
			"signal delivery.\n", current->comm, current->pid);
#endif
		goto sigill;
	}

	/* 2. Save the current process state */
	err = copy_to_user(&sf->regs, regs, sizeof (*regs));

	if (current->thread.fpsaved[0] & FPRS_FEF) {
		err |= save_fpu_state(regs, &sf->fpu_state);
		err |= __put_user((u64)&sf->fpu_state, &sf->fpu_save);
	} else {
		err |= __put_user(0, &sf->fpu_save);
	}
	
	/* Setup sigaltstack */
	err |= __put_user(current->sas_ss_sp, &sf->stack.ss_sp);
	err |= __put_user(sas_ss_flags(regs->u_regs[UREG_FP]), &sf->stack.ss_flags);
	err |= __put_user(current->sas_ss_size, &sf->stack.ss_size);

	err |= copy_to_user(&sf->mask, oldset, sizeof(sigset_t));

	err |= copy_in_user((u64 *)sf,
			    (u64 *)(regs->u_regs[UREG_FP]+STACK_BIAS),
			    sizeof(struct reg_window));

	if (info)
		err |= copy_siginfo_to_user(&sf->info, info);
	else {
		err |= __put_user(signo, &sf->info.si_signo);
		err |= __put_user(SI_NOINFO, &sf->info.si_code);
	}
	if (err)
		goto sigsegv;
	
	/* 3. signal handler back-trampoline and parameters */
	regs->u_regs[UREG_FP] = ((unsigned long) sf) - STACK_BIAS;
	regs->u_regs[UREG_I0] = signo;
	regs->u_regs[UREG_I1] = (unsigned long) &sf->info;

	/* The sigcontext is passed in this way because of how it
	 * is defined in GLIBC's /usr/include/bits/sigcontext.h
	 * for sparc64.  It includes the 128 bytes of siginfo_t.
	 */
	regs->u_regs[UREG_I2] = (unsigned long) &sf->info;

	/* 5. signal handler */
	regs->tpc = (unsigned long) ka->sa.sa_handler;
	regs->tnpc = (regs->tpc + 4);
	if ((current->thread.flags & SPARC_FLAG_32BIT) != 0) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	/* 4. return to kernel instructions */
	regs->u_regs[UREG_I7] = (unsigned long)ka->ka_restorer;
	return;

sigill:
	do_exit(SIGILL);
sigsegv:
	do_exit(SIGSEGV);
}
Ejemplo n.º 11
0
Archivo: signal.c Proyecto: 274914765/C
static void setup_frame(struct k_sigaction *ka, struct pt_regs *regs,
            int signo, sigset_t *oldset)
{
    struct signal_frame __user *sf;
    int sigframe_size, err;

    /* 1. Make sure everything is clean */
    synchronize_user_stack();

    sigframe_size = SF_ALIGNEDSZ;
    if (!used_math())
        sigframe_size -= sizeof(__siginfo_fpu_t);

    sf = (struct signal_frame __user *)
        get_sigframe(&ka->sa, regs, sigframe_size);

    if (invalid_frame_pointer(sf, sigframe_size))
        goto sigill_and_return;

    if (current_thread_info()->w_saved != 0)
        goto sigill_and_return;

    /* 2. Save the current process state */
    err = __copy_to_user(&sf->info.si_regs, regs, sizeof(struct pt_regs));
    
    err |= __put_user(0, &sf->extra_size);

    if (used_math()) {
        err |= save_fpu_state(regs, &sf->fpu_state);
        err |= __put_user(&sf->fpu_state, &sf->fpu_save);
    } else {
        err |= __put_user(0, &sf->fpu_save);
    }

    err |= __put_user(oldset->sig[0], &sf->info.si_mask);
    err |= __copy_to_user(sf->extramask, &oldset->sig[1],
                  (_NSIG_WORDS - 1) * sizeof(unsigned int));
    err |= __copy_to_user(sf, (char *) regs->u_regs[UREG_FP],
                  sizeof(struct reg_window));
    if (err)
        goto sigsegv;
    
    /* 3. signal handler back-trampoline and parameters */
    regs->u_regs[UREG_FP] = (unsigned long) sf;
    regs->u_regs[UREG_I0] = signo;
    regs->u_regs[UREG_I1] = (unsigned long) &sf->info;
    regs->u_regs[UREG_I2] = (unsigned long) &sf->info;

