Ejemplo n.º 1
0
void b2CLCommonData::initReadLastJointImpulses()
{
	if (b2clGlobal_OpenCLSupported)
	{
		printf("Initializing b2CLCommonData...\n");
    
		int err;
    
		//load opencl programs from files
		char* commonDataSource = 0;
		size_t commonDataSourceLen = 0;

		shrLog("...loading b2CLCommonData.cl\n");
    #ifdef linux
    	commonDataSource = b2clLoadProgSource(shrFindFilePath("/opt/apps/com.samsung.browser/include/Box2D/Common/OpenCL/b2CLCommonData.cl", NULL), "// My comment\n", &commonDataSourceLen);
	#elif defined (_WIN32)
		commonDataSource = b2clLoadProgSource(shrFindFilePath("../../Box2D/Common/OpenCL/b2CLCommonData.cl", NULL), "// My comment\n", &commonDataSourceLen);
    #elif defined (__EMSCRIPTEN__)
        commonDataSource = b2clLoadProgSource(shrFindFilePath("./Common/OpenCL/b2CLCommonData.cl", NULL), "// My comment\n", &commonDataSourceLen);
	#else
		commonDataSource = b2clLoadProgSource(shrFindFilePath("../../../Box2D/Common/OpenCL/b2CLCommonData.cl", NULL), "// My comment\n", &commonDataSourceLen);
	#endif
		if(commonDataSource == NULL)
		{
			b2Log("Could not load program source, is path 'b2CLCommonData.cl' correct?");
		}

		//create the compute program from source kernel code
		commonDataProgram = clCreateProgramWithSource(b2CLDevice::instance().GetContext(), 1, (const char**) &commonDataSource, NULL, &err);
		if (!commonDataProgram)
		{
			printf("Error: Failed to create compute program!\n");
			exit(1);
		}
    
		//build the program
		err = clBuildProgram(commonDataProgram, 0, NULL, OPENCL_BUILD_PATH, NULL, NULL);
		if (err != CL_SUCCESS)
		{
			size_t len;
			char buffer[20480];
        
			printf("Error: Failed to build program executable!\n");
			clGetProgramBuildInfo(commonDataProgram, b2CLDevice::instance().GetCurrentDevice(), CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
			printf("%s\n", buffer);
			exit(1);
		}
    
		//create the compute kernel
		readLastJointImpulseKernel = clCreateKernel(commonDataProgram, "ReadLastJointImpulses", &err);
		if (!readLastJointImpulseKernel || err != CL_SUCCESS)
		{
			printf("Error: Failed to create compute kernel!\n");
			exit(1);
		}
		b2CLDevice::instance().getMaximumKernelWorkGroupSize(readLastJointImpulseKernel, maxWorkGroupSizeForreadLastJointImpulse);
	}
}
extern "C" void initHistogram64(cl_context cxGPUContext, cl_command_queue cqParamCommandQue, const char **argv){
    cl_int ciErrNum;
    size_t kernelLength;

    shrLog("...loading Histogram64.cl from file\n");
        char *cHistogram64 = oclLoadProgSource(shrFindFilePath("Histogram64.cl", argv[0]), "// My comment\n", &kernelLength);
        shrCheckError(cHistogram64 != NULL, shrTRUE);

    shrLog("...creating histogram64 program\n");
         cpHistogram64 = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cHistogram64, &kernelLength, &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog("...building histogram64 program\n");
        ciErrNum = clBuildProgram(cpHistogram64, 0, NULL, compileOptions, NULL, NULL);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog("...creating histogram64 kernels\n");
        ckHistogram64 = clCreateKernel(cpHistogram64, "histogram64", &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);
        ckMergeHistogram64 = clCreateKernel(cpHistogram64, "mergeHistogram64", &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog("...allocating internal histogram64 buffer\n");
        d_PartialHistograms = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, MAX_PARTIAL_HISTOGRAM64_COUNT * HISTOGRAM64_BIN_COUNT * sizeof(uint), NULL, &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    //Save default command queue
    cqDefaultCommandQue = cqParamCommandQue;

    //Discard temp storage
    free(cHistogram64);

    //Save ptx code to separate file
    oclLogPtx(cpHistogram64, oclGetFirstDev(cxGPUContext), "Histogram64.ptx");
}
extern "C" void initConvolutionSeparable(cl_context cxGPUContext, cl_command_queue cqParamCommandQueue, const char **argv){
    cl_int ciErrNum;
    size_t kernelLength;

    shrLog("Loading ConvolutionSeparable.cl...\n");
        char *cPathAndName = shrFindFilePath("ConvolutionSeparable.cl", argv[0]);
        oclCheckError(cPathAndName != NULL, shrTRUE);
        char *cConvolutionSeparable = oclLoadProgSource(cPathAndName, "// My comment\n", &kernelLength);
        oclCheckError(cConvolutionSeparable != NULL, shrTRUE);

    shrLog("Creating convolutionSeparable program...\n");
        cpConvolutionSeparable = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cConvolutionSeparable, &kernelLength, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);

    shrLog("Building convolutionSeparable program...\n");
        char compileOptions[2048];
        #ifdef _WIN32
            sprintf_s(compileOptions, 2048, "\
                -cl-fast-relaxed-math                                  \
                -D KERNEL_RADIUS=%u\
                -D ROWS_BLOCKDIM_X=%u -D COLUMNS_BLOCKDIM_X=%u\
                -D ROWS_BLOCKDIM_Y=%u -D COLUMNS_BLOCKDIM_Y=%u\
                -D ROWS_RESULT_STEPS=%u -D COLUMNS_RESULT_STEPS=%u\
                -D ROWS_HALO_STEPS=%u -D COLUMNS_HALO_STEPS=%u\
                ",
                KERNEL_RADIUS,
                ROWS_BLOCKDIM_X,   COLUMNS_BLOCKDIM_X,
                ROWS_BLOCKDIM_Y,   COLUMNS_BLOCKDIM_Y,
                ROWS_RESULT_STEPS, COLUMNS_RESULT_STEPS,
                ROWS_HALO_STEPS,   COLUMNS_HALO_STEPS
            );
        #else
            sprintf(compileOptions, "\
                -cl-fast-relaxed-math                                  \
                -D KERNEL_RADIUS=%u\
                -D ROWS_BLOCKDIM_X=%u -D COLUMNS_BLOCKDIM_X=%u\
                -D ROWS_BLOCKDIM_Y=%u -D COLUMNS_BLOCKDIM_Y=%u\
                -D ROWS_RESULT_STEPS=%u -D COLUMNS_RESULT_STEPS=%u\
                -D ROWS_HALO_STEPS=%u -D COLUMNS_HALO_STEPS=%u\
                ",
                KERNEL_RADIUS,
                ROWS_BLOCKDIM_X,   COLUMNS_BLOCKDIM_X,
                ROWS_BLOCKDIM_Y,   COLUMNS_BLOCKDIM_Y,
                ROWS_RESULT_STEPS, COLUMNS_RESULT_STEPS,
                ROWS_HALO_STEPS,   COLUMNS_HALO_STEPS
            );
        #endif
        ciErrNum = clBuildProgram(cpConvolutionSeparable, 0, NULL, compileOptions, NULL, NULL);
        oclCheckError(ciErrNum, CL_SUCCESS);
        ckConvolutionRows = clCreateKernel(cpConvolutionSeparable, "convolutionRows", &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        ckConvolutionColumns = clCreateKernel(cpConvolutionSeparable, "convolutionColumns", &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);

    cqDefaultCommandQueue = cqParamCommandQueue;
    free(cConvolutionSeparable);
}
extern "C" void initScan(cl_context cxGPUContext, cl_command_queue cqParamCommandQue, const char **argv) {
    cl_int ciErrNum;
    size_t kernelLength;

    shrLog(" ...loading Scan.cl\n");
    char *cScan = oclLoadProgSource(shrFindFilePath("Scan.cl", argv[0]), "// My comment\n", &kernelLength);
    oclCheckError(cScan != NULL, shrTRUE);

    shrLog(" ...creating scan program\n");
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cScan, &kernelLength, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    shrLog(" ...building scan program\n");
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, compileOptions, NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclScan.ptx");
        oclCheckError(ciErrNum, CL_SUCCESS);
    }

    shrLog(" ...creating scan kernels\n");
    ckScanExclusiveLocal1 = clCreateKernel(cpProgram, "scanExclusiveLocal1", &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    ckScanExclusiveLocal2 = clCreateKernel(cpProgram, "scanExclusiveLocal2", &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    ckUniformUpdate = clCreateKernel(cpProgram, "uniformUpdate", &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    shrLog( " ...checking minimum supported workgroup size\n");
    //Check for work group size
    cl_device_id device;
    size_t szScanExclusiveLocal1, szScanExclusiveLocal2, szUniformUpdate;

    ciErrNum  = clGetCommandQueueInfo(cqParamCommandQue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device, NULL);
    ciErrNum |= clGetKernelWorkGroupInfo(ckScanExclusiveLocal1,  device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &szScanExclusiveLocal1, NULL);
    ciErrNum |= clGetKernelWorkGroupInfo(ckScanExclusiveLocal2, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &szScanExclusiveLocal2, NULL);
    ciErrNum |= clGetKernelWorkGroupInfo(ckUniformUpdate, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &szUniformUpdate, NULL);
    oclCheckError(ciErrNum, CL_SUCCESS);

    if( (szScanExclusiveLocal1 < WORKGROUP_SIZE) || (szScanExclusiveLocal2 < WORKGROUP_SIZE) || (szUniformUpdate < WORKGROUP_SIZE) ) {
        shrLog("ERROR: Minimum work-group size %u required by this application is not supported on this device.\n", WORKGROUP_SIZE);
        exit(0);
    }

    shrLog(" ...allocating internal buffers\n");
    d_Buffer = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, (MAX_BATCH_ELEMENTS / (4 * WORKGROUP_SIZE)) * sizeof(uint), NULL, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    //Discard temp storage
    free(cScan);
}
Ejemplo n.º 5
0
bool 
CheckRender::PPMvsPPM( const char *src_file, const char *ref_file, const float epsilon, const float threshold )
{
    char *ref_file_path = shrFindFilePath(ref_file, m_ExecPath);
    if (ref_file_path == NULL) {
        shrLog("\nCheckRender::PPMvsPPM unable to find <%s> in <%s> Aborting comparison!\n", ref_file, m_ExecPath);
        return false;
    } 

    if (src_file == NULL || ref_file == NULL) {
        shrLog("\nCheckRender::PPMvsPPM: Aborting comparison\n");
        return false;
    }
    
    return (shrComparePPM(src_file, ref_file_path, epsilon, threshold) == shrTRUE ? true : false);
}
Ejemplo n.º 6
0
bool
CheckRender::PGMvsPGM( const char *src_file, const char *ref_file, const float epsilon, const float threshold )
{
    unsigned char *src_data = NULL, *ref_data = NULL;
    unsigned long error_count = 0;
    unsigned int width, height;

    char *ref_file_path = shrFindFilePath(ref_file, m_ExecPath);
    if (ref_file_path == NULL) {
        printf("CheckRender::PGMvsPGM unable to find <%s> in <%s> Aborting comparison!\n", ref_file, m_ExecPath);
        printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", ref_file);
        printf("Aborting comparison!\n");
        printf("  FAILED!\n");
        error_count++;
    } else {

        if (src_file == NULL || ref_file_path == NULL) {
            printf("PGMvsPGM: Aborting comparison\n");
            return false;
        }
		printf("   src_file <%s>\n", src_file);
		printf("   ref_file <%s>\n", ref_file_path);

        if (shrLoadPGMub(ref_file_path, &ref_data, &width, &height) != shrTRUE) {
            printf("PGMvsPGM: unable to load ref image file: %s\n", ref_file_path);
            return false;
        }

        if (shrLoadPGMub(src_file, &src_data, &width, &height) != shrTRUE) {
            printf("PGMvsPGM: unable to load src image file: %s\n", src_file);
            return false;
        }

        printf("PGMvsPGM: comparing images size (%d,%d) epsilon(%2.4f), threshold(%4.2f%%)\n",
                m_Height, m_Width, epsilon, threshold*100);
        if (shrCompareubt( ref_data, src_data, m_Height*m_Width, epsilon, threshold ) == shrFALSE) {
            error_count = 1;
        }
    }

    if (error_count == 0) {
        printf("  PASSED!\n");
    } else {
        printf("  FAILED! %d errors...\n", (unsigned int)error_count);
    }
    return (error_count == 0);  // returns true if all pixels pass
}
Ejemplo n.º 7
0
void loadImageData(int argc, char **argv)
{
    // load image (needed so we can get the width and height before we create the window
    char* image_path = NULL;
    if (argc >= 1) image_path = shrFindFilePath(image_filename, argv[0]);
    if (image_path == 0) {
        shrLog("Error finding image file '%s'\n", image_filename);
        exit(EXIT_FAILURE);
    }

    cutilCheckError(cutLoadPPM4ub(image_path, (unsigned char **) &h_img, &width, &height));
    if (!h_img) {
        shrLog("Error opening file '%s'\n", image_path);
        exit(-1);
    }
    shrLog("Loaded '%s', %d x %d pixels\n\n", image_path, width, height);
}
Ejemplo n.º 8
0
//-----------------------------------------------------------------------------
// Name: CreateKernelProgram()
// Desc: Creates OpenCL program and kernel instances
//-----------------------------------------------------------------------------
HRESULT CreateKernelProgram(
	const char *exepath, const char *clName, const char *clPtx, const char *kernelEntryPoint,
	cl_program			&cpProgram,
	cl_kernel			&ckKernel )
{
    // Program Setup
    size_t program_length;
    const char* source_path = shrFindFilePath(clName, exepath);
    char *source = oclLoadProgSource(source_path, "", &program_length);
    oclCheckErrorEX(source != NULL, shrTRUE, pCleanup);

    // create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1,(const char **) &source, &program_length, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    free(source);

    // build the program
#ifdef USE_STAGING_BUFFER
	static char *opts = "-cl-fast-relaxed-math -DUSE_STAGING_BUFFER";
#else
	static char *opts = "-cl-fast-relaxed-math";
#endif
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, opts, NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), clPtx);
        Cleanup(EXIT_FAILURE); 
    }

    // create the kernel
    ckKernel = clCreateKernel(cpProgram, kernelEntryPoint, &ciErrNum);
    if (!ckKernel)
    {
        Cleanup(EXIT_FAILURE); 
    }

