/* Subroutine */ int sgebrd_(integer *m, integer *n, real *a, integer *lda, real *d__, real *e, real *tauq, real *taup, real *work, integer * lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ static integer i__, j, nb, nx; static real ws; static integer nbmin, iinfo; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *, ftnlen, ftnlen); static integer minmn; extern /* Subroutine */ int sgebd2_(integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *), slabrd_( integer *, integer *, integer *, real *, integer *, real *, real * , real *, real *, real *, integer *, real *, integer *), xerbla_( char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer ldwrkx, ldwrky, lwkopt; static logical lquery; /* -- LAPACK routine (version 3.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ /* Courant Institute, Argonne National Lab, and Rice University */ /* June 30, 1999 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGEBRD reduces a general real M-by-N matrix A to upper or lower */ /* bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */ /* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows in the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns in the matrix A. N >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the M-by-N general matrix to be reduced. */ /* On exit, */ /* if m >= n, the diagonal and the first superdiagonal are */ /* overwritten with the upper bidiagonal matrix B; the */ /* elements below the diagonal, with the array TAUQ, represent */ /* the orthogonal matrix Q as a product of elementary */ /* reflectors, and the elements above the first superdiagonal, */ /* with the array TAUP, represent the orthogonal matrix P as */ /* a product of elementary reflectors; */ /* if m < n, the diagonal and the first subdiagonal are */ /* overwritten with the lower bidiagonal matrix B; the */ /* elements below the first subdiagonal, with the array TAUQ, */ /* represent the orthogonal matrix Q as a product of */ /* elementary reflectors, and the elements above the diagonal, */ /* with the array TAUP, represent the orthogonal matrix P as */ /* a product of elementary reflectors. */ /* See Further Details. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* D (output) REAL array, dimension (min(M,N)) */ /* The diagonal elements of the bidiagonal matrix B: */ /* D(i) = A(i,i). */ /* E (output) REAL array, dimension (min(M,N)-1) */ /* The off-diagonal elements of the bidiagonal matrix B: */ /* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */ /* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */ /* TAUQ (output) REAL array dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the orthogonal matrix Q. See Further Details. */ /* TAUP (output) REAL array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the orthogonal matrix P. See Further Details. */ /* WORK (workspace/output) REAL array, dimension (LWORK) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= max(1,M,N). */ /* For optimum performance LWORK >= (M+N)*NB, where NB */ /* is the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* The matrices Q and P are represented as products of elementary */ /* reflectors: */ /* If m >= n, */ /* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */ /* Each H(i) and G(i) has the form: */ /* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */ /* where tauq and taup are real scalars, and v and u are real vectors; */ /* v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */ /* u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */ /* tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* If m < n, */ /* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */ /* Each H(i) and G(i) has the form: */ /* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */ /* where tauq and taup are real scalars, and v and u are real vectors; */ /* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */ /* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */ /* tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* The contents of A on exit are illustrated by the following examples: */ /* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */ /* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */ /* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */ /* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */ /* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */ /* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */ /* ( v1 v2 v3 v4 v5 ) */ /* where d and e denote diagonal and off-diagonal elements of B, vi */ /* denotes an element of the vector defining H(i), and ui an element of */ /* the vector defining G(i). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tauq; --taup; --work; /* Function Body */ *info = 0; /* Computing MAX */ i__1 = 1, i__2 = ilaenv_(&c__1, "SGEBRD", " ", m, n, &c_n1, &c_n1, ( ftnlen)6, (ftnlen)1); nb = max(i__1,i__2); lwkopt = (*m + *n) * nb; work[1] = (real) lwkopt; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*m); if (*lwork < max(i__1,*n) && ! lquery) { *info = -10; } } if (*info < 0) { i__1 = -(*info); xerbla_("SGEBRD", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ minmn = min(*m,*n); if (minmn == 0) { work[1] = 1.f; return 0; } ws = (real) max(*m,*n); ldwrkx = *m; ldwrky = *n; if (nb > 1 && nb < minmn) { /* Set the crossover point NX. */ /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__3, "SGEBRD", " ", m, n, &c_n1, &c_n1, ( ftnlen)6, (ftnlen)1); nx = max(i__1,i__2); /* Determine when to switch from blocked to unblocked code. */ if (nx < minmn) { ws = (real) ((*m + *n) * nb); if ((real) (*lwork) < ws) { /* Not enough work space for the optimal NB, consider using */ /* a smaller block size. */ nbmin = ilaenv_(&c__2, "SGEBRD", " ", m, n, &c_n1, &c_n1, ( ftnlen)6, (ftnlen)1); if (*lwork >= (*m + *n) * nbmin) { nb = *lwork / (*m + *n); } else { nb = 1; nx = minmn; } } } } else { nx = minmn; } i__1 = minmn - nx; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Reduce rows and columns i:i+nb-1 to bidiagonal form and return */ /* the matrices X and Y which are needed to update the unreduced */ /* part of the matrix */ i__3 = *m - i__ + 1; i__4 = *n - i__ + 1; slabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[ i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx * nb + 1], &ldwrky); /* Update the trailing submatrix A(i+nb:m,i+nb:n), using an update */ /* of the form A := A - V*Y' - X*U' */ i__3 = *m - i__ - nb + 1; i__4 = *n - i__ - nb + 1; sgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b21, &a[i__ + nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], & ldwrky, &c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda, ( ftnlen)12, (ftnlen)9); i__3 = *m - i__ - nb + 1; i__4 = *n - i__ - nb + 1; sgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b21, & work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, & c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda, (ftnlen)12, ( ftnlen)12); /* Copy diagonal and off-diagonal elements of B back into A */ if (*m >= *n) { i__3 = i__ + nb - 1; for (j = i__; j <= i__3; ++j) { a[j + j * a_dim1] = d__[j]; a[j + (j + 1) * a_dim1] = e[j]; /* L10: */ } } else { i__3 = i__ + nb - 1; for (j = i__; j <= i__3; ++j) { a[j + j * a_dim1] = d__[j]; a[j + 1 + j * a_dim1] = e[j]; /* L20: */ } } /* L30: */ } /* Use unblocked code to reduce the remainder of the matrix */ i__2 = *m - i__ + 1; i__1 = *n - i__ + 1; sgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], & tauq[i__], &taup[i__], &work[1], &iinfo); work[1] = ws; return 0; /* End of SGEBRD */ } /* sgebrd_ */
doublereal sqrt12_(integer *m, integer *n, real *a, integer *lda, real *s, real *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; real ret_val; /* Local variables */ integer i__, j, mn, iscl, info; real anrm; extern doublereal snrm2_(integer *, real *, integer *), sasum_(integer *, real *, integer *); real dummy[1]; extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, real *, integer *), sgebd2_(integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *), slabad_( real *, real *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int xerbla_(char *, integer *); real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), sbdsqr_(char *, integer *, integer *, integer *, integer *, real *, real *, real *, integer *, real *, integer *, real *, integer *, real *, integer *); real smlnum, nrmsvl; /* -- LAPACK test routine (version 3.1.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* January 2007 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SQRT12 computes the singular values `svlues' of the upper trapezoid */ /* of A(1:M,1:N) and returns the ratio */ /* || s - svlues||/(||svlues||*eps*max(M,N)) */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. */ /* A (input) REAL array, dimension (LDA,N) */ /* The M-by-N matrix A. Only the upper trapezoid is referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. */ /* S (input) REAL array, dimension (min(M,N)) */ /* The singular values of the matrix A. */ /* WORK (workspace) REAL array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= max(M*N + 4*min(M,N) + */ /* max(M,N), M*N+2*MIN( M, N )+4*N). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --s; --work; /* Function Body */ ret_val = 0.f; /* Test that enough workspace is supplied */ /* Computing MAX */ i__1 = *m * *n + (min(*m,*n) << 2) + max(*m,*n), i__2 = *m * *n + (min(*m, *n) << 1) + (*n << 2); if (*lwork < max(i__1,i__2)) { xerbla_("SQRT12", &c__7); return ret_val; } /* Quick return if possible */ mn = min(*m,*n); if ((real) mn <= 0.f) { return ret_val; } nrmsvl = snrm2_(&mn, &s[1], &c__1); /* Copy upper triangle of A into work */ slaset_("Full", m, n, &c_b6, &c_b6, &work[1], m); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(j,*m); for (i__ = 1; i__ <= i__2; ++i__) { work[(j - 1) * *m + i__] = a[i__ + j * a_dim1]; /* L10: */ } /* L20: */ } /* Get machine parameters */ smlnum = slamch_("S") / slamch_("P"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Scale work if max entry outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", m, n, &work[1], m, dummy); iscl = 