    /* 4. signal handler */
    regs->pc = (unsigned long) ka->sa.sa_handler;
    regs->npc = (regs->pc + 4);

    /* 5. return to kernel instructions */
    if (ka->ka_restorer)
        regs->u_regs[UREG_I7] = (unsigned long)ka->ka_restorer;
    else {
        regs->u_regs[UREG_I7] = (unsigned long)(&(sf->insns[0]) - 2);

        /* mov __NR_sigreturn, %g1 */
        err |= __put_user(0x821020d8, &sf->insns[0]);

        /* t 0x10 */
        err |= __put_user(0x91d02010, &sf->insns[1]);
        if (err)
            goto sigsegv;

        /* Flush instruction space. */
        flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
    }
    return;

sigill_and_return:
    do_exit(SIGILL);
sigsegv:
    force_sigsegv(signo, current);
}
Ejemplo n.º 12
0
static inline int
setup_rt_frame(struct k_sigaction *ka, struct pt_regs *regs,
	       int signo, sigset_t *oldset, siginfo_t *info)
{
	struct rt_signal_frame __user *sf;
	int wsaved, err, sf_size;
	void __user *tail;

	
	synchronize_user_stack();
	save_and_clear_fpu();
	
	wsaved = get_thread_wsaved();

	sf_size = sizeof(struct rt_signal_frame);
	if (current_thread_info()->fpsaved[0] & FPRS_FEF)
		sf_size += sizeof(__siginfo_fpu_t);
	if (wsaved)
		sf_size += sizeof(__siginfo_rwin_t);
	sf = (struct rt_signal_frame __user *)
		get_sigframe(ka, regs, sf_size);

	if (invalid_frame_pointer (sf))
		goto sigill;

	tail = (sf + 1);

	
	err = copy_to_user(&sf->regs, regs, sizeof (*regs));

	if (current_thread_info()->fpsaved[0] & FPRS_FEF) {
		__siginfo_fpu_t __user *fpu_save = tail;
		tail += sizeof(__siginfo_fpu_t);
		err |= save_fpu_state(regs, fpu_save);
		err |= __put_user((u64)fpu_save, &sf->fpu_save);
	} else {
		err |= __put_user(0, &sf->fpu_save);
	}
	if (wsaved) {
		__siginfo_rwin_t __user *rwin_save = tail;
		tail += sizeof(__siginfo_rwin_t);
		err |= save_rwin_state(wsaved, rwin_save);
		err |= __put_user((u64)rwin_save, &sf->rwin_save);
		set_thread_wsaved(0);
	} else {
		err |= __put_user(0, &sf->rwin_save);
	}
	
	
	err |= __put_user(current->sas_ss_sp, &sf->stack.ss_sp);
	err |= __put_user(sas_ss_flags(regs->u_regs[UREG_FP]), &sf->stack.ss_flags);
	err |= __put_user(current->sas_ss_size, &sf->stack.ss_size);

	err |= copy_to_user(&sf->mask, oldset, sizeof(sigset_t));

	if (!wsaved) {
		err |= copy_in_user((u64 __user *)sf,
				    (u64 __user *)(regs->u_regs[UREG_FP] +
						   STACK_BIAS),
				    sizeof(struct reg_window));
	} else {
		struct reg_window *rp;

		rp = &current_thread_info()->reg_window[wsaved - 1];
		err |= copy_to_user(sf, rp, sizeof(struct reg_window));
	}
	if (info)
		err |= copy_siginfo_to_user(&sf->info, info);
	else {
		err |= __put_user(signo, &sf->info.si_signo);
		err |= __put_user(SI_NOINFO, &sf->info.si_code);
	}
	if (err)
		goto sigsegv;
	
	
	regs->u_regs[UREG_FP] = ((unsigned long) sf) - STACK_BIAS;
	regs->u_regs[UREG_I0] = signo;
	regs->u_regs[UREG_I1] = (unsigned long) &sf->info;

	regs->u_regs[UREG_I2] = (unsigned long) &sf->info;

	
	regs->tpc = (unsigned long) ka->sa.sa_handler;
	regs->tnpc = (regs->tpc + 4);
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	
	regs->u_regs[UREG_I7] = (unsigned long)ka->ka_restorer;
	return 0;

sigill:
	do_exit(SIGILL);
	return -EINVAL;

sigsegv:
	force_sigsegv(signo, current);
	return -EFAULT;
}