    // set the args values
	return ciErrNum ? E_FAIL : S_OK;
}
Ejemplo n.º 9
0
bool
CheckRender::PPMvsPPM( const char *src_file, const char *ref_file, const float epsilon, const float threshold )
{
    unsigned long error_count = 0;

    char *ref_file_path = shrFindFilePath(ref_file, m_ExecPath);
    if (ref_file_path == NULL) {
        printf("CheckRender::PPMvsPPM unable to find <%s> in <%s> Aborting comparison!\n", ref_file, m_ExecPath);
        printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", ref_file);
        printf("Aborting comparison!\n");
        printf("  FAILED!\n");
        error_count++;
    }

    if (src_file == NULL || ref_file_path == NULL) {
        printf("PPMvsPPM: Aborting comparison\n");
        return false;
    }
	printf("   src_file <%s>\n", src_file);
	printf("   ref_file <%s>\n", ref_file_path);
    return (shrComparePPM( src_file, ref_file_path, epsilon, threshold, true ) == shrTRUE ? true : false);
}
extern "C" void initBlackScholes(cl_context cxGPUContext, cl_command_queue cqParamCommandQueue, const char **argv){
    cl_int ciErrNum;
    size_t kernelLength;

    shrLog(LOGBOTH, 0, "...loading BlackScholes.cl\n");
        char *cBlackScholes = oclLoadProgSource(shrFindFilePath("BlackScholes.cl", argv[0]), "// My comment\n", &kernelLength);
        shrCheckError(cBlackScholes != NULL, shrTRUE);

    shrLog(LOGBOTH, 0, "...creating BlackScholes program\n");
        cpBlackScholes = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cBlackScholes, &kernelLength, &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog(LOGBOTH, 0, "...building BlackScholes program\n");
        ciErrNum = clBuildProgram(cpBlackScholes, 0, NULL, NULL, NULL, NULL);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog(LOGBOTH, 0, "...creating BlackScholes kernels\n");
        ckBlackScholes = clCreateKernel(cpBlackScholes, "BlackScholes", &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    cqDefaultCommandQueue = cqParamCommandQueue;
    free(cBlackScholes);
}
Ejemplo n.º 11
0
// Main function 
// *********************************************************************
int ymain(int argc, char **argv)
{
    shrQAStart(argc, argv);

    // get command line arg for quick test, if provided
    bNoPrompt = shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");
    
    // start logs 
	cExecutableName = argv[0];
    shrSetLogFileName ("oclVectorAdd2.txt");
    shrLog("%s Starting...\n\n# of float elements per Array \t= %i\n", argv[0], iNumElements); 

    // set and log Global and Local work size dimensions
    szLocalWorkSize = 256;
    szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, iNumElements);  // rounded up to the nearest multiple of the LocalWorkSize
    shrLog("Global Work Size \t\t= %u\nLocal Work Size \t\t= %u\n# of Work Groups \t\t= %u\n\n", 
           szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize)); 

    // Allocate and initialize host arrays 
    shrLog( "Allocate and Init Host Mem...\n"); 
    srcA = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
    srcB = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
    dst = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
    Golden = (void *)malloc(sizeof(cl_float) * iNumElements);
    shrFillArray((float*)srcA, iNumElements);
    shrFillArray((float*)srcB, iNumElements);

    //Get an OpenCL platform
    ciErr1 = clGetPlatformIDs(1, &cpPlatform, NULL);

    shrLog("clGetPlatformID...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clGetPlatformID, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    //Get the devices
    ciErr1 = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);
    shrLog("clGetDeviceIDs...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clGetDeviceIDs, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    //Create the context
    cxGPUContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, &ciErr1);
    shrLog("clCreateContext...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateContext, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Create a command-queue
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevice, 0, &ciErr1);
    shrLog("clCreateCommandQueue...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateCommandQueue, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Allocate the OpenCL buffer memory objects for source and result on the device GMEM
    cmDevSrcA = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr1);
    cmDevSrcB = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
    ciErr1 |= ciErr2;
    cmDevDst = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
    ciErr1 |= ciErr2;
    shrLog("clCreateBuffer...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }
    
    // Read the OpenCL kernel in from source file
    shrLog("oclLoadProgSource (%s)...\n", cSourceFile); 
    cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
    shrLog("Looking for: %s in Path: %s\n", cSourceFile, argv[0]);
    cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);

    // Create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErr1);
    shrLog("clCreateProgramWithSource...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateProgramWithSource, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Build the program with 'mad' Optimization option
    #ifdef MAC
        char* flags = "-cl-fast-relaxed-math -DMAC";
    #else
        char* flags = "-cl-fast-relaxed-math";
    #endif
    ciErr1 = clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
    shrLog("clBuildProgram...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clBuildProgram, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Create the kernel
    ckKernel = clCreateKernel(cpProgram, "VectorAdd", &ciErr1);
    shrLog("clCreateKernel (VectorAdd)...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Set the Argument values
    ciErr1 = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrcA);
    ciErr1 |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrcB);
    ciErr1 |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevDst);
    ciErr1 |= clSetKernelArg(ckKernel, 3, sizeof(cl_int), (void*)&iNumElements);
    shrLog("clSetKernelArg 0 - 3...\n\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clSetKernelArg, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // --------------------------------------------------------
    // Start Core sequence... copy input data to GPU, compute, copy results back

    // Asynchronous write of data to GPU device
    ciErr1 = clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcA, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, srcA, 0, NULL, NULL);
    ciErr1 |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcB, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, srcB, 0, NULL, NULL);
    shrLog("clEnqueueWriteBuffer (SrcA and SrcB)...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clEnqueueWriteBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Launch kernel
    ciErr1 = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, NULL);
    shrLog("clEnqueueNDRangeKernel (VectorAdd)...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clEnqueueNDRangeKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Synchronous/blocking read of results, and check accumulated errors
    ciErr1 = clEnqueueReadBuffer(cqCommandQueue, cmDevDst, CL_TRUE, 0, sizeof(cl_float) * szGlobalWorkSize, dst, 0, NULL, NULL);
    shrLog("clEnqueueReadBuffer (Dst)...\n\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clEnqueueReadBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }
    //--------------------------------------------------------

    // Compute and compare results for golden-host and report errors and pass/fail
    shrLog("Comparing against Host/C++ computation...\n\n"); 
    VectorAddHost ((const float*)srcA, (const float*)srcB, (float*)Golden, iNumElements);
    shrBOOL bMatch = shrComparefet((const float*)Golden, (const float*)dst, (unsigned int)iNumElements, 0.0f, 0);

    // Cleanup and leave
    Cleanup (argc, argv, (bMatch == shrTRUE) ? EXIT_SUCCESS : EXIT_FAILURE);
}
extern "C" void initBlackScholes(cl_context cxGPUContext, cl_command_queue cqParamCommandQueue, const char **argv){
    cl_int ciErrNum;
    size_t kernelLength;

    shrLog("...loading BlackScholes.cl\n");
        char *cPathAndName = shrFindFilePath("BlackScholes.cl", argv[0]);
        shrCheckError(cPathAndName != NULL, shrTRUE);
        char *cBlackScholes = oclLoadProgSource(cPathAndName, "// My comment\n", &kernelLength);
        shrCheckError(cBlackScholes != NULL, shrTRUE);

    shrLog("...creating BlackScholes program\n");
        cpBlackScholes = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cBlackScholes, &kernelLength, &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog("...building BlackScholes program\n");
        ciErrNum = clBuildProgram(cpBlackScholes, 0, NULL, "-cl-fast-relaxed-math -Werror", NULL, NULL);

        if(ciErrNum != CL_BUILD_SUCCESS){
            shrLog("*** Compilation failure ***\n");

            size_t deviceNum;
            cl_device_id *cdDevices;
            ciErrNum = clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &deviceNum);
            shrCheckError(ciErrNum, CL_SUCCESS);

            cdDevices = (cl_device_id *)malloc(deviceNum * sizeof(cl_device_id));
            shrCheckError(cdDevices != NULL, shrTRUE);

            ciErrNum = clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, deviceNum * sizeof(cl_device_id), cdDevices, NULL);
            shrCheckError(ciErrNum, CL_SUCCESS);

            size_t logSize;
            char *logTxt;

            ciErrNum = clGetProgramBuildInfo(cpBlackScholes, cdDevices[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &logSize);
            shrCheckError(ciErrNum, CL_SUCCESS);

            logTxt = (char *)malloc(logSize);
            shrCheckError(logTxt != NULL, shrTRUE);

            ciErrNum = clGetProgramBuildInfo(cpBlackScholes, cdDevices[0], CL_PROGRAM_BUILD_LOG, logSize, logTxt, NULL);
            shrCheckError(ciErrNum, CL_SUCCESS);

            shrLog("%s\n", logTxt);
            shrLog("*** Exiting ***\n");
            free(logTxt);
            free(cdDevices);
            exit(666);
        }

    //Save ptx code to separate file
    oclLogPtx(cpBlackScholes, oclGetFirstDev(cxGPUContext), "BlackScholes.ptx");

    shrLog("...creating BlackScholes kernels\n");
        ckBlackScholes = clCreateKernel(cpBlackScholes, "BlackScholes", &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    cqDefaultCommandQueue = cqParamCommandQueue;
    free(cBlackScholes);
    free(cPathAndName);
}
Ejemplo n.º 13
0
bool fdtdGPU(float *output, const float *input, const float *coeff, const int dimx, const int dimy, const int dimz, const int radius, const int timesteps, const int argc, const char **argv)
{
    bool ok = true;
    const int         outerDimx  = dimx + 2 * radius;
    const int         outerDimy  = dimy + 2 * radius;
    const int         outerDimz  = dimz + 2 * radius;
    const size_t      volumeSize = outerDimx * outerDimy * outerDimz;
    cl_context        context      = 0;
    cl_platform_id    platform     = 0;
    cl_device_id     *devices      = 0;
    cl_command_queue  commandQueue = 0;
    cl_mem            bufferOut    = 0;
    cl_mem            bufferIn     = 0;
    cl_mem            bufferCoeff  = 0;
    cl_program        program      = 0;
    cl_kernel         kernel       = 0;
    cl_event         *kernelEvents = 0;
#ifdef GPU_PROFILING
    cl_ulong          kernelEventStart;
    cl_ulong          kernelEventEnd;
#endif
    double            hostElapsedTimeS;
    char             *cPathAndName = 0;
    char             *cSourceCL = 0;
    size_t            szKernelLength;
    size_t            globalWorkSize[2];
    size_t            localWorkSize[2];
    cl_uint           deviceCount  = 0;
    cl_uint           targetDevice = 0;
    cl_int            errnum       = 0;
    char              buildOptions[128];

    // Ensure that the inner data starts on a 128B boundary
    const int padding = (128 / sizeof(float)) - radius;
    const size_t paddedVolumeSize = volumeSize + padding;

#ifdef GPU_PROFILING
    const int profileTimesteps = timesteps - 1;
    if (ok)
    {
        if (profileTimesteps < 1)
        {
            shrLog(" cannot profile with fewer than two timesteps (timesteps=%d), profiling is disabled.\n", timesteps);
        }
    }
#endif

    // Get the NVIDIA platform
    if (ok)
    {
        shrLog(" oclGetPlatformID...\n");
        errnum = oclGetPlatformID(&platform);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("oclGetPlatformID (returned %d).\n", errnum);
            ok = false;
        }
    }

    // Get the list of GPU devices associated with the platform
    if (ok)
    {
        shrLog(" clGetDeviceIDs");
        errnum = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &deviceCount);
        devices = (cl_device_id *)malloc(deviceCount * sizeof(cl_device_id) );
        errnum = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, deviceCount, devices, NULL);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clGetDeviceIDs (returned %d).\n", errnum);
            ok = false;
        }
    }

    // Create the OpenCL context
    if (ok)
    {
        shrLog(" clCreateContext...\n");
        context = clCreateContext(0, deviceCount, devices, NULL, NULL, &errnum);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clCreateContext (returned %d).\n", errnum);
            ok = false;
        }
    }

    // Select target device (device 0 by default)
    if (ok)
    {
        char *device = 0;
        if (shrGetCmdLineArgumentstr(argc, argv, "device", &device))
        {
            targetDevice = (cl_uint)atoi(device);
            if (targetDevice >= deviceCount)
            {
                shrLogEx(LOGBOTH | ERRORMSG, -2001, STDERROR);
                shrLog("invalid target device specified on command line (device %d does not exist).\n", targetDevice);
                ok = false;
            }
        }
        else
        {
            targetDevice = 0;
        }
        if (device)
        {
            free(device);
        }
    }

    // Create a command-queue
    if (ok)
    {
        shrLog(" clCreateCommandQueue\n"); 
        commandQueue = clCreateCommandQueue(context, devices[targetDevice], CL_QUEUE_PROFILING_ENABLE, &errnum);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clCreateCommandQueue (returned %d).\n", errnum);
            ok = false;
        }
    }

    // Create memory buffer objects
    if (ok)
    {
        shrLog(" clCreateBuffer bufferOut\n"); 
        bufferOut = clCreateBuffer(context, CL_MEM_READ_WRITE, paddedVolumeSize * sizeof(float), NULL, &errnum);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clCreateBuffer (returned %d).\n", errnum);
            ok = false;
        }
    }
    if (ok)
    {
        shrLog(" clCreateBuffer bufferIn\n"); 
        bufferIn = clCreateBuffer(context, CL_MEM_READ_WRITE, paddedVolumeSize * sizeof(float), NULL, &errnum);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clCreateBuffer (returned %d).\n", errnum);
            ok = false;
        }
    }
    if (ok)
    {
        shrLog(" clCreateBuffer bufferCoeff\n"); 
        bufferCoeff = clCreateBuffer(context, CL_MEM_READ_ONLY, (radius + 1) * sizeof(float), NULL, &errnum);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clCreateBuffer (returned %d).\n", errnum);
            ok = false;
        }
    }

    // Load the kernel from file
    if (ok)
    {
        shrLog(" shrFindFilePath\n"); 
        cPathAndName = shrFindFilePath(clSourceFile, argv[0]);
        if (cPathAndName == NULL)
        {
            shrLogEx(LOGBOTH | ERRORMSG, -2002, STDERROR);
            shrLog("shrFindFilePath returned null.\n");
            ok = false;
        }
    }
    if (ok)
    {
        shrLog(" oclLoadProgSource\n"); 
        cSourceCL = oclLoadProgSource(cPathAndName, "// Preamble\n", &szKernelLength);
        if (cSourceCL == NULL)
        {
            shrLogEx(LOGBOTH | ERRORMSG, -2003, STDERROR);
            shrLog("oclLoadProgSource returned null.\n");
            ok = false;
        }
    }

    // Create the program
    if (ok)
    {
        shrLog(" clCreateProgramWithSource\n");
        program = clCreateProgramWithSource(context, 1, (const char **)&cSourceCL, &szKernelLength, &errnum);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clCreateProgramWithSource (returned %d).\n", errnum);
            ok = false;
        }
    }

    // Check for a command-line specified work group size
    size_t userWorkSize;
    int    localWorkMaxY;
	if (ok)
    {
        int userWorkSizeInt;
        if (shrGetCmdLineArgumenti(argc, argv, "work-group-size", &userWorkSizeInt))
        {
            // We can't clamp to CL_KERNEL_WORK_GROUP_SIZE yet since that is
            // dependent on the build.
            if (userWorkSizeInt < k_localWorkMin || userWorkSizeInt > k_localWorkMax)
            {
                shrLogEx(LOGBOTH | ERRORMSG, -2004, STDERROR);
                shrLog("invalid work group size specified on command line (must be between %d and %d).\n", k_localWorkMin, k_localWorkMax);
                ok = false;
            }
            // Constrain to a multiple of k_localWorkX
            userWorkSize = (userWorkSizeInt / k_localWorkX * k_localWorkX);
        }
        else
        {
            userWorkSize = k_localWorkY * k_localWorkX;
        }
        
        // Divide by k_localWorkX (integer division to clamp)
        localWorkMaxY = userWorkSize / k_localWorkX;
    }

