Ejemplo n.º 1
0
// init_aux_switch_function - initialize aux functions
void Copter::init_aux_switch_function(int8_t ch_option, uint8_t ch_flag)
{    
    // init channel options
    switch(ch_option) {
        case AUXSW_SIMPLE_MODE:
        case AUXSW_SONAR:
        case AUXSW_FENCE:
        case AUXSW_RESETTOARMEDYAW:
        case AUXSW_SUPERSIMPLE_MODE:
        case AUXSW_ACRO_TRAINER:
        case AUXSW_EPM:
        case AUXSW_SPRAYER:
        case AUXSW_PARACHUTE_ENABLE:
        case AUXSW_PARACHUTE_3POS:      // we trust the vehicle will be disarmed so even if switch is in release position the chute will not release
        case AUXSW_RETRACT_MOUNT:
        case AUXSW_MISSION_RESET:
        case AUXSW_ATTCON_FEEDFWD:
        case AUXSW_ATTCON_ACCEL_LIM:
        case AUXSW_RELAY:
        case AUXSW_LANDING_GEAR:
        case AUXSW_MOTOR_ESTOP:
            do_aux_switch_function(ch_option, ch_flag);
            break;

        case AUXSW_MOTOR_INTERLOCK:
            set_using_interlock(check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK));
            do_aux_switch_function(ch_option, ch_flag);
            break;
            
    }
}
Ejemplo n.º 2
0
// heli_init - perform any special initialisation required for the tradheli
void Copter::heli_init()
{
    // helicopters are always using motor interlock
    set_using_interlock(true);

    /*
      automatically set H_RSC_MIN and H_RSC_MAX from RC8_MIN and
      RC8_MAX so that when users upgrade from tradheli version 3.3 to
      3.4 they get the same throttle range as in previous versions of
      the code
     */
    if (!g.heli_servo_rsc.radio_min.configured()) {
        g.heli_servo_rsc.radio_min.set_and_save(g.rc_8.radio_min.get());
    }
    if (!g.heli_servo_rsc.radio_max.configured()) {
        g.heli_servo_rsc.radio_max.set_and_save(g.rc_8.radio_max.get());
    }
}
Ejemplo n.º 3
0
// one_hz_loop - runs at 1Hz
void Copter::one_hz_loop()
{
    if (should_log(MASK_LOG_ANY)) {
        Log_Write_Data(DATA_AP_STATE, ap.value);
    }

    // perform pre-arm checks & display failures every 30 seconds
    static uint8_t pre_arm_display_counter = 15;
    pre_arm_display_counter++;
    if (pre_arm_display_counter >= 30) {
        pre_arm_checks(true);
        pre_arm_display_counter = 0;
    }else{
        pre_arm_checks(false);
    }

    // auto disarm checks
    auto_disarm_check();

    if (!motors.armed()) {
        // make it possible to change ahrs orientation at runtime during initial config
        ahrs.set_orientation();

#if FRAME_CONFIG == HELI_FRAME
        // helicopters are always using motor interlock
        set_using_interlock(true);
#else
        // check the user hasn't updated the frame orientation
        motors.set_frame_orientation(g.frame_orientation);

        // check if we are using motor interlock control on an aux switch
        set_using_interlock(check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK));

        // set all throttle channel settings
        motors.set_throttle_range(g.throttle_min, channel_throttle->radio_min, channel_throttle->radio_max);
        // set hover throttle
        motors.set_hover_throttle(g.throttle_mid);
#endif
    }

    // update assigned functions and enable auxiliar servos
    RC_Channel_aux::enable_aux_servos();

    check_usb_mux();

#if AP_TERRAIN_AVAILABLE
    terrain.update();

    // tell the rangefinder our height, so it can go into power saving
    // mode if available
#if CONFIG_SONAR == ENABLED
    float height;
    if (terrain.height_above_terrain(height, true)) {
        sonar.set_estimated_terrain_height(height);
    }
#endif
#endif

    // update position controller alt limits
    update_poscon_alt_max();

    // enable/disable raw gyro/accel logging
    ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
}
Ejemplo n.º 4
0
// perform pre-arm checks and set ap.pre_arm_check flag
//  return true if the checks pass successfully
bool Copter::pre_arm_checks(bool display_failure)
{
    // exit immediately if already armed
    if (motors.armed()) {
        return true;
    }

    // check if motor interlock and Emergency Stop aux switches are used
    // at the same time.  This cannot be allowed.
    if (check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK) && check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){
        if (display_failure) {
            gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Interlock/E-Stop Conflict"));
        }
        return false;
    }

    // check if motor interlock aux switch is in use
    // if it is, switch needs to be in disabled position to arm
    // otherwise exit immediately.  This check to be repeated, 
    // as state can change at any time.
    set_using_interlock(check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK));
    if (ap.using_interlock && motors.get_interlock()){
        if (display_failure) {
            gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Motor Interlock Enabled"));
        }
        return false;
    }