0; if (anrm > 0.f && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &work[1], m, &info); iscl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM */ slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &work[1], m, &info); iscl = 1; } if (anrm != 0.f) { /* Compute SVD of work */ sgebd2_(m, n, &work[1], m, &work[*m * *n + 1], &work[*m * *n + mn + 1] , &work[*m * *n + (mn << 1) + 1], &work[*m * *n + mn * 3 + 1], &work[*m * *n + (mn << 2) + 1], &info); sbdsqr_("Upper", &mn, &c__0, &c__0, &c__0, &work[*m * *n + 1], &work[* m * *n + mn + 1], dummy, &mn, dummy, &c__1, dummy, &mn, &work[ *m * *n + (mn << 1) + 1], &info); if (iscl == 1) { if (anrm > bignum) { slascl_("G", &c__0, &c__0, &bignum, &anrm, &mn, &c__1, &work[* m * *n + 1], &mn, &info); } if (anrm < smlnum) { slascl_("G", &c__0, &c__0, &smlnum, &anrm, &mn, &c__1, &work[* m * *n + 1], &mn, &info); } } } else { i__1 = mn; for (i__ = 1; i__ <= i__1; ++i__) { work[*m * *n + i__] = 0.f; /* L30: */ } } /* Compare s and singular values of work */ saxpy_(&mn, &c_b33, &s[1], &c__1, &work[*m * *n + 1], &c__1); ret_val = sasum_(&mn, &work[*m * *n + 1], &c__1) / (slamch_("Epsilon") * (real) max(*m,*n)); if (nrmsvl != 0.f) { ret_val /= nrmsvl; } return ret_val; /* End of SQRT12 */ } /* sqrt12_ */
doublereal sqrt12_(integer *m, integer *n, real *a, integer *lda, real *s, real *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; real ret_val; /* Local variables */ static integer iscl, info; static real anrm; extern doublereal snrm2_(integer *, real *, integer *); static integer i__, j; extern doublereal sasum_(integer *, real *, integer *); static real dummy[1]; extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, real *, integer *), sgebd2_(integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *), slabad_( real *, real *); static integer mn; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int xerbla_(char *, integer *); static real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), sbdsqr_(char *, integer *, integer *, integer *, integer *, real *, real *, real *, integer *, real *, integer *, real *, integer *, real *, integer *); static real smlnum, nrmsvl; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= SQRT12 computes the singular values `svlues' of the upper trapezoid of A(1:M,1:N) and returns the ratio || s - svlues||/(||svlues||*eps*max(M,N)) Arguments ========= M (input) INTEGER The number of rows of the matrix A. N (input) INTEGER The number of columns of the matrix A. A (input) REAL array, dimension (LDA,N) The M-by-N matrix A. Only the upper trapezoid is referenced. LDA (input) INTEGER The leading dimension of the array A. S (input) REAL array, dimension (min(M,N)) The singular values of the matrix A. WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The length of the array WORK. LWORK >= M*N + 4*min(M,N) + max(M,N). ===================================================================== Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --s; --work; /* Function Body */ ret_val = 0.f; /* Test that enough workspace is supplied */ if (*lwork < *m * *n + (min(*m,*n) << 2) + max(*m,*n)) { xerbla_("SQRT12", &c__7); return ret_val; } /* Quick return if possible */ mn = min(*m,*n); if ((real) mn <= 0.f) { return ret_val; } nrmsvl = snrm2_(&mn, &s[1], &c__1); /* Copy upper triangle of A into work */ slaset_("Full", m, n, &c_b6, &c_b6, &work[1], m); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(j,*m); for (i__ = 1; i__ <= i__2; ++i__) { work[(j - 1) * *m + i__] = a_ref(i__, j); /* L10: */ } /* L20: */ } /* Get machine parameters */ smlnum = slamch_("S") / slamch_("P"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Scale work if max entry outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", m, n, &work[1], m, dummy); iscl = 0; if (anrm > 0.f && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &work[1], m, &info); iscl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM */ slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &work[1], m, &info); iscl = 1; } if (anrm != 0.f) { /* Compute SVD of work */ sgebd2_(m, n, &work[1], m, &work[*m * *n + 1], &work[*m * *n + mn + 1] , &work[*m * *n + (mn << 1) + 1], &work[*m * *n + mn * 3 + 1], &work[*m * *n + (mn << 2) + 1], &info); sbdsqr_("Upper", &mn, &c__0, &c__0, &c__0, &work[*m * *n + 1], &work[* m * *n + mn + 1], dummy, &mn, dummy, &c__1, dummy, &mn, &work[ *m * *n + (mn << 1) + 1], &info); if (iscl == 1) { if (anrm > bignum) { slascl_("G", &c__0, &c__0, &bignum, &anrm, &mn, &c__1, &work[* m * *n + 1], &mn, &info); } if (anrm < smlnum) { slascl_("G", &c__0, &c__0, &smlnum, &anrm, &mn, &c__1, &work[* m * *n + 1], &mn, &info); } } } else { i__1 = mn; for (i__ = 1; i__ <= i__1; ++i__) { work[*m * *n + i__] = 0.f; /* L30: */ } } /* Compare s and singular values of work */ saxpy_(&mn, &c_b33, &s[1], &c__1, &work[*m * *n + 1], &c__1); ret_val = sasum_(&mn, &work[*m * *n + 1], &c__1) / (slamch_("Epsilon") * (real) max(*m,*n)); if (nrmsvl != 0.f) { ret_val /= nrmsvl; } return ret_val; /* End of SQRT12 */ } /* sqrt12_ */