    // Build the program
    if (ok)
    {
#ifdef WIN32
        if (sprintf_s(buildOptions, sizeof(buildOptions), "-DRADIUS=%d -DMAXWORKX=%d -DMAXWORKY=%d -cl-fast-relaxed-math", radius, k_localWorkX, localWorkMaxY) < 0)
        {
            shrLogEx(LOGBOTH | ERRORMSG, -2005, STDERROR);
            shrLog("sprintf_s (failed).\n");
            ok = false;
        }
#else
        if (snprintf(buildOptions, sizeof(buildOptions), "-DRADIUS=%d -DMAXWORKX=%d -DMAXWORKY=%d -cl-fast-relaxed-math", radius, k_localWorkX, localWorkMaxY) < 0)
        {
            shrLogEx(LOGBOTH | ERRORMSG, -2005, STDERROR);
            shrLog("snprintf (failed).\n");
            ok = false;
        }
#endif
    }
    if (ok)
    {
        shrLog(" clBuildProgram (%s)\n", buildOptions);
        errnum = clBuildProgram(program, 0, NULL, buildOptions, NULL, NULL);
        if (errnum != CL_SUCCESS)
        {
            char buildLog[10240];
            clGetProgramBuildInfo(program, devices[0], CL_PROGRAM_BUILD_LOG, sizeof(buildLog), buildLog, NULL);
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clBuildProgram (returned %d).\n", errnum);
            shrLog("Log:\n%s\n", buildLog);
            ok = false;
        }
    }

    // Create the kernel
    if (ok)
    {
        shrLog(" clCreateKernel\n");
        kernel = clCreateKernel(program, "FiniteDifferences", &errnum);
        if (kernel == (cl_kernel)NULL || errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clCreateKernel (returned %d).\n", errnum);
            ok = false;
        }
    }

    // Get the maximum work group size
    size_t maxWorkSize;
    if (ok)
    {
        shrLog(" clGetKernelWorkGroupInfo\n");
        errnum = clGetKernelWorkGroupInfo(kernel, devices[targetDevice], CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &maxWorkSize, NULL);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clGetKernelWorkGroupInfo (returned %d).\n", errnum);
            ok = false;
        }
    }

    // Set the work group size
    if (ok)
    {
		userWorkSize = CLAMP(userWorkSize, k_localWorkMin, maxWorkSize);
        localWorkSize[0] = k_localWorkX;
        localWorkSize[1] = userWorkSize / k_localWorkX;
        globalWorkSize[0] = localWorkSize[0] * (unsigned int)ceil((float)dimx / localWorkSize[0]);
        globalWorkSize[1] = localWorkSize[1] * (unsigned int)ceil((float)dimy / localWorkSize[1]);
        shrLog(" set local work group size to %dx%d\n", localWorkSize[0], localWorkSize[1]);
        shrLog(" set total work size to %dx%d\n", globalWorkSize[0], globalWorkSize[1]);
    }

    // Copy the input to the device input buffer
    if (ok)
    {
        shrLog(" clEnqueueWriteBuffer bufferIn\n");
        errnum = clEnqueueWriteBuffer(commandQueue, bufferIn, CL_TRUE, padding * sizeof(float), volumeSize * sizeof(float), input, 0, NULL, NULL);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clEnqueueWriteBuffer bufferIn (returned %d).\n", errnum);
            ok = false;
        }
    }
    // Copy the input to the device output buffer (actually only need the halo)
    if (ok)
    {
        shrLog(" clEnqueueWriteBuffer bufferOut\n");
        errnum = clEnqueueWriteBuffer(commandQueue, bufferOut, CL_TRUE, padding * sizeof(float), volumeSize * sizeof(float), input, 0, NULL, NULL);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clEnqueueWriteBuffer bufferOut (returned %d).\n", errnum);
            ok = false;
        }
    }
    // Copy the coefficients to the device coefficient buffer
    if (ok)
    {
        shrLog(" clEnqueueWriteBuffer bufferCoeff\n");
        errnum = clEnqueueWriteBuffer(commandQueue, bufferCoeff, CL_TRUE, 0, (radius + 1) * sizeof(float), coeff, 0, NULL, NULL);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clEnqueueWriteBuffer bufferCoeff (returned %d).\n", errnum);
            ok = false;
        }
    }

    // Allocate the events
    if (ok)
    {
        shrLog(" calloc events\n");
        if ((kernelEvents = (cl_event *)calloc(timesteps, sizeof(cl_event))) == NULL)
        {
            shrLogEx(LOGBOTH | ERRORMSG, -2006, STDERROR);
            shrLog("Insufficient memory for events calloc, please try a smaller volume (use --help for syntax).\n");
            ok = false;        
        }
    }

    // Start the clock
    shrDeltaT(0);

    // Set the constant arguments
    if (ok)
    {
        shrLog(" clSetKernelArg 2-6\n");
        errnum = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&bufferCoeff);
        errnum |= clSetKernelArg(kernel, 3, sizeof(int), &dimx);
        errnum |= clSetKernelArg(kernel, 4, sizeof(int), &dimy);
        errnum |= clSetKernelArg(kernel, 5, sizeof(int), &dimz);
        errnum |= clSetKernelArg(kernel, 6, sizeof(int), &padding);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clSetKernelArg 2-6 (returned %d).\n", errnum);
            ok = false;     
        }
    }

    // Execute the FDTD
    cl_mem bufferSrc = bufferIn;
    cl_mem bufferDst = bufferOut;
    if (ok)
    {
        shrLog(" GPU FDTD loop\n");
    }
    for (int it = 0 ; ok && it < timesteps ; it++)
    {
        shrLog("\tt = %d ", it);

        // Set the dynamic arguments
        if (ok)
        {
            shrLog(" clSetKernelArg 0-1,");
            errnum = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&bufferDst);
            errnum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&bufferSrc);
            if (errnum != CL_SUCCESS)
            {
                shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
                shrLog("clSetKernelArg 0-1 (returned %d).\n", errnum);
                ok = false;               
            }
        }

        // Launch the kernel
        if (ok)
        {
            shrLog(" clEnqueueNDRangeKernel\n");
            errnum = clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL, globalWorkSize, localWorkSize, 0, NULL, &kernelEvents[it]);
            if (errnum != CL_SUCCESS)
            {
                shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
                shrLog("clEnqueueNDRangeKernel (returned %d).\n", errnum);
                ok = false;   
            }
        }
        // Toggle the buffers
        cl_mem tmp = bufferSrc;
        bufferSrc = bufferDst;
        bufferDst = tmp;
    }
    if (ok)
        shrLog("\n");

    // Wait for the kernel to complete
    if (ok)
    {
        shrLog(" clWaitForEvents\n");
        errnum = clWaitForEvents(1, &kernelEvents[timesteps-1]);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clWaitForEvents (returned %d).\n", errnum);
            ok = false;  
        }
    }

    // Stop the clock
    hostElapsedTimeS = shrDeltaT(0);

    // Read the result back, result is in bufferSrc (after final toggle)
    if (ok)
    {
        shrLog(" clEnqueueReadBuffer\n");
        errnum = clEnqueueReadBuffer(commandQueue, bufferSrc, CL_TRUE, padding * sizeof(float), volumeSize * sizeof(float), output, 0, NULL, NULL);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clEnqueueReadBuffer bufferSrc (returned %d).\n", errnum);
            ok = false;  
        }
    }

    // Report time
#ifdef GPU_PROFILING
    double elapsedTime = 0.0;
    if (ok && profileTimesteps > 0)
        shrLog(" Collect profile information\n");
    for (int it = 1 ; ok && it <= profileTimesteps ; it++)
    {
        shrLog("\tt = %d ", it);
        shrLog(" clGetEventProfilingInfo,", it);
        errnum = clGetEventProfilingInfo(kernelEvents[it], CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &kernelEventStart, NULL);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clGetEventProfilingInfo (returned %d).\n", errnum);
            ok = false;  
        }
        shrLog(" clGetEventProfilingInfo\n", it);
        errnum = clGetEventProfilingInfo(kernelEvents[it], CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &kernelEventEnd, NULL);
        if (errnum != CL_SUCCESS)
        {
            shrLogEx(LOGBOTH | ERRORMSG, errnum, STDERROR);
            shrLog("clGetEventProfilingInfo (returned %d).\n", errnum);
            ok = false;  
        }
        elapsedTime += (double)kernelEventEnd - (double)kernelEventStart;
    }
    if (ok && profileTimesteps > 0)
    {
        shrLog("\n");
        // Convert nanoseconds to seconds
        elapsedTime *= 1.0e-9;
        double avgElapsedTime = elapsedTime / (double)profileTimesteps;
        // Determine number of computations per timestep
        size_t pointsComputed = dimx * dimy * dimz;
        // Determine throughput
        double throughputM    = 1.0e-6 * (double)pointsComputed / avgElapsedTime;
        shrLogEx(LOGBOTH | MASTER, 0, "oclFDTD3d, Throughput = %.4f MPoints/s, Time = %.5f s, Size = %u Points, NumDevsUsed = %i, Workgroup = %u\n", 
            throughputM, avgElapsedTime, pointsComputed, 1, localWorkSize[0] * localWorkSize[1]); 
    }
#endif
    
    // Cleanup
    if (kernelEvents)
    {
        for (int it = 0 ; it < timesteps ; it++)
        {
            if (kernelEvents[it])
                clReleaseEvent(kernelEvents[it]);
        }
        free(kernelEvents);
    }
    if (kernel)
        clReleaseKernel(kernel);
    if (program)
        clReleaseProgram(program);
    if (cSourceCL)
        free(cSourceCL);
    if (cPathAndName)
        free(cPathAndName);
    if (bufferCoeff)
        clReleaseMemObject(bufferCoeff);
    if (bufferIn)
        clReleaseMemObject(bufferIn);
    if (bufferOut)
        clReleaseMemObject(bufferOut);
    if (commandQueue)
        clReleaseCommandQueue(commandQueue);
    if (devices)
        free(devices);
    if (context)
        clReleaseContext(context);
    return ok;
}
Ejemplo n.º 14
0
// Main function 
// *********************************************************************
int main(int argc, char** argv)
{
    shrQAStart(argc, argv);
    // get command line arg for quick test, if provided
    bNoPrompt = shrCheckCmdLineFlag(argc, (const char **)argv, "noprompt");

    // start logs
	cExecutableName = argv[0];
    shrSetLogFileName ("oclMatVecMul.txt");
    shrLog("%s Starting...\n\n", argv[0]); 

    // calculate matrix height given GPU memory
    shrLog("Determining Matrix height from available GPU mem...\n");
    memsize_t memsize;
    getTargetDeviceGlobalMemSize(&memsize, argc, (const char **)argv);
    height = memsize/width/16;
    if (height > MAX_HEIGHT)
        height = MAX_HEIGHT;
    shrLog(" Matrix width\t= %u\n Matrix height\t= %u\n\n", width, height); 

    // Allocate and initialize host arrays
    shrLog("Allocate and Init Host Mem...\n\n");
    unsigned int size = width * height;
    unsigned int mem_size_M = size * sizeof(float);
    M = (float*)malloc(mem_size_M);
    unsigned int mem_size_V = width * sizeof(float);
    V = (float*)malloc(mem_size_V);
    unsigned int mem_size_W = height * sizeof(float);
    W = (float*)malloc(mem_size_W);
    shrFillArray(M, size);
    shrFillArray(V, width);
    Golden = (float*)malloc(mem_size_W);
    MatVecMulHost(M, V, width, height, Golden);

    //Get the NVIDIA platform
    shrLog("Get the Platform ID...\n\n");
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    //Get all the devices
    shrLog("Get the Device info and select Device...\n");
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &uiNumDevices);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cdDevices = (cl_device_id *)malloc(uiNumDevices * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, uiNumDevices, cdDevices, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Set target device and Query number of compute units on targetDevice
    shrLog(" # of Devices Available = %u\n", uiNumDevices); 
    if(shrGetCmdLineArgumentu(argc, (const char **)argv, "device", &targetDevice)== shrTRUE) 
    {
        targetDevice = CLAMP(targetDevice, 0, (uiNumDevices - 1));
    }
    shrLog(" Using Device %u: ", targetDevice); 
    oclPrintDevName(LOGBOTH, cdDevices[targetDevice]);  
    cl_uint num_compute_units;
    clGetDeviceInfo(cdDevices[targetDevice], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(num_compute_units), &num_compute_units, NULL);
    shrLog("\n # of Compute Units = %u\n\n", num_compute_units); 

    //Create the context
    shrLog("clCreateContext...\n"); 
    cxGPUContext = clCreateContext(0, uiNumDevsUsed, &cdDevices[targetDevice], NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create a command-queue
    shrLog("clCreateCommandQueue...\n"); 
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[targetDevice], CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Allocate the OpenCL buffer memory objects for source and result on the device GMEM
    shrLog("clCreateBuffer (M, V and W in device global memory, mem_size_m = %u)...\n", mem_size_M); 
    cmM = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, mem_size_M, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmV = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, mem_size_V, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmW = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, mem_size_W, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Read the OpenCL kernel in from source file
    shrLog("oclLoadProgSource (%s)...\n", cSourceFile); 
    cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);
    oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);

    // Create the program
    shrLog("clCreateProgramWithSource...\n"); 
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErrNum);

    // Build the program
    shrLog("clBuildProgram...\n"); 
    ciErrNum = clBuildProgram(cpProgram, uiNumDevsUsed, &cdDevices[targetDevice], "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclMatVecMul.ptx");
        shrQAFinish(argc, (const char **)argv, QA_FAILED);
        Cleanup(EXIT_FAILURE); 
    }

    // --------------------------------------------------------
    // Core sequence... copy input data to GPU, compute, copy results back

    // Asynchronous write of data to GPU device
    shrLog("clEnqueueWriteBuffer (M and V)...\n\n"); 
    ciErrNum = clEnqueueWriteBuffer(cqCommandQueue, cmM, CL_FALSE, 0, mem_size_M, M, 0, NULL, NULL);
    ciErrNum |= clEnqueueWriteBuffer(cqCommandQueue, cmV, CL_FALSE, 0, mem_size_V, V, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Kernels
    const char* kernels[] = {
        "MatVecMulUncoalesced0",
        "MatVecMulUncoalesced1",
        "MatVecMulCoalesced0",
        "MatVecMulCoalesced1",
        "MatVecMulCoalesced2",
        "MatVecMulCoalesced3" };

    for (int k = 0; k < (int)(sizeof(kernels)/sizeof(char*)); ++k) {
        shrLog("Running with Kernel %s...\n\n", kernels[k]); 

        // Clear result
        shrLog("  Clear result with clEnqueueWriteBuffer (W)...\n"); 
        memset(W, 0, mem_size_W);
        ciErrNum = clEnqueueWriteBuffer(cqCommandQueue, cmW, CL_FALSE, 0, mem_size_W, W, 0, NULL, NULL);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Create the kernel
        shrLog("  clCreateKernel...\n"); 
        if (ckKernel) {
            clReleaseKernel(ckKernel);
            ckKernel = 0;
        }
        ckKernel = clCreateKernel(cpProgram, kernels[k], &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Set and log Global and Local work size dimensions
        szLocalWorkSize = 256;
        if (k == 0)
            szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, height);  // rounded up to the nearest multiple of the LocalWorkSize
        else
            // Some experiments should be done here for determining the best global work size for a given device
            // We will assume here that we can run 2 work-groups per compute unit
            szGlobalWorkSize = 2 * num_compute_units * szLocalWorkSize;
        shrLog("  Global Work Size \t\t= %u\n  Local Work Size \t\t= %u\n  # of Work Groups \t\t= %u\n", 
               szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize)); 