    // if we are using Motor Emergency Stop aux switch, check it is not enabled 
    // and warn if it is
    if (check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP) && ap.motor_emergency_stop){
        if (display_failure) {
            gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Motor Emergency Stopped"));
        }
        return false;
    }

    // exit immediately if we've already successfully performed the pre-arm check
    if (ap.pre_arm_check) {
        // run gps checks because results may change and affect LED colour
        // no need to display failures because arm_checks will do that if the pilot tries to arm
        pre_arm_gps_checks(false);
        return true;
    }

    // succeed if pre arm checks are disabled
    if(g.arming_check == ARMING_CHECK_NONE) {
        set_pre_arm_check(true);
        set_pre_arm_rc_check(true);
        return true;
    }

    // pre-arm rc checks a prerequisite
    pre_arm_rc_checks();
    if(!ap.pre_arm_rc_check) {
        if (display_failure) {
            gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: RC not calibrated"));
        }
        return false;
    }
    // check Baro
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
        // barometer health check
        if(!barometer.all_healthy()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Barometer not healthy"));
            }
            return false;
        }
        // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
        // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
        // that may differ from the baro height due to baro drift.
        nav_filter_status filt_status = inertial_nav.get_filter_status();
        bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
        if (using_baro_ref) {
            if (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
                if (display_failure) {
                    gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Altitude disparity"));
                }
                return false;
            }
        }
    }

    // check Compass
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) {
        // check the primary compass is healthy
        if(!compass.healthy()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Compass not healthy"));
            }
            return false;
        }

        // check compass learning is on or offsets have been set
        if(!compass.configured()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Compass not calibrated"));
            }
            return false;
        }

        // check for unreasonable compass offsets
        Vector3f offsets = compass.get_offsets();
        if(offsets.length() > COMPASS_OFFSETS_MAX) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Compass offsets too high"));
            }
            return false;
        }

        // check for unreasonable mag field length
        float mag_field = compass.get_field().length();
        if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65f || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35f) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Check mag field"));
            }
            return false;
        }

        // check all compasses point in roughly same direction
        if (!compass.consistent()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: inconsistent compasses"));
            }
            return false;
        }

    }

    // check GPS
    if (!pre_arm_gps_checks(display_failure)) {
        return false;
    }

#if AC_FENCE == ENABLED
    // check fence is initialised
    if(!fence.pre_arm_check()) {
        if (display_failure) {
            gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: check fence"));
        }
        return false;
    }
#endif

    // check INS
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
        // check accelerometers have been calibrated
        if(!ins.accel_calibrated_ok_all()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Accels not calibrated"));
            }
            return false;
        }

        // check accels are healthy
        if(!ins.get_accel_health_all()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Accelerometers not healthy"));
            }
            return false;
        }

        // check all accelerometers point in roughly same direction
        if (ins.get_accel_count() > 1) {
            const Vector3f &prime_accel_vec = ins.get_accel();
            for(uint8_t i=0; i<ins.get_accel_count(); i++) {
                // get next accel vector
                const Vector3f &accel_vec = ins.get_accel(i);
                Vector3f vec_diff = accel_vec - prime_accel_vec;
                float threshold = PREARM_MAX_ACCEL_VECTOR_DIFF;
                if (i >= 2) {
                    /*
                      for boards with 3 IMUs we only use the first two
                      in the EKF. Allow for larger accel discrepancy
                      for IMU3 as it may be running at a different temperature
                     */
                    threshold *= 2;
                }
                if (vec_diff.length() > threshold) {
                    if (display_failure) {
                        gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: inconsistent Accelerometers"));
                    }
                    return false;
                }
            }
        }

        // check gyros are healthy
        if(!ins.get_gyro_health_all()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Gyros not healthy"));
            }
            return false;
        }

        // check all gyros are consistent
        if (ins.get_gyro_count() > 1) {
            for(uint8_t i=0; i<ins.get_gyro_count(); i++) {
                // get rotation rate difference between gyro #i and primary gyro
                Vector3f vec_diff = ins.get_gyro(i) - ins.get_gyro();
                if (vec_diff.length() > PREARM_MAX_GYRO_VECTOR_DIFF) {
                    if (display_failure) {
                        gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: inconsistent Gyros"));
                    }
                    return false;
                }
            }
        }

        // get ekf attitude (if bad, it's usually the gyro biases)
        if (!pre_arm_ekf_attitude_check()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: gyros still settling"));
            }
            return false;
        }
    }
#if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
    // check board voltage
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
        if(hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Check Board Voltage"));
            }
            return false;
        }
    }
#endif
#endif

    // check battery voltage
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
        if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Check Battery"));
            }
            return false;
        }
    }

    // check various parameter values
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {

        // ensure ch7 and ch8 have different functions
        if (check_duplicate_auxsw()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Duplicate Aux Switch Options"));
            }
            return false;
        }

        // failsafe parameter checks
        if (g.failsafe_throttle) {
            // check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
            if (channel_throttle->radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) {
                if (display_failure) {
                    gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Check FS_THR_VALUE"));
                }
                return false;
            }
        }