        // Set the Argument values
        shrLog("  clSetKernelArg...\n\n");
        int n = 0;
        ciErrNum = clSetKernelArg(ckKernel,  n++, sizeof(cl_mem), (void*)&cmM);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_mem), (void*)&cmV);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_int), (void*)&width);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_int), (void*)&height);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_mem), (void*)&cmW);
        if (k > 1)
            ciErrNum |= clSetKernelArg(ckKernel, n++, szLocalWorkSize * sizeof(float), 0);    
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Launch kernel
        shrLog("  clEnqueueNDRangeKernel (%s)...\n", kernels[k]); 
        ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, &ceEvent);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Read back results and check accumulated errors
        shrLog("  clEnqueueReadBuffer (W)...\n"); 
        ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmW, CL_TRUE, 0, mem_size_W, W, 0, NULL, NULL);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    #ifdef GPU_PROFILING
        // Execution time
        ciErrNum = clWaitForEvents(1, &ceEvent);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        cl_ulong start, end;
        ciErrNum = clGetEventProfilingInfo(ceEvent, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
        ciErrNum |= clGetEventProfilingInfo(ceEvent, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        double dSeconds = 1.0e-9 * (double)(end - start);
        shrLog("  Kernel execution time: %.5f s\n\n", dSeconds);
    #endif

        // Compare results for golden-host and report errors and pass/fail
        shrLog("  Comparing against Host/C++ computation...\n\n"); 
        shrBOOL res = shrCompareL2fe(Golden, W, height, 1e-6f);
        shrLog("    GPU Result %s CPU Result within allowable tolerance\n\n", (res == shrTRUE) ? "MATCHES" : "DOESN'T MATCH");
        bPassFlag &= (res == shrTRUE); 

        // Release event
        ciErrNum = clReleaseEvent(ceEvent);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        ceEvent = 0;
    }

    // Master status Pass/Fail (all tests)
    shrQAFinish(argc, (const char **)argv, (bPassFlag ? QA_PASSED : QA_FAILED) );

    // Cleanup and leave
    Cleanup (EXIT_SUCCESS);
}
Ejemplo n.º 15
0
// Main function 
// *********************************************************************
int main(int argc, char **argv)
{
    //shrQAStart(argc, argv);


	// get command line arg for quick test, if provided
    bNoPrompt = shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");
    
    // start logs 
	cExecutableName = argv[0];
    shrSetLogFileName ("Barrier.txt");
    printf("%s Starting...\n\n# of THREADS \t= %i\n", argv[0], iNumElements); 

    // set and log Global and Local work size dimensions
    szLocalWorkSize = NUM_THREADS ;
    szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, iNumElements);  // rounded up to the nearest multiple of the LocalWorkSize
    printf("Global Work Size \t\t= %u\nLocal Work Size \t\t= %u\n# of Work Groups \t\t= %u\n\n", 
           szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize)); 

    

    //Get an OpenCL platform
    ciErr1 = clGetPlatformIDs(1, &cpPlatform, NULL);

    printf("clGetPlatformID...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clGetPlatformID, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    //Get the devices
    ciErr1 = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);
    printf("clGetDeviceIDs...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clGetDeviceIDs, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    //Create the context
    cxGPUContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, &ciErr1);
    printf("clCreateContext...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clCreateContext, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Create a command-queue
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevice, CL_QUEUE_PROFILING_ENABLE, &ciErr1);
    printf("clCreateCommandQueue...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clCreateCommandQueue, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }


	

    // Read the OpenCL kernel in from source file
    printf("oclLoadProgSource (%s)...\n", cSourceFile); 
    cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
    cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);

    // Create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErr1);
    printf("clCreateProgramWithSource...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clCreateProgramWithSource, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Build the program with 'mad' Optimization option
    #ifdef MAC
        char* flags = "-cl-fast-relaxed-math -DMAC";
    #else
        char* flags = "-cl-fast-relaxed-math";
    #endif
    ciErr1 = clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
    printf("clBuildProgram...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clBuildProgram, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Create the kernel
    ckKernel = clCreateKernel(cpProgram, "Barrier", &ciErr1);
    printf("clCreateKernel (Barrier)...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clCreateKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }



	 // Allocate and initialize host arrays 
    printf( "Allocate and Init Host Mem...\n"); 
    input = (int *)malloc(sizeof(int) * NUM_BLOCKS);

	for(int i =0; i<=NUM_BLOCKS; i++)
	{
		input[i]=0;

	}

	// Allocate the OpenCL buffer memory objects for source and result on the device GMEM
    array_in = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, sizeof(int)* NUM_BLOCKS, NULL, &ciErr1);
    array_out = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, sizeof(int)* NUM_BLOCKS, NULL, &ciErr1);
	
	if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clCreateBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }


    // Set the Argument values
    
    ciErr1 = clSetKernelArg(ckKernel, 0, sizeof(cl_int), (void*)&goal_val);
	ciErr1 |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&array_in);
	ciErr1 |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&array_out);

   // ciErr1 |= clSetKernelArg(ckKernel, 1, sizeof(cl_int), (void*)&iNumElements);
    printf("clSetKernelArg 0 - 2...\n\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clSetKernelArg, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }






    // --------------------------------------------------------
    // Start Core sequence... copy input data to GPU, compute, copy results back



	ciErr1 = clEnqueueWriteBuffer(cqCommandQueue, array_in, CL_FALSE, 0, sizeof(int) * NUM_BLOCKS,(void*) input, 0, NULL, NULL);
    
    printf("clEnqueueWriteBuffer (SrcA and SrcB)...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clEnqueueWriteBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }


    // Launch kernel
    ciErr1 = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, &ceEvent);
    printf("clEnqueueNDRangeKernel (Barrier)...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clEnqueueNDRangeKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

   /*ciErr1 = clEnqueueReadBuffer(cqCommandQueue, global_mutex, CL_TRUE, 0, sizeof(cl_int), &original_goal, 0, NULL, NULL);
    printf("clEnqueueReadBuffer (Dst)...%d \n\n", original_goal); 
    if (ciErr1 != CL_SUCCESS)
    {
        printf("Error in clEnqueueReadBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }*/


	//GPU_PROFILING
    ciErr1=clWaitForEvents(1, &ceEvent);
	if (ciErr1 != CL_SUCCESS)
    {
        printf("Error 1 !\n\n");
        Cleanup(argc, argv, EXIT_FAILURE);
    }
       
        cl_ulong start, end;
     ciErr1 =   clGetEventProfilingInfo(ceEvent, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
      ciErr1 |= clGetEventProfilingInfo(ceEvent, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
        //oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

	if (ciErr1 != CL_SUCCESS)
    {
        printf("Error 2 !\n\n");
        Cleanup(argc, argv, EXIT_FAILURE);
    }
        double dSeconds = 1.0e-9 * (double)(end - start);
		printf("Done! time taken %llu \n",end - start );
      // printf("Done! Kernel execution time: %.5f s\n\n", dSeconds);


		// Release event
       clReleaseEvent(ceEvent);
       ceEvent = 0;

    Cleanup (argc, argv,  EXIT_SUCCESS);
}
    // Function to read in kernel from uncompiled source, create the OCL program and build the OCL program 
    // **************************************************************************************************
    int CreateProgramAndKernel(cl_context cxGPUContext, cl_device_id* cdDevices, const char *kernel_name, cl_kernel *kernel, bool bDouble)
    {
        cl_program cpProgram;
        size_t szSourceLen;
        cl_int ciErrNum = CL_SUCCESS; 

        // Read the kernel in from file
        shrLog("\nLoading Uncompiled kernel from .cl file, using %s\n", clSourcefile);
        char* cPathAndFile = shrFindFilePath(clSourcefile, cExecutablePath);
        oclCheckError(cPathAndFile != NULL, shrTRUE);
        char* pcSource = oclLoadProgSource(cPathAndFile, "", &szSourceLen);
        oclCheckError(pcSource != NULL, shrTRUE);

	// Check OpenCL version -> vec3 types are supported only from version 1.1 and above
	char cOCLVersion[32];
	clGetDeviceInfo(cdDevices[0], CL_DEVICE_VERSION, sizeof(cOCLVersion), &cOCLVersion, 0);

	int iVec3Length = 3;
	if( strncmp("OpenCL 1.0", cOCLVersion, 10) == 0 ) {
		iVec3Length = 4;
	}


		//for double precision
		char *pcSourceForDouble;
		std::stringstream header;
		if (bDouble)
		{
			header << "#define REAL double";
			header << std::endl;
			header << "#define REAL4 double4";
			header << std::endl;
			header << "#define REAL3 double" << iVec3Length;
			header << std::endl;
			header << "#define ZERO3 {0.0, 0.0, 0.0" << ((iVec3Length == 4) ? ", 0.0}" : "}");
			header << std::endl;
		}
		else
		{
			header << "#define REAL float";
			header << std::endl;
			header << "#define REAL4 float4";
			header << std::endl;
			header << "#define REAL3 float" << iVec3Length;
			header << std::endl;
			header << "#define ZERO3 {0.0f, 0.0f, 0.0f" << ((iVec3Length == 4) ? ", 0.0f}" : "}");
			header << std::endl;
		}
		
		header << pcSource;
		pcSourceForDouble = (char *)malloc(header.str().size() + 1);
		szSourceLen = header.str().size();
#ifdef WIN32
        strcpy_s(pcSourceForDouble, szSourceLen + 1, header.str().c_str());
#else
        strcpy(pcSourceForDouble, header.str().c_str());
#endif

        // create the program 
        cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&pcSourceForDouble, &szSourceLen, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateProgramWithSource\n"); 

        // Build the program with 'mad' Optimization option
#ifdef MAC
	char *flags = "-cl-fast-relaxed-math -DMAC";
#else
	char *flags = "-cl-fast-relaxed-math";
#endif
        ciErrNum = clBuildProgram(cpProgram, 0, NULL, flags, NULL, NULL);
        if (ciErrNum != CL_SUCCESS)
        {
            // write out standard error, Build Log and PTX, then cleanup and exit
            shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
            oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
            oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclNbody.ptx");
            oclCheckError(ciErrNum, CL_SUCCESS); 
        }
        shrLog("clBuildProgram\n"); 

        // create the kernel
        *kernel = clCreateKernel(cpProgram, kernel_name, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS); 
        shrLog("clCreateKernel\n"); 

		size_t wgSize;
		ciErrNum = clGetKernelWorkGroupInfo(*kernel, cdDevices[0], CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wgSize, NULL);
		if (wgSize == 64) {
		  shrLog(
			 "ERROR: Minimum work-group size 256 required by this application is not supported on this device.\n");
		  exit(0);
		}
	
		free(pcSourceForDouble);

        return 0;
    }
Ejemplo n.º 17
0
b2CLSolveTOI::b2CLSolveTOI()
{
	printf("Initializing b2CLSolveTOI...\n");
    
    int err;
    
    //load opencl programs from files
    char* TOIKernelSource = 0;
    size_t TOIKernelSourceLen = 0;

    shrLog("...loading b2CLSolveTOI.cl\n");
#ifdef linux
    TOIKernelSource = b2clLoadProgSource(shrFindFilePath("/opt/apps/com.samsung.browser/include/Box2D/Common/OpenCL/b2CLSolveTOI.cl", NULL), "// My comment\n", &TOIKernelSourceLen);
#elif defined (_WIN32)
    TOIKernelSource = b2clLoadProgSource(shrFindFilePath("../../Box2D/Common/OpenCL/b2CLSolveTOI.cl", NULL), "// My comment\n", &TOIKernelSourceLen);
#elif defined (__EMSCRIPTEN__)
    TOIKernelSource = b2clLoadProgSource(shrFindFilePath("./Common/OpenCL/b2CLSolveTOI.cl", NULL), "// My comment\n", &TOIKernelSourceLen);
#else
    TOIKernelSource = b2clLoadProgSource(shrFindFilePath("../../../Box2D/Common/OpenCL/b2CLSolveTOI.cl", NULL), "// My comment\n", &TOIKernelSourceLen);
#endif
    
	if(TOIKernelSource == NULL)
	{
		b2Log("Could not load program source, is path 'b2CLSolveTOI.cl' correct?");
	}

    //create the compute program from source kernel code
    SolveTOIProgram = clCreateProgramWithSource(b2CLDevice::instance().GetContext(), 1, (const char**)&TOIKernelSource, NULL, &err);
    if (!SolveTOIProgram)
    {
        printf("Error: Failed to create compute program!\n");
        exit(1);
    }
    
    //build the program
    err = clBuildProgram(SolveTOIProgram, 0, NULL, OPENCL_BUILD_PATH, NULL, NULL);
    if (err != CL_SUCCESS)
    {
        size_t len;
        char buffer[204800];
        
        printf("Error: Failed to build program executable!\n");
        clGetProgramBuildInfo(SolveTOIProgram, b2CLDevice::instance().GetCurrentDevice(), CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
        printf("%s\n", buffer);
        exit(1);
    }
#if 0	
	//create the compute kernel
	ComputeTOIKernel = clCreateKernel(SolveTOIProgram, "b2clComputeTOI", &err);
	if (!ComputeTOIKernel || err != CL_SUCCESS)
	{
		printf("Error: Failed to create compute kernel!\n");
		exit(1);
	}
	b2CLDevice::instance().getMaximumKernelWorkGroupSize(ComputeTOIKernel, ComputeTOIKernelWorkGroupSize);
		lastNumContacts = 0;
	sortCount = 0;
	ContactTOIsBuffer = NULL;
	ContactIndicesBuffer = NULL;

	//create the AdvanceBodiesKernel
	AdvanceBodiesKernel = clCreateKernel (SolveTOIProgram, "b2clAdvanceBodiesKernel", &err); 
	if (!AdvanceBodiesKernel || err != CL_SUCCESS)
	{
		printf("Error: Failed to create AdvanceBodiesKernel kernel!\n");
		exit(1);
	}
    b2CLDevice::instance().getMaximumKernelWorkGroupSize(AdvanceBodiesKernel, ComputeTOIKernelWorkGroupSize);

	this->MarkConnectedContactsKernel = clCreateKernel (SolveTOIProgram, "b2clMarkConnectedContactsKernel", &err); 
	if (!MarkConnectedContactsKernel || err != CL_SUCCESS) {
		printf("Error: Failed to create MarkConnectedContactsKernel kernel!\n");
		exit(1);
	}
#endif
	syncMovedBodyKernel = clCreateKernel (SolveTOIProgram, "b2clsyncMovedBodyKernel", &err); 
	if (!syncMovedBodyKernel || err != CL_SUCCESS) {
		printf("Error: Failed to create syncMovedBodyKernel kernel!\n");
		exit(1);
	}
	b2CLDevice::instance().getMaximumKernelWorkGroupSize(syncMovedBodyKernel, ComputeTOIKernelWorkGroupSize);
	movedBodyList = NULL ; bodyListSize = 0 ; 
	this->copyAllPositionList = NULL ; this->copyAllVelocityList = NULL; this->copyAllXFList = NULL ; copyBodyNum = 0 ; 

}
// Main function
// *********************************************************************
int main(int argc, char** argv) 
{
    shrQAStart(argc, argv);
    
    int use_gpu = 0;
    for(int i = 0; i < argc && argv; i++)
    {
        if(!argv[i])
            continue;
          
        if(strstr(argv[i], "cpu"))
            use_gpu = 0;        

        else if(strstr(argv[i], "gpu"))
            use_gpu = 1;
    }

    // start logs
    shrSetLogFileName ("oclDXTCompression.txt");
    shrLog("%s Starting...\n\n", argv[0]); 

    cl_platform_id cpPlatform = NULL;
    cl_uint uiNumDevices = 0;
    cl_device_id *cdDevices = NULL;
    cl_context cxGPUContext;
    cl_command_queue cqCommandQueue;
    cl_program cpProgram;
    cl_kernel ckKernel;
    cl_mem cmMemObjs[3];
    cl_mem cmAlphaTable4, cmProds4;
    cl_mem cmAlphaTable3, cmProds3;
    size_t szGlobalWorkSize[1];
    size_t szLocalWorkSize[1];
    cl_int ciErrNum;

    // Get the path of the filename
    char *filename;
    if (shrGetCmdLineArgumentstr(argc, (const char **)argv, "image", &filename)) {
        image_filename = filename;
    }
    // load image
    const char* image_path = shrFindFilePath(image_filename, argv[0]);
    oclCheckError(image_path != NULL, shrTRUE);
    shrLoadPPM4ub(image_path, (unsigned char **)&h_img, &width, &height);
    oclCheckError(h_img != NULL, shrTRUE);
    shrLog("Loaded '%s', %d x %d pixels\n\n", image_path, width, height);

    // Convert linear image to block linear. 
    const uint memSize = width * height * sizeof(cl_uint);
    uint* block_image = (uint*)malloc(memSize);

    // Convert linear image to block linear. 
    for(uint by = 0; by < height/4; by++) {
        for(uint bx = 0; bx < width/4; bx++) {
            for (int i = 0; i < 16; i++) {
                const int x = i & 3;
                const int y = i / 4;
                block_image[(by * width/4 + bx) * 16 + i] = 
                    ((uint *)h_img)[(by * 4 + y) * 4 * (width/4) + bx * 4 + x];
            }
        }
    }

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Get the platform's GPU devices
    ciErrNum = clGetDeviceIDs(cpPlatform, use_gpu?CL_DEVICE_TYPE_GPU:CL_DEVICE_TYPE_CPU, 0, NULL, &uiNumDevices);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cdDevices = (cl_device_id *)malloc(uiNumDevices * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, use_gpu?CL_DEVICE_TYPE_GPU:CL_DEVICE_TYPE_CPU, uiNumDevices, cdDevices, NULL);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Create the context
    cxGPUContext = clCreateContext(0, uiNumDevices, cdDevices, NULL, NULL, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // get and log device
    cl_device_id device;
    if( shrCheckCmdLineFlag(argc, (const char **)argv, "device") ) {
      int device_nr = 0;
      shrGetCmdLineArgumenti(argc, (const char **)argv, "device", &device_nr);
      device = oclGetDev(cxGPUContext, device_nr);
      if( device == (cl_device_id)-1 ) {
          shrLog(" Invalid GPU Device: devID=%d.  %d valid GPU devices detected\n\n", device_nr, uiNumDevices);
		  shrLog(" exiting...\n");
          return -1;
      }
    } else {
      device = oclGetMaxFlopsDev(cxGPUContext);
    }

    oclPrintDevName(LOGBOTH, device);
    shrLog("\n");

    // create a command-queue
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, device, 0, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Memory Setup

    // Constants
    cmAlphaTable4 = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 4 * sizeof(cl_float), (void*)&alphaTable4[0], &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cmProds4 = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 4 * sizeof(cl_int), (void*)&prods4[0], &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cmAlphaTable3 = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 4 * sizeof(cl_float), (void*)&alphaTable3[0], &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cmProds3 = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 4 * sizeof(cl_int), (void*)&prods3[0], &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Compute permutations.
    cl_uint permutations[1024];
    computePermutations(permutations);

    // Upload permutations.
    cmMemObjs[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                  sizeof(cl_uint) * 1024, permutations, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Image
    cmMemObjs[1] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, memSize, NULL, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    
    // Result
    const uint compressedSize = (width / 4) * (height / 4) * 8;
    cmMemObjs[2] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, compressedSize, NULL , &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    
    unsigned int * h_result = (uint*)malloc(compressedSize);

    // Program Setup
    size_t program_length;
    const char* source_path = shrFindFilePath("DXTCompression.cl", argv[0]);
    oclCheckError(source_path != NULL, shrTRUE);
    char *source = oclLoadProgSource(source_path, "", &program_length);
    oclCheckError(source != NULL, shrTRUE);

    // create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1,
        (const char **) &source, &program_length, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclDXTCompression.ptx");
        oclCheckError(ciErrNum, CL_SUCCESS); 
    }

    // create the kernel
    ckKernel = clCreateKernel(cpProgram, "compress", &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // set the args values
    ciErrNum  = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void *) &cmMemObjs[0]);
    ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void *) &cmMemObjs[1]);
    ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void *) &cmMemObjs[2]);
    ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(cl_mem), (void*)&cmAlphaTable4);
    ciErrNum |= clSetKernelArg(ckKernel, 4, sizeof(cl_mem), (void*)&cmProds4);
    ciErrNum |= clSetKernelArg(ckKernel, 5, sizeof(cl_mem), (void*)&cmAlphaTable3);
    ciErrNum |= clSetKernelArg(ckKernel, 6, sizeof(cl_mem), (void*)&cmProds3);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Copy input data host to device
    clEnqueueWriteBuffer(cqCommandQueue, cmMemObjs[1], CL_FALSE, 0, sizeof(cl_uint) * width * height, block_image, 0,0,0);

    // Determine launch configuration and run timed computation numIterations times
	int blocks = ((width + 3) / 4) * ((height + 3) / 4); // rounds up by 1 block in each dim if %4 != 0

	// Restrict the numbers of blocks to launch on low end GPUs to avoid kernel timeout
	cl_uint compute_units;
    clGetDeviceInfo(device, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(compute_units), &compute_units, NULL);
	int blocksPerLaunch = MIN(blocks, 768 * (int)compute_units);

    // set work-item dimensions
    szGlobalWorkSize[0] = blocksPerLaunch * NUM_THREADS;
    szLocalWorkSize[0]= NUM_THREADS;

#ifdef GPU_PROFILING
    shrLog("\nRunning DXT Compression on %u x %u image...\n", width, height);
    shrLog("\n%u Workgroups, %u Work Items per Workgroup, %u Work Items in NDRange...\n\n", 
           blocks, NUM_THREADS, blocks * NUM_THREADS);

    int numIterations = 50;
    for (int i = -1; i < numIterations; ++i) {
        if (i == 0) { // start timing only after the first warmup iteration
            clFinish(cqCommandQueue); // flush command queue
            shrDeltaT(0); // start timer
        }
#endif
        // execute kernel
		for( int j=0; j<blocks; j+= blocksPerLaunch ) {
			clSetKernelArg(ckKernel, 7, sizeof(int), &j);
			szGlobalWorkSize[0] = MIN( blocksPerLaunch, blocks-j ) * NUM_THREADS;
			ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL,
				                              szGlobalWorkSize, szLocalWorkSize, 
					                          0, NULL, NULL);
			oclCheckError(ciErrNum, CL_SUCCESS);
		}

#ifdef GPU_PROFILING
    }
    clFinish(cqCommandQueue);
    double dAvgTime = shrDeltaT(0) / (double)numIterations;
    shrLogEx(LOGBOTH | MASTER, 0, "oclDXTCompression, Throughput = %.4f MPixels/s, Time = %.5f s, Size = %u Pixels, NumDevsUsed = %i, Workgroup = %d\n", 
           (1.0e-6 * (double)(width * height)/ dAvgTime), dAvgTime, (width * height), 1, szLocalWorkSize[0]); 
#endif

    // blocking read output
    ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmMemObjs[2], CL_TRUE, 0,
                                   compressedSize, h_result, 0, NULL, NULL);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Write DDS file.
    FILE* fp = NULL;
    char output_filename[1024];
    #ifdef WIN32
        strcpy_s(output_filename, 1024, image_path);
        strcpy_s(output_filename + strlen(image_path) - 3, 1024 - strlen(image_path) + 3, "dds");
        fopen_s(&fp, output_filename, "wb");
    #else
        strcpy(output_filename, image_path);
        strcpy(output_filename + strlen(image_path) - 3, "dds");
        fp = fopen(output_filename, "wb");
    #endif
    oclCheckError(fp != NULL, shrTRUE);

    DDSHeader header;
    header.fourcc = FOURCC_DDS;
    header.size = 124;
    header.flags  = (DDSD_WIDTH|DDSD_HEIGHT|DDSD_CAPS|DDSD_PIXELFORMAT|DDSD_LINEARSIZE);
    header.height = height;
    header.width = width;
    header.pitch = compressedSize;
    header.depth = 0;
    header.mipmapcount = 0;
    memset(header.reserved, 0, sizeof(header.reserved));
    header.pf.size = 32;
    header.pf.flags = DDPF_FOURCC;
    header.pf.fourcc = FOURCC_DXT1;
    header.pf.bitcount = 0;
    header.pf.rmask = 0;
    header.pf.gmask = 0;
    header.pf.bmask = 0;
    header.pf.amask = 0;
    header.caps.caps1 = DDSCAPS_TEXTURE;
    header.caps.caps2 = 0;
    header.caps.caps3 = 0;
    header.caps.caps4 = 0;
    header.notused = 0;

    fwrite(&header, sizeof(DDSHeader), 1, fp);
    fwrite(h_result, compressedSize, 1, fp);

    fclose(fp);

    // Make sure the generated image matches the reference image (regression check)
    shrLog("\nComparing against Host/C++ computation...\n");     
    const char* reference_image_path = shrFindFilePath(refimage_filename, argv[0]);
    oclCheckError(reference_image_path != NULL, shrTRUE);

    // read in the reference image from file
    #ifdef WIN32
        fopen_s(&fp, reference_image_path, "rb");
    #else
        fp = fopen(reference_image_path, "rb");
    #endif
    oclCheckError(fp != NULL, shrTRUE);
    fseek(fp, sizeof(DDSHeader), SEEK_SET);
    uint referenceSize = (width / 4) * (height / 4) * 8;
    uint * reference = (uint *)malloc(referenceSize);
    fread(reference, referenceSize, 1, fp);
    fclose(fp);

    // compare the reference image data to the sample/generated image
    float rms = 0;
    for (uint y = 0; y < height; y += 4)
    {
        for (uint x = 0; x < width; x += 4)
        {
            // binary comparison of data
            uint referenceBlockIdx = ((y/4) * (width/4) + (x/4));
            uint resultBlockIdx = ((y/4) * (width/4) + (x/4));
            int cmp = compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx, ((BlockDXT1 *)reference) + referenceBlockIdx);

            // log deviations, if any
            if (cmp != 0.0f) 
            {
                compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx, ((BlockDXT1 *)reference) + referenceBlockIdx);
                shrLog("Deviation at (%d, %d):\t%f rms\n", x/4, y/4, float(cmp)/16/3);
            }
            rms += cmp;
        }
    }
    rms /= width * height * 3;
    shrLog("RMS(reference, result) = %f\n\n", rms);

    // Free OpenCL resources
    oclDeleteMemObjs(cmMemObjs, 3);
    clReleaseMemObject(cmAlphaTable4);
    clReleaseMemObject(cmProds4);
    clReleaseMemObject(cmAlphaTable3);
    clReleaseMemObject(cmProds3);
    clReleaseKernel(ckKernel);
    clReleaseProgram(cpProgram);
    clReleaseCommandQueue(cqCommandQueue);
    clReleaseContext(cxGPUContext);

    // Free host memory
    free(source);
    free(h_img);

    // finish
    shrQAFinishExit(argc, (const char **)argv, (rms <= ERROR_THRESHOLD) ? QA_PASSED : QA_FAILED);
}
// Main function
// *********************************************************************
int main(const int argc, const char** argv) 
{
    // start logs
    shrSetLogFileName ("oclDXTCompression.txt");
    shrLog(LOGBOTH, 0, "%s Starting...\n\n", argv[0]); 

    cl_context cxGPUContext;
    cl_command_queue cqCommandQueue;
    cl_program cpProgram;
    cl_kernel ckKernel;
    cl_mem cmMemObjs[3];
    size_t szGlobalWorkSize[1];
    size_t szLocalWorkSize[1];
    cl_int ciErrNum;

    // Get the path of the filename
    char *filename;
    if (shrGetCmdLineArgumentstr(argc, argv, "image", &filename)) {
        image_filename = filename;
    }
    // load image
    const char* image_path = shrFindFilePath(image_filename, argv[0]);
    shrCheckError(image_path != NULL, shrTRUE);
    shrLoadPPM4ub(image_path, (unsigned char **)&h_img, &width, &height);
    shrCheckError(h_img != NULL, shrTRUE);
    shrLog(LOGBOTH, 0, "Loaded '%s', %d x %d pixels\n", image_path, width, height);

    // Convert linear image to block linear. 
    uint * block_image = (uint *) malloc(width * height * 4);

    // Convert linear image to block linear. 
    for(uint by = 0; by < height/4; by++) {
        for(uint bx = 0; bx < width/4; bx++) {
            for (int i = 0; i < 16; i++) {
                const int x = i & 3;
                const int y = i / 4;
                block_image[(by * width/4 + bx) * 16 + i] = 
                    ((uint *)h_img)[(by * 4 + y) * 4 * (width/4) + bx * 4 + x];
            }
        }
    }

    // create the OpenCL context on a GPU device
    cxGPUContext = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // get and log device
    cl_device_id device;
    if( shrCheckCmdLineFlag(argc, argv, "device") ) {
      int device_nr = 0;
      shrGetCmdLineArgumenti(argc, argv, "device", &device_nr);
      device = oclGetDev(cxGPUContext, device_nr);
    } else {
      device = oclGetMaxFlopsDev(cxGPUContext);
    }
    oclPrintDevInfo(LOGBOTH, device);

    // create a command-queue
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, device, 0, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // Memory Setup

    // Compute permutations.
    cl_uint permutations[1024];
    computePermutations(permutations);

    // Upload permutations.
    cmMemObjs[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                  sizeof(cl_uint) * 1024, permutations, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // Image
    cmMemObjs[1] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY ,
                                  sizeof(cl_uint) * width * height, NULL, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);
    
    // Result
    const uint compressedSize = (width / 4) * (height / 4) * 8;

    cmMemObjs[2] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY,
                                  compressedSize, NULL , &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);
    
    unsigned int * h_result = (uint *)malloc(compressedSize);

    // Program Setup
    size_t program_length;
    const char* source_path = shrFindFilePath("DXTCompression.cl", argv[0]);
    shrCheckError(source_path != NULL, shrTRUE);
    char *source = oclLoadProgSource(source_path, "", &program_length);
    shrCheckError(source != NULL, shrTRUE);

    // create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1,
        (const char **) &source, &program_length, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-mad-enable", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLog(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclDXTCompression.ptx");
        shrCheckError(ciErrNum, CL_SUCCESS); 
    }

    // create the kernel
    ckKernel = clCreateKernel(cpProgram, "compress", &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // set the args values
    ciErrNum  = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void *) &cmMemObjs[0]);
    ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void *) &cmMemObjs[1]);
    ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void *) &cmMemObjs[2]);
    ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(float) * 4 * 16, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 4, sizeof(float) * 4 * 16, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 5, sizeof(int) * 64, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 6, sizeof(float) * 16 * 6, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 7, sizeof(unsigned int) * 160, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 8, sizeof(int) * 16, NULL);
    shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog(LOGBOTH, 0, "Running DXT Compression on %u x %u image...\n\n", width, height);