        // lean angle parameter check
        if (aparm.angle_max < 1000 || aparm.angle_max > 8000) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Check ANGLE_MAX"));
            }
            return false;
        }

        // acro balance parameter check
        if ((g.acro_balance_roll > g.p_stabilize_roll.kP()) || (g.acro_balance_pitch > g.p_stabilize_pitch.kP())) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: ACRO_BAL_ROLL/PITCH"));
            }
            return false;
        }

#if CONFIG_SONAR == ENABLED && OPTFLOW == ENABLED
        // check range finder if optflow enabled
        if (optflow.enabled() && !sonar.pre_arm_check()) {
            if (display_failure) {
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: check range finder"));
            }
            return false;
        }
#endif
#if FRAME_CONFIG == HELI_FRAME
        // check helicopter parameters
        if (!motors.parameter_check(display_failure)) {
            return false;
        }
#endif // HELI_FRAME
    }

    // check throttle is above failsafe throttle
    // this is near the bottom to allow other failures to be displayed before checking pilot throttle
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) {
        if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->radio_in < g.failsafe_throttle_value) {
            if (display_failure) {
    #if FRAME_CONFIG == HELI_FRAME
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Collective below Failsafe"));
    #else
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("PreArm: Throttle below Failsafe"));
    #endif
            }
            return false;
        }
    }

    // if we've gotten this far then pre arm checks have completed
    set_pre_arm_check(true);
    return true;
}
Ejemplo n.º 5
0
// init_arm_motors - performs arming process including initialisation of barometer and gyros
//  returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure
bool Copter::init_arm_motors(bool arming_from_gcs)
{
    static bool in_arm_motors = false;

    // exit immediately if already in this function
    if (in_arm_motors) {
        return false;
    }
    in_arm_motors = true;

    // run pre-arm-checks and display failures
    if(!pre_arm_checks(true) || !arm_checks(true, arming_from_gcs)) {
        AP_Notify::events.arming_failed = true;
        in_arm_motors = false;
        return false;
    }

    // disable cpu failsafe because initialising everything takes a while
    failsafe_disable();

    // reset battery failsafe
    set_failsafe_battery(false);

    // notify that arming will occur (we do this early to give plenty of warning)
    AP_Notify::flags.armed = true;
    // call update_notify a few times to ensure the message gets out
    for (uint8_t i=0; i<=10; i++) {
        update_notify();
    }

#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL
    gcs_send_text_P(MAV_SEVERITY_CRITICAL, PSTR("ARMING MOTORS"));
#endif

    // Remember Orientation
    // --------------------
    init_simple_bearing();

    initial_armed_bearing = ahrs.yaw_sensor;

    if (ap.home_state == HOME_UNSET) {
        // Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home)
        ahrs.resetHeightDatum();
        Log_Write_Event(DATA_EKF_ALT_RESET);
    } else if (ap.home_state == HOME_SET_NOT_LOCKED) {
        // Reset home position if it has already been set before (but not locked)
        set_home_to_current_location();
    }
    calc_distance_and_bearing();

#if FRAME_CONFIG == HELI_FRAME
    // helicopters are always using motor interlock
    set_using_interlock(true);
#else
    // check if we are using motor interlock control on an aux switch
    set_using_interlock(check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK));
#endif

    // if we are using motor interlock switch and it's enabled, fail to arm
    if (ap.using_interlock && motors.get_interlock()){
        gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("Arm: Motor Interlock Enabled"));
        AP_Notify::flags.armed = false;
        in_arm_motors = false;
        return false;
    }

    // if we are not using Emergency Stop switch option, force Estop false to ensure motors
    // can run normally
    if (!check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){
        set_motor_emergency_stop(false);
    // if we are using motor Estop switch, it must not be in Estop position
    } else if (check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP) && ap.motor_emergency_stop){
        gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("Arm: Motor Emergency Stopped"));
        AP_Notify::flags.armed = false;
        in_arm_motors = false;
        return false;
    }

    // enable gps velocity based centrefugal force compensation
    ahrs.set_correct_centrifugal(true);
    hal.util->set_soft_armed(true);

#if SPRAYER == ENABLED
    // turn off sprayer's test if on
    sprayer.test_pump(false);
#endif

    // short delay to allow reading of rc inputs
    delay(30);

    // enable output to motors
    enable_motor_output();

    // finally actually arm the motors
    motors.armed(true);

    // log arming to dataflash
    Log_Write_Event(DATA_ARMED);

    // log flight mode in case it was changed while vehicle was disarmed
    DataFlash.Log_Write_Mode(control_mode);

    // reenable failsafe
    failsafe_enable();

    // perf monitor ignores delay due to arming
    perf_ignore_this_loop();

    // flag exiting this function
    in_arm_motors = false;

    // return success
    return true;
}
// heli_init - perform any special initialisation required for the tradheli
void Copter::heli_init()
{
    // helicopters are always using motor interlock
    set_using_interlock(true);
}