    // Upload the image
    clEnqueueWriteBuffer(cqCommandQueue, cmMemObjs[1], CL_FALSE, 0, sizeof(cl_uint) * width * height, block_image, 0,0,0);

    // set work-item dimensions
    szGlobalWorkSize[0] = width * height * (NUM_THREADS/16);
    szLocalWorkSize[0]= NUM_THREADS;
    
#ifdef GPU_PROFILING
    int numIterations = 100;
    for (int i = -1; i < numIterations; ++i) {
        if (i == 0) { // start timing only after the first warmup iteration
            clFinish(cqCommandQueue); // flush command queue
            shrDeltaT(0); // start timer
        }
#endif
        // execute kernel
        ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL,
                                          szGlobalWorkSize, szLocalWorkSize, 
                                          0, NULL, NULL);
        shrCheckError(ciErrNum, CL_SUCCESS);
#ifdef GPU_PROFILING
    }
    clFinish(cqCommandQueue);
    double dAvgTime = shrDeltaT(0) / (double)numIterations;
    shrLog(LOGBOTH | MASTER, 0, "oclDXTCompression, Throughput = %.4f, Time = %.5f, Size = %u, NumDevsUsed = %i\n", 
        (1.0e-6 * (double)(width * height)/ dAvgTime), dAvgTime, (width * height), 1); 

#endif

    // blocking read output
    ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmMemObjs[2], CL_TRUE, 0,
                                   compressedSize, h_result, 0, NULL, NULL);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // Write DDS file.
    FILE* fp = NULL;
    char output_filename[1024];
    #ifdef WIN32
        strcpy_s(output_filename, 1024, image_path);
        strcpy_s(output_filename + strlen(image_path) - 3, 1024 - strlen(image_path) + 3, "dds");
        fopen_s(&fp, output_filename, "wb");
    #else
        strcpy(output_filename, image_path);
        strcpy(output_filename + strlen(image_path) - 3, "dds");
        fp = fopen(output_filename, "wb");
    #endif
    shrCheckError(fp != NULL, shrTRUE);

    DDSHeader header;
    header.fourcc = FOURCC_DDS;
    header.size = 124;
    header.flags  = (DDSD_WIDTH|DDSD_HEIGHT|DDSD_CAPS|DDSD_PIXELFORMAT|DDSD_LINEARSIZE);
    header.height = height;
    header.width = width;
    header.pitch = compressedSize;
    header.depth = 0;
    header.mipmapcount = 0;
    memset(header.reserved, 0, sizeof(header.reserved));
    header.pf.size = 32;
    header.pf.flags = DDPF_FOURCC;
    header.pf.fourcc = FOURCC_DXT1;
    header.pf.bitcount = 0;
    header.pf.rmask = 0;
    header.pf.gmask = 0;
    header.pf.bmask = 0;
    header.pf.amask = 0;
    header.caps.caps1 = DDSCAPS_TEXTURE;
    header.caps.caps2 = 0;
    header.caps.caps3 = 0;
    header.caps.caps4 = 0;
    header.notused = 0;

    fwrite(&header, sizeof(DDSHeader), 1, fp);
    fwrite(h_result, compressedSize, 1, fp);

    fclose(fp);

    // Make sure the generated image matches the reference image (regression check)
    shrLog(LOGBOTH, 0, "\nComparing against Host/C++ computation...\n");     
    const char* reference_image_path = shrFindFilePath(refimage_filename, argv[0]);
    shrCheckError(reference_image_path != NULL, shrTRUE);

    // read in the reference image from file
    #ifdef WIN32
        fopen_s(&fp, reference_image_path, "rb");
    #else
        fp = fopen(reference_image_path, "rb");
    #endif
    shrCheckError(fp != NULL, shrTRUE);
    fseek(fp, sizeof(DDSHeader), SEEK_SET);
    uint referenceSize = (width / 4) * (height / 4) * 8;
    uint * reference = (uint *)malloc(referenceSize);
    fread(reference, referenceSize, 1, fp);
    fclose(fp);

    // compare the reference image data to the sample/generated image
    float rms = 0;
    for (uint y = 0; y < height; y += 4)
    {
        for (uint x = 0; x < width; x += 4)
        {
            // binary comparison of data
            uint referenceBlockIdx = ((y/4) * (width/4) + (x/4));
            uint resultBlockIdx = ((y/4) * (width/4) + (x/4));
            int cmp = compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx, ((BlockDXT1 *)reference) + referenceBlockIdx);

            // log deviations, if any
            if (cmp != 0.0f) 
            {
                compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx, ((BlockDXT1 *)reference) + referenceBlockIdx);
                shrLog(LOGBOTH, 0, "Deviation at (%d, %d):\t%f rms\n", x/4, y/4, float(cmp)/16/3);
            }
            rms += cmp;
        }
    }
    rms /= width * height * 3;
    shrLog(LOGBOTH, 0, "RMS(reference, result) = %f\n\n", rms);
    shrLog(LOGBOTH, 0, "TEST %s\n\n", (rms <= ERROR_THRESHOLD) ? "PASSED" : "FAILED !!!");

    // Free OpenCL resources
    oclDeleteMemObjs(cmMemObjs, 3);
    clReleaseKernel(ckKernel);
    clReleaseProgram(cpProgram);
    clReleaseCommandQueue(cqCommandQueue);
    clReleaseContext(cxGPUContext);

    // Free host memory
    free(source);
    free(h_img);

    // finish
    shrEXIT(argc, argv);
}
Ejemplo n.º 20
0
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main( int argc, char** argv) 
{
    //start logs
    shrSetLogFileName ("volumeRender.txt");
    shrLog("%s Starting...\n\n", argv[0]); 

    if (cutCheckCmdLineFlag(argc, (const char **)argv, "qatest") ||
		cutCheckCmdLineFlag(argc, (const char **)argv, "noprompt")) 
	{
        g_bQAReadback = true;
        fpsLimit = frameCheckNumber;
    }

    if (cutCheckCmdLineFlag(argc, (const char **)argv, "glverify")) 
	{
        g_bQAGLVerify = true;
        fpsLimit = frameCheckNumber;
    }

    if (g_bQAReadback) {
	    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
        if( cutCheckCmdLineFlag(argc, (const char**)argv, "device") ) {
            cutilDeviceInit(argc, argv);
        } else {
            cudaSetDevice( cutGetMaxGflopsDeviceId() );
        }

    } else {
        // First initialize OpenGL context, so we can properly set the GL for CUDA.
        // This is necessary in order to achieve optimal performance with OpenGL/CUDA interop.
        initGL( &argc, argv );

	    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
        if( cutCheckCmdLineFlag(argc, (const char**)argv, "device") ) {
            cutilGLDeviceInit(argc, argv);
        } else {
            cudaGLSetGLDevice( cutGetMaxGflopsDeviceId() );
        }
/*
        int device;
        struct cudaDeviceProp prop;
        cudaGetDevice( &device );
        cudaGetDeviceProperties( &prop, device );
        if( !strncmp( "Tesla", prop.name, 5 ) ) {
            shrLog("This sample needs a card capable of OpenGL and display.\n");
            shrLog("Please choose a different device with the -device=x argument.\n");
            cutilExit(argc, argv);
        }
*/
	}

    // parse arguments
    char *filename;
    if (cutGetCmdLineArgumentstr( argc, (const char**) argv, "file", &filename)) {
        volumeFilename = filename;
    }
    int n;
    if (cutGetCmdLineArgumenti( argc, (const char**) argv, "size", &n)) {
        volumeSize.width = volumeSize.height = volumeSize.depth = n;
    }
    if (cutGetCmdLineArgumenti( argc, (const char**) argv, "xsize", &n)) {
        volumeSize.width = n;
    }
    if (cutGetCmdLineArgumenti( argc, (const char**) argv, "ysize", &n)) {
        volumeSize.height = n;
    }
    if (cutGetCmdLineArgumenti( argc, (const char**) argv, "zsize", &n)) {
         volumeSize.depth = n;
    }

    // load volume data
    char* path = shrFindFilePath(volumeFilename, argv[0]);
    if (path == 0) {
        shrLog("Error finding file '%s'\n", volumeFilename);
        exit(EXIT_FAILURE);
    }

    size_t size = volumeSize.width*volumeSize.height*volumeSize.depth*sizeof(VolumeType);
    void *h_volume = loadRawFile(path, size);
    
    initCuda(h_volume, volumeSize);
    free(h_volume);

    cutilCheckError( cutCreateTimer( &timer));

    shrLog("Press '=' and '-' to change density\n"
           "      ']' and '[' to change brightness\n"
           "      ';' and ''' to modify transfer function offset\n"
           "      '.' and ',' to modify transfer function scale\n\n");

    // calculate new grid size
    gridSize = dim3(iDivUp(width, blockSize.x), iDivUp(height, blockSize.y));

    if (g_bQAReadback) {
        g_CheckRender = new CheckBackBuffer(width, height, 4, false);
        g_CheckRender->setPixelFormat(GL_RGBA);
        g_CheckRender->setExecPath(argv[0]);
        g_CheckRender->EnableQAReadback(true);

        uint *d_output;
        cutilSafeCall(cudaMalloc((void**)&d_output, width*height*sizeof(uint)));
        cutilSafeCall(cudaMemset(d_output, 0, width*height*sizeof(uint)));

        float modelView[16] = 
        {
            1.0f, 0.0f, 0.0f, 0.0f,
            0.0f, 1.0f, 0.0f, 0.0f,
            0.0f, 0.0f, 1.0f, 0.0f,
            0.0f, 0.0f, 4.0f, 1.0f
        };

        invViewMatrix[0] = modelView[0]; invViewMatrix[1] = modelView[4]; invViewMatrix[2] = modelView[8]; invViewMatrix[3] = modelView[12];
        invViewMatrix[4] = modelView[1]; invViewMatrix[5] = modelView[5]; invViewMatrix[6] = modelView[9]; invViewMatrix[7] = modelView[13];
        invViewMatrix[8] = modelView[2]; invViewMatrix[9] = modelView[6]; invViewMatrix[10] = modelView[10]; invViewMatrix[11] = modelView[14];

        // call CUDA kernel, writing results to PBO
	    copyInvViewMatrix(invViewMatrix, sizeof(float4)*3);
        
        // Start timer 0 and process n loops on the GPU 
        int nIter = 10;
        for (int i = -1; i < nIter; i++)
        {
            if( i == 0 ) {
                cudaThreadSynchronize();
                cutStartTimer(timer); 
            }
            
            render_kernel(gridSize, blockSize, d_output, width, height, density, brightness, transferOffset, transferScale);
        }
        cudaThreadSynchronize();
        cutStopTimer(timer);
        // Get elapsed time and throughput, then log to sample and master logs
        double dAvgTime = cutGetTimerValue(timer)/(nIter * 1000.0);
        shrLogEx(LOGBOTH | MASTER, 0, "volumeRender, Throughput = %.4f MTexels/s, Time = %.5f s, Size = %u Texels, NumDevsUsed = %u, Workgroup = %u\n", 
               (1.0e-6 * width * height)/dAvgTime, dAvgTime, (width * height), 1, blockSize.x * blockSize.y); 
        

        cutilCheckMsg("Error: render_kernel() execution FAILED");
        cutilSafeCall( cudaThreadSynchronize() );

        cutilSafeCall( cudaMemcpy(g_CheckRender->imageData(), d_output, width*height*4, cudaMemcpyDeviceToHost) );
        g_CheckRender->savePPM(sOriginal[g_Index], true, NULL);

        if (!g_CheckRender->PPMvsPPM(sOriginal[g_Index], sReference[g_Index], MAX_EPSILON_ERROR, THRESHOLD)) {
            shrLog("\nFAILED\n\n");
        } else {
            shrLog("\nPASSED\n\n");
        }

        cudaFree(d_output);
    	freeCudaBuffers();

        if (g_CheckRender) {
            delete g_CheckRender; g_CheckRender = NULL;
        }

    } else {
        // This is the normal rendering path for VolumeRender
        glutDisplayFunc(display);
        glutKeyboardFunc(keyboard);
        glutMouseFunc(mouse);
        glutMotionFunc(motion);
        glutReshapeFunc(reshape);
        glutIdleFunc(idle);

        initPixelBuffer();

        if (g_bQAGLVerify) {
            g_CheckRender = new CheckBackBuffer(width, height, 4);
            g_CheckRender->setPixelFormat(GL_RGBA);
            g_CheckRender->setExecPath(argv[0]);
            g_CheckRender->EnableQAReadback(true);
        }
        atexit(cleanup);

        glutMainLoop();
    }

    cudaThreadExit();
    shrEXIT(argc, (const char**)argv);
}
Ejemplo n.º 21
0
int InitOpenCLContext() 
{
	// start logs
	shrSetLogFileName ("oclVolumeRender.txt");

	// get command line arg for quick test, if provided
	// process command line arguments

	// First initialize OpenGL context, so we can properly setup the OpenGL / OpenCL interop.

// 	glewInit();
// 	GLboolean bGLEW = glewIsSupported("GL_VERSION_2_0 GL_ARB_pixel_buffer_object"); 
// 	oclCheckErrorEX(bGLEW, shrTRUE, pCleanup);
	g_glInterop = true;


	// Create OpenCL context, get device info, select device, select options for image/texture and CL-GL interop
	createCLContext();

	// Print device info
	clGetDeviceInfo(cdDevices[uiDeviceUsed], CL_DEVICE_IMAGE_SUPPORT, sizeof(g_bImageSupport), &g_bImageSupport, NULL);
	//shrLog("%s...\n\n", g_bImageSupport ? "Using Image (Texture)" : "No Image (Texuture) Support");      
//	shrLog("Detailed Device info:\n\n");
	oclPrintDevInfo(LOGBOTH, cdDevices[uiDeviceUsed]);

	// create a command-queue
	cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[uiDeviceUsed], 0, &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

	// Program Setup
	size_t program_length;
	cPathAndName = shrFindFilePath("Transform.cl", ".");
	oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
	cSourceCL = oclLoadProgSource(cPathAndName, "", &program_length);
	oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);

	// create the program
	cpProgram = clCreateProgramWithSource(cxGPUContext, 1,
		(const char **)&cSourceCL, &program_length, &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

	// build the program
	std::string buildOpts = "-cl-single-precision_constant";
//	buildOpts += g_bImageSupport ? " -DIMAGE_SUPPORT" : "";
//	ciErrNum = clBuildProgram(cpProgram, 1, &cdDevices[uiDeviceUsed],"-cl-fast-relaxed-math", NULL, NULL);
	ciErrNum = clBuildProgram(cpProgram, 1, &cdDevices[uiDeviceUsed],NULL, NULL, NULL);
	if (ciErrNum != CL_SUCCESS)
	{
		// write out standard error, Build Log and PTX, then cleanup and return error
		shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
		oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
		oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclVolumeRender.ptx");
		Cleanup(EXIT_FAILURE); 
	}

	// create the kernel
	ScalseKernel = clCreateKernel(cpProgram, "d_render", &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

	TransformKernel = clCreateKernel(cpProgram, "angle", &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

	LongToShortKernel = clCreateKernel(cpProgram, "transfer", &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
	return TRUE;
}
// Main function 
// *********************************************************************
int main(int argc, char **argv)
{
	//////////////////////////////////////////////////////////////////////////
	unsigned int count = iNumElements;
	int k = 8;
	unsigned int random_seed, random_seed2;
	srand( (unsigned)time( NULL ) );
	random_seed = rand();
	random_seed2 = rand();
	//////////////////////////////////////////////////////////////////////////

	// get command line arg for quick test, if provided
	bNoPrompt = shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");

	// start logs 
	shrSetLogFileName ("oclVectorAdd.txt");
	shrLog("%s Starting...\n\n# of float elements per Array \t= %i\n", argv[0], iNumElements); 

	// set and log Global and Local work size dimensions
	szLocalWorkSize = 256;
	szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, iNumElements);  // rounded up to the nearest multiple of the LocalWorkSize
	shrLog("Global Work Size \t\t= %u\nLocal Work Size \t\t= %u\n# of Work Groups \t\t= %u\n\n", 
		szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize)); 

	// Allocate and initialize host arrays 
	shrLog( "Allocate and Init Host Mem...\n"); 
	srcA = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
	srcB = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
	dst = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
	Golden = (void *)malloc(sizeof(cl_float) * iNumElements);
	shrFillArray((float*)srcA, iNumElements);
	shrFillArray((float*)srcB, iNumElements);
	//////////////////////////////////////////////////////////////////////////
	float *scalar_value = new float[count];
	float *gradient_magnitude = new float[count];
	float *second_derivative_magnitude = new float[count];
	unsigned char *label_ptr = new unsigned char[count];
	shrFillArray(scalar_value, count);
	shrFillArray(gradient_magnitude, count);
	shrFillArray(second_derivative_magnitude, count);
	//////////////////////////////////////////////////////////////////////////

	//Get an OpenCL platform
	ciErr1 = clGetPlatformIDs(1, &cpPlatform, NULL);

	shrLog("clGetPlatformID...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clGetPlatformID, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	//Get the devices
	ciErr1 = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);
	shrLog("clGetDeviceIDs...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clGetDeviceIDs, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	//Create the context
	cxGPUContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, &ciErr1);
	shrLog("clCreateContext...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateContext, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Create a command-queue
	cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevice, 0, &ciErr1);
	shrLog("clCreateCommandQueue...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateCommandQueue, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Allocate the OpenCL buffer memory objects for source and result on the device GMEM
	cmDevSrcA = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr1);
	cmDevSrcB = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	cmDevDst = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	//////////////////////////////////////////////////////////////////////////
	cmDevSrc_scalar_value = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr1);
	cmDevSrc_gradient_magnitude = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	cmDevSrc_second_derivative_magnitude = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	cmDevDst_label_ptr = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	//////////////////////////////////////////////////////////////////////////
	shrLog("clCreateBuffer...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Read the OpenCL kernel in from source file
	shrLog("oclLoadProgSource (%s)...\n", cSourceFile); 
	cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
	cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);
	printf("%s\n%s\n", cSourceFile, cPathAndName);

	// Create the program
	cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErr1);
	shrLog("clCreateProgramWithSource...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateProgramWithSource, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Build the program with 'mad' Optimization option
#ifdef MAC
	char* flags = "-cl-fast-relaxed-math -DMAC";
#else
	char* flags = "-cl-fast-relaxed-math";
#endif
	ciErr1 = clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
	shrLog("clBuildProgram...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clBuildProgram, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Create the kernel
	ckKernel = clCreateKernel(cpProgram, "k_means", &ciErr1);
	shrLog("clCreateKernel (VectorAdd)...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Set the Argument values
	//ciErr1 = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrcA);
	//ciErr1 |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrcB);
	//ciErr1 |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevDst);
	//ciErr1 |= clSetKernelArg(ckKernel, 3, sizeof(cl_int), (void*)&iNumElements);
	//////////////////////////////////////////////////////////////////////////
	// __global const float *scalar_value, __global const float *gradient_magnitude, __global const float *second_derivative_magnitude, __global unsigned char *label_ptr, __global const unsigned int count, __global const int k, __global const unsigned int random_seed, __global const unsigned int random_seed2
	ciErr1 = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrc_scalar_value);
	ciErr1 |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrc_gradient_magnitude);
	ciErr1 |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevSrc_second_derivative_magnitude);
	ciErr1 |= clSetKernelArg(ckKernel, 3, sizeof(cl_mem), (void*)&cmDevDst_label_ptr);
	ciErr1 |= clSetKernelArg(ckKernel, 4, sizeof(cl_uint), (void*)&count);
	ciErr1 |= clSetKernelArg(ckKernel, 5, sizeof(cl_uint), (void*)&k);
	ciErr1 |= clSetKernelArg(ckKernel, 6, sizeof(cl_uint), (void*)&random_seed);
	ciErr1 |= clSetKernelArg(ckKernel, 7, sizeof(cl_uint), (void*)&random_seed2);
	//////////////////////////////////////////////////////////////////////////
	shrLog("clSetKernelArg 0 - 3...\n\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clSetKernelArg, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// --------------------------------------------------------
	// Start Core sequence... copy input data to GPU, compute, copy results back

	// Asynchronous write of data to GPU device
	//ciErr1 = clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcA, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, srcA, 0, NULL, NULL);
	//ciErr1 |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcB, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, srcB, 0, NULL, NULL);
	//////////////////////////////////////////////////////////////////////////
	ciErr1 = clEnqueueWriteBuffer(cqCommandQueue, cmDevSrc_scalar_value, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, scalar_value, 0, NULL, NULL);
	ciErr1 |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrc_gradient_magnitude, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, gradient_magnitude, 0, NULL, NULL);
	ciErr1 |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrc_second_derivative_magnitude, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, second_derivative_magnitude, 0, NULL, NULL);
	//////////////////////////////////////////////////////////////////////////
	shrLog("clEnqueueWriteBuffer (SrcA and SrcB)...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clEnqueueWriteBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Launch kernel
	ciErr1 = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, NULL);
	shrLog("clEnqueueNDRangeKernel (VectorAdd)...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clEnqueueNDRangeKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Synchronous/blocking read of results, and check accumulated errors
	//ciErr1 = clEnqueueReadBuffer(cqCommandQueue, cmDevDst, CL_TRUE, 0, sizeof(cl_float) * szGlobalWorkSize, dst, 0, NULL, NULL);
	//////////////////////////////////////////////////////////////////////////
		ciErr1 = clEnqueueReadBuffer(cqCommandQueue, cmDevDst_label_ptr, CL_TRUE, 0, sizeof(cl_float) * szGlobalWorkSize, label_ptr, 0, NULL, NULL);
	//////////////////////////////////////////////////////////////////////////
	shrLog("clEnqueueReadBuffer (Dst)...\n\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clEnqueueReadBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}
	//--------------------------------------------------------

	// Compute and compare results for golden-host and report errors and pass/fail
	shrLog("Comparing against Host/C++ computation...\n\n"); 
	VectorAddHost ((const float*)srcA, (const float*)srcB, (float*)Golden, iNumElements);
	shrBOOL bMatch = shrComparefet((const float*)Golden, (const float*)dst, (unsigned int)iNumElements, 0.0f, 0);
	shrLog("%s\n\n", (bMatch == shrTRUE) ? "PASSED" : "FAILED");

	//////////////////////////////////////////////////////////////////////////
	//float *a = (float *)srcA;
	//float *b = (float *)srcB;
	//float *c = (float *)dst;
	//float *d = (float *)Golden;
	//for (int i=0; i<iNumElements; i++)
	//{
	//	printf("%f+%f=%f=%f\t", a[i], b[i], c[i], a[i]+b[i]);
	//	printf("%s\n", (a[i]+b[i]==c[i]?"equal":"not equal"));
	//}

	//for (int i=0; i<iNumElements; i++)
	//{
	//	printf("%f\n", ((float *)dst)[i]);
	//}
	//////////////////////////////////////////////////////////////////////////

	// Cleanup and leave
	Cleanup (EXIT_SUCCESS);

	//////////////////////////////////////////////////////////////////////////
	delete [] scalar_value;
	delete [] gradient_magnitude;
	delete [] second_derivative_magnitude;
	delete [] label_ptr;
	//////////////////////////////////////////////////////////////////////////
}
// Main program
//*****************************************************************************
int main(int argc, char** argv)
{
	pArgc = &argc;
	pArgv = argv;

	shrQAStart(argc, argv);

    // Start logs 
	cExecutableName = argv[0];
    shrSetLogFileName ("oclSobelFilter.txt");
    shrLog("%s Starting (Using %s)...\n\n", argv[0], clSourcefile); 

    // Get command line args for quick test or QA test, if provided
    bNoPrompt = (bool)shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");
    bQATest   = (bool)shrCheckCmdLineFlag(argc, (const char**)argv, "qatest");

    // Menu items
    if (!(bQATest))
    {
        ShowMenuItems();
    }

    // Find the path from the exe to the image file 
    cPathAndName = shrFindFilePath(cImageFile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    shrLog("Image File\t = %s\nImage Dimensions = %u w x %u h x %u bpp\n\n", cPathAndName, uiImageWidth, uiImageHeight, sizeof(unsigned int)<<3);

    // Initialize OpenGL items (if not No-GL QA test)
    shrLog("%sInitGL...\n\n", bQATest ? "Skipping " : "Calling "); 
    if (!(bQATest))
    {
        InitGL(&argc, argv);
    }

    //Get the NVIDIA platform if available, otherwise use default
    char cBuffer[1024];
    bool bNV = false;
    shrLog("Get Platform ID... ");
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    ciErrNum = clGetPlatformInfo (cpPlatform, CL_PLATFORM_NAME, sizeof(cBuffer), cBuffer, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    shrLog("%s\n\n", cBuffer);
    bNV = (strstr(cBuffer, "NVIDIA") != NULL);

    //Get the devices
    shrLog("Get Device Info...\n");
    cl_uint uiNumAllDevs = 0;
    GpuDevMngr = new DeviceManager(cpPlatform, &uiNumAllDevs, pCleanup);

    // Get selected device if specified, otherwise examine avaiable ones and choose by perf
    cl_int iSelectedDevice = 0;
    if((shrGetCmdLineArgumenti(argc, (const char**)argv, "device", &iSelectedDevice)) || (uiNumAllDevs == 1)) 
    {
        // Use 1 selected device
        GpuDevMngr->uiUsefulDevCt = 1;  
        iSelectedDevice = CLAMP((cl_uint)iSelectedDevice, 0, (uiNumAllDevs - 1));
        GpuDevMngr->uiUsefulDevs[0] = iSelectedDevice;
        GpuDevMngr->fLoadProportions[0] = 1.0f;
        shrLog("  Using 1 Selected Device for Sobel Filter Computation...\n"); 
 
    } 
    else 
    {
        // Use available useful devices and Compute the device load proportions
        ciErrNum = GpuDevMngr->GetDevLoadProportions(bNV);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        if (GpuDevMngr->uiUsefulDevCt == 1)
        {
            iSelectedDevice = GpuDevMngr->uiUsefulDevs[0];
        }
        shrLog("    Using %u Device(s) for Sobel Filter Computation\n", GpuDevMngr->uiUsefulDevCt); 
    }

    //Create the context
    shrLog("\nclCreateContext...\n\n");
    cxGPUContext = clCreateContext(0, uiNumAllDevs, GpuDevMngr->cdDevices, NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Allocate per-device OpenCL objects for useful devices
    cqCommandQueue = new cl_command_queue[GpuDevMngr->uiUsefulDevCt];
    ckSobel = new cl_kernel[GpuDevMngr->uiUsefulDevCt];
    cmDevBufIn = new cl_mem[GpuDevMngr->uiUsefulDevCt];
    cmDevBufOut = new cl_mem[GpuDevMngr->uiUsefulDevCt];
    szAllocDevBytes = new size_t[GpuDevMngr->uiUsefulDevCt];
    uiInHostPixOffsets = new cl_uint[GpuDevMngr->uiUsefulDevCt];
    uiOutHostPixOffsets = new cl_uint[GpuDevMngr->uiUsefulDevCt];
    uiDevImageHeight = new cl_uint[GpuDevMngr->uiUsefulDevCt];

    // Create command queue(s) for device(s)     
    shrLog("clCreateCommandQueue...\n");
    for (cl_uint i = 0; i < GpuDevMngr->uiUsefulDevCt; i++) 
    {
        cqCommandQueue[i] = clCreateCommandQueue(cxGPUContext, GpuDevMngr->cdDevices[GpuDevMngr->uiUsefulDevs[i]], 0, &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        shrLog("  CommandQueue %u, Device %u, Device Load Proportion = %.2f, ", i, GpuDevMngr->uiUsefulDevs[i], GpuDevMngr->fLoadProportions[i]); 
        oclPrintDevName(LOGBOTH, GpuDevMngr->cdDevices[GpuDevMngr->uiUsefulDevs[i]]);  
        shrLog("\n");
    }

    // Allocate pinned input and output host image buffers:  mem copy operations to/from pinned memory is much faster than paged memory
    szBuffBytes = uiImageWidth * uiImageHeight * sizeof (unsigned int);
    cmPinnedBufIn = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, szBuffBytes, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmPinnedBufOut = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, szBuffBytes, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    shrLog("\nclCreateBuffer (Input and Output Pinned Host buffers)...\n"); 

    // Get mapped pointers for writing to pinned input and output host image pointers 
    uiInput = (cl_uint*)clEnqueueMapBuffer(cqCommandQueue[0], cmPinnedBufIn, CL_TRUE, CL_MAP_WRITE, 0, szBuffBytes, 0, NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    uiOutput = (cl_uint*)clEnqueueMapBuffer(cqCommandQueue[0], cmPinnedBufOut, CL_TRUE, CL_MAP_READ, 0, szBuffBytes, 0, NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    shrLog("clEnqueueMapBuffer (Pointer to Input and Output pinned host buffers)...\n"); 

    // Load image data from file to pinned input host buffer
    ciErrNum = shrLoadPPM4ub(cPathAndName, (unsigned char **)&uiInput, &uiImageWidth, &uiImageHeight);
    oclCheckErrorEX(ciErrNum, shrTRUE, pCleanup);
    shrLog("Load Input Image to Input pinned host buffer...\n"); 

    // Read the kernel in from file
    free(cPathAndName);
    cPathAndName = shrFindFilePath(clSourcefile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    cSourceCL = oclLoadProgSource(cPathAndName, "// My comment\n", &szKernelLength);
    oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);
    shrLog("Load OpenCL Prog Source from File...\n"); 

    // Create the program object
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    shrLog("clCreateProgramWithSource...\n"); 

    // Build the program with 'mad' Optimization option
#ifdef MAC
    char *flags = "-cl-fast-relaxed-math -DMAC";
#else
    char *flags = "-cl-fast-relaxed-math";
#endif

    ciErrNum = clBuildProgram(cpProgram, 0, NULL, flags, NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // On error: write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclSobelFilter.ptx");
        Cleanup(EXIT_FAILURE);
    }
    shrLog("clBuildProgram...\n\n"); 

    // Determine, the size/shape of the image portions for each dev and create the device buffers
    unsigned uiSumHeight = 0;
    for (cl_uint i = 0; i < GpuDevMngr->uiUsefulDevCt; i++)
    {
        // Create kernel instance
        ckSobel[i] = clCreateKernel(cpProgram, "ckSobel", &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        shrLog("clCreateKernel (ckSobel), Device %u...\n", i); 

        // Allocations and offsets for the portion of the image worked on by each device
        if (GpuDevMngr->uiUsefulDevCt == 1)
        {
            // One device processes the whole image with no offset 
            uiDevImageHeight[i] = uiImageHeight; 
            uiInHostPixOffsets[i] = 0;
            uiOutHostPixOffsets[i] = 0;
            szAllocDevBytes[i] = uiDevImageHeight[i] * uiImageWidth * sizeof(cl_uint);
        }
        else if (i == 0)
        {
            // Multiple devices, top stripe zone including topmost row of image:  
            // Over-allocate on device by 1 row 
            // Set offset and size to copy extra 1 padding row H2D (below bottom of stripe)
            // Won't return the last row (dark/garbage row) D2H
            uiInHostPixOffsets[i] = 0;
            uiOutHostPixOffsets[i] = 0;
            uiDevImageHeight[i] = (cl_uint)(GpuDevMngr->fLoadProportions[GpuDevMngr->uiUsefulDevs[i]] * (float)uiImageHeight);     // height is proportional to dev perf 
            uiSumHeight += uiDevImageHeight[i];
            uiDevImageHeight[i] += 1;
            szAllocDevBytes[i] = uiDevImageHeight[i] * uiImageWidth * sizeof(cl_uint);
        }
        else if (i < (GpuDevMngr->uiUsefulDevCt - 1))
        {
            // Multiple devices, middle stripe zone:  
            // Over-allocate on device by 2 rows 
            // Set offset and size to copy extra 2 padding rows H2D (above top and below bottom of stripe)
            // Won't return the first and last rows (dark/garbage rows) D2H
            uiInHostPixOffsets[i] = (uiSumHeight - 1) * uiImageWidth;
            uiOutHostPixOffsets[i] = uiInHostPixOffsets[i] + uiImageWidth;
            uiDevImageHeight[i] = (cl_uint)(GpuDevMngr->fLoadProportions[GpuDevMngr->uiUsefulDevs[i]] * (float)uiImageHeight);     // height is proportional to dev perf 
            uiSumHeight += uiDevImageHeight[i];
            uiDevImageHeight[i] += 2;
            szAllocDevBytes[i] = uiDevImageHeight[i] * uiImageWidth * sizeof(cl_uint);
        }
        else 
        {
            // Multiple devices, last boundary tile:  
            // Over-allocate on device by 1 row 
            // Set offset and size to copy extra 1 padding row H2D (above top of stripe)
            // Won't return the first row (dark/garbage rows D2H 
            uiInHostPixOffsets[i] = (uiSumHeight - 1) * uiImageWidth;
            uiOutHostPixOffsets[i] = uiInHostPixOffsets[i] + uiImageWidth;
            uiDevImageHeight[i] = uiImageHeight - uiSumHeight;                              // "leftover" rows 
            uiSumHeight += uiDevImageHeight[i];
            uiDevImageHeight[i] += 1;
            szAllocDevBytes[i] = uiDevImageHeight[i] * uiImageWidth * sizeof(cl_uint);
        }
        shrLog("Image Height (rows) for Device %u = %u...\n", i, uiDevImageHeight[i]); 

        // Create the device buffers in GMEM on each device
        cmDevBufIn[i] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, szAllocDevBytes[i], NULL, &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        cmDevBufOut[i] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, szAllocDevBytes[i], NULL, &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        shrLog("clCreateBuffer (Input and Output GMEM buffers, Device %u)...\n", i); 

        // Set the common argument values for the Median kernel instance for each device
        int iLocalPixPitch = iBlockDimX + 2;
        ciErrNum = clSetKernelArg(ckSobel[i], 0, sizeof(cl_mem), (void*)&cmDevBufIn[i]);
        ciErrNum |= clSetKernelArg(ckSobel[i], 1, sizeof(cl_mem), (void*)&cmDevBufOut[i]);
        ciErrNum |= clSetKernelArg(ckSobel[i], 2, (iLocalPixPitch * (iBlockDimY + 2) * sizeof(cl_uchar4)), NULL);
        ciErrNum |= clSetKernelArg(ckSobel[i], 3, sizeof(cl_int), (void*)&iLocalPixPitch);
        ciErrNum |= clSetKernelArg(ckSobel[i], 4, sizeof(cl_uint), (void*)&uiImageWidth);
        ciErrNum |= clSetKernelArg(ckSobel[i], 6, sizeof(cl_float), (void*)&fThresh);        
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        shrLog("clSetKernelArg (0-4), Device %u...\n\n", i); 
    }

    // Set common global and local work sizes for Median kernel
    szLocalWorkSize[0] = iBlockDimX;
    szLocalWorkSize[1] = iBlockDimY;
    szGlobalWorkSize[0] = shrRoundUp((int)szLocalWorkSize[0], uiImageWidth); 

    // init running timers
    shrDeltaT(0);   // timer 0 used for computation timing 
    shrDeltaT(1);   // timer 1 used for fps computation

    // Start main GLUT rendering loop for processing and rendering, 
    // or otherwise run No-GL Q/A test sequence
    if (!(bQATest))
    {
        glutMainLoop();
    }
    else 
    {
        TestNoGL();
    }

    Cleanup(EXIT_SUCCESS);
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
    shrQAStart(argc, argv);
    // start logs 
    shrSetLogFileName ("oclSimpleMultiGPU.txt");
    shrLog("%s Starting, Array = %u float values...\n\n", argv[0], DATA_N); 

    // OpenCL
    cl_platform_id cpPlatform;
    cl_uint ciDeviceCount;
    cl_device_id* cdDevices;
    cl_context cxGPUContext;
    cl_device_id cdDevice;                          // GPU device
    int deviceNr[MAX_GPU_COUNT];
    cl_command_queue commandQueue[MAX_GPU_COUNT];
    cl_mem d_Data[MAX_GPU_COUNT];
    cl_mem d_Result[MAX_GPU_COUNT];
    cl_program cpProgram; 
    cl_kernel reduceKernel[MAX_GPU_COUNT];
    cl_event GPUDone[MAX_GPU_COUNT];
    cl_event GPUExecution[MAX_GPU_COUNT];
    size_t programLength;
    cl_int ciErrNum;			               
    char cDeviceName [256];
    cl_mem h_DataBuffer;

    // Vars for reduction results
    float h_SumGPU[MAX_GPU_COUNT * ACCUM_N];   
    float *h_Data;
    double sumGPU;
    double sumCPU, dRelError;

    // allocate and init host buffer with with some random generated input data
    h_Data = (float *)malloc(DATA_N * sizeof(float));
    shrFillArray(h_Data, DATA_N);

    // start timer & logs 
    shrLog("Setting up OpenCL on the Host...\n\n"); 
    shrDeltaT(1);

    // Annotate profiling state
    #ifdef GPU_PROFILING
        shrLog("OpenCL Profiling is enabled...\n\n"); 
    #endif

     //Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clGetPlatformID...\n"); 

    //Get the devices
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &ciDeviceCount);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cdDevices = (cl_device_id *)malloc(ciDeviceCount * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, ciDeviceCount, cdDevices, NULL);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clGetDeviceIDs...\n"); 

    //Create the context
    cxGPUContext = clCreateContext(0, ciDeviceCount, cdDevices, NULL, NULL, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clCreateContext...\n");

    // Set up command queue(s) for GPU's specified on the command line or all GPU's
    if(shrCheckCmdLineFlag(argc, (const char **)argv, "device"))
    {
        // User specified GPUs
        int ciMaxDeviceID = ciDeviceCount-1;

        ciDeviceCount = 0;
        char* deviceList;
        char* deviceStr;
        char* next_token;
        shrGetCmdLineArgumentstr(argc, (const char **)argv, "device", &deviceList);

        #ifdef WIN32
            deviceStr = strtok_s (deviceList," ,.-", &next_token);
        #else
            deviceStr = strtok (deviceList," ,.-");
        #endif   

        // Create command queues for all Requested GPU's
        while(deviceStr != NULL) 
        {
            // get & log device index # and name
            deviceNr[ciDeviceCount] = atoi(deviceStr);
            if( deviceNr[ciDeviceCount] > ciMaxDeviceID ) {
                shrLog(" Invalid user specified device ID: %d\n", deviceNr[ciDeviceCount]);
                return 1;
            }

            cdDevice = oclGetDev(cxGPUContext, deviceNr[ciDeviceCount]);
            ciErrNum = clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cDeviceName), cDeviceName, NULL);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog(" Device %i: %s\n\n", deviceNr[ciDeviceCount], cDeviceName);

            // create a command que
            commandQueue[ciDeviceCount] = clCreateCommandQueue(cxGPUContext, cdDevice, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog("clCreateCommandQueue\n"); 

            ++ciDeviceCount;

            #ifdef WIN32
                deviceStr = strtok_s (NULL," ,.-", &next_token);
            #else            
                deviceStr = strtok (NULL," ,.-");
            #endif
        }

        free(deviceList);
    } 
    else 
    {
        // Find out how many GPU's to compute on all available GPUs
        size_t nDeviceBytes;
        ciErrNum = clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &nDeviceBytes);
        oclCheckError(ciErrNum, CL_SUCCESS);
        ciDeviceCount = (cl_uint)nDeviceBytes/sizeof(cl_device_id);

        for(unsigned int i = 0; i < ciDeviceCount; ++i ) 
        {
            // get & log device index # and name
            deviceNr[i] = i;
            cdDevice = oclGetDev(cxGPUContext, i);
            ciErrNum = clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cDeviceName), cDeviceName, NULL);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog(" Device %i: %s\n", i, cDeviceName);

            // create a command que
            commandQueue[i] = clCreateCommandQueue(cxGPUContext, cdDevice, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog("clCreateCommandQueue\n\n"); 
        }
    }

    // Load the OpenCL source code from the .cl file 
    const char* source_path = shrFindFilePath("simpleMultiGPU.cl", argv[0]);
    char *source = oclLoadProgSource(source_path, "", &programLength);
    oclCheckError(source != NULL, shrTRUE);
    shrLog("oclLoadProgSource\n"); 

    // Create the program for all GPUs in the context
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&source, &programLength, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clCreateProgramWithSource\n"); 
    
    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclSimpleMultiGPU.ptx");
        oclCheckError(ciErrNum, CL_SUCCESS); 
    }
    shrLog("clBuildProgram\n"); 

    // Create host buffer with page-locked memory
    h_DataBuffer = clCreateBuffer(cxGPUContext, CL_MEM_COPY_HOST_PTR | CL_MEM_ALLOC_HOST_PTR,
                                  DATA_N * sizeof(float), h_Data, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clCreateBuffer (Page-locked Host)\n\n"); 

    // Create buffers for each GPU, with data divided evenly among GPU's
    int sizePerGPU = DATA_N / ciDeviceCount;
    int workOffset[MAX_GPU_COUNT];
    int workSize[MAX_GPU_COUNT];
    workOffset[0] = 0;
    for(unsigned int i = 0; i < ciDeviceCount; ++i ) 
    {
        workSize[i] = (i != (ciDeviceCount - 1)) ? sizePerGPU : (DATA_N - workOffset[i]);        

        // Input buffer
        d_Data[i] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, workSize[i] * sizeof(float), NULL, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateBuffer (Input)\t\tDev %i\n", i); 

        // Copy data from host to device
        ciErrNum = clEnqueueCopyBuffer(commandQueue[i], h_DataBuffer, d_Data[i], workOffset[i] * sizeof(float), 
                                      0, workSize[i] * sizeof(float), 0, NULL, NULL);        
        shrLog("clEnqueueCopyBuffer (Input)\tDev %i\n", i);

        // Output buffer
        d_Result[i] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, ACCUM_N * sizeof(float), NULL, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateBuffer (Output)\t\tDev %i\n", i);
        
        // Create kernel
        reduceKernel[i] = clCreateKernel(cpProgram, "reduce", &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateKernel\t\t\tDev %i\n", i); 
        
        // Set the args values and check for errors
        ciErrNum |= clSetKernelArg(reduceKernel[i], 0, sizeof(cl_mem), &d_Result[i]);
        ciErrNum |= clSetKernelArg(reduceKernel[i], 1, sizeof(cl_mem), &d_Data[i]);
        ciErrNum |= clSetKernelArg(reduceKernel[i], 2, sizeof(int), &workSize[i]);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clSetKernelArg\t\t\tDev %i\n\n", i);

        workOffset[i + 1] = workOffset[i] + workSize[i];
    }

    // Set # of work items in work group and total in 1 dimensional range
    size_t localWorkSize[] = {THREAD_N};        
    size_t globalWorkSize[] = {ACCUM_N};        

    // Start timer and launch reduction kernel on each GPU, with data split between them 
    shrLog("Launching Kernels on GPU(s)...\n\n");
    for(unsigned int i = 0; i < ciDeviceCount; i++) 
    {        
        ciErrNum = clEnqueueNDRangeKernel(commandQueue[i], reduceKernel[i], 1, 0, globalWorkSize, localWorkSize,
                                         0, NULL, &GPUExecution[i]);
        oclCheckError(ciErrNum, CL_SUCCESS);
    }
    
    // Copy result from device to host for each device
    for(unsigned int i = 0; i < ciDeviceCount; i++) 
    {
        ciErrNum = clEnqueueReadBuffer(commandQueue[i], d_Result[i], CL_FALSE, 0, ACCUM_N * sizeof(float), 
                            h_SumGPU + i *  ACCUM_N, 0, NULL, &GPUDone[i]);
        oclCheckError(ciErrNum, CL_SUCCESS);
    }

    // Synchronize with the GPUs and do accumulated error check
    clWaitForEvents(ciDeviceCount, GPUDone);
    shrLog("clWaitForEvents complete...\n\n"); 

    // Aggregate results for multiple GPU's and stop/log processing time
    sumGPU = 0;
    for(unsigned int i = 0; i < ciDeviceCount * ACCUM_N; i++)
    {
         sumGPU += h_SumGPU[i];
    }

    // Print Execution Times for each GPU
    #ifdef GPU_PROFILING
        shrLog("Profiling Information for GPU Processing:\n\n");
        for(unsigned int i = 0; i < ciDeviceCount; i++) 
        {
            cdDevice = oclGetDev(cxGPUContext, deviceNr[i]);
            clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cDeviceName), cDeviceName, NULL);
            shrLog("Device %i : %s\n", deviceNr[i], cDeviceName);
            shrLog("  Reduce Kernel     : %.5f s\n", executionTime(GPUExecution[i]));
            shrLog("  Copy Device->Host : %.5f s\n\n\n", executionTime(GPUDone[i]));
        }
    #endif

    // Run the computation on the Host CPU and log processing time 
    shrLog("Launching Host/CPU C++ Computation...\n\n");
    sumCPU = 0;
    for(unsigned int i = 0; i < DATA_N; i++)
    {
        sumCPU += h_Data[i];
    }

    // Check GPU result against CPU result 
    dRelError = 100.0 * fabs(sumCPU - sumGPU) / fabs(sumCPU);
    shrLog("Comparing against Host/C++ computation...\n"); 
    shrLog(" GPU sum: %f\n CPU sum: %f\n", sumGPU, sumCPU);
    shrLog(" Relative Error (100.0 * Error / Golden) = %f \n\n", dRelError);

    // cleanup 
    free(source);
    free(h_Data);
    for(unsigned int i = 0; i < ciDeviceCount; ++i ) 
    {
        clReleaseKernel(reduceKernel[i]);
        clReleaseCommandQueue(commandQueue[i]);
    }
    clReleaseProgram(cpProgram);
    clReleaseContext(cxGPUContext);

    // finish
    shrQAFinishExit(argc, (const char **)argv, (dRelError < 1e-4) ? QA_PASSED : QA_FAILED);
  }
// Main function
// *********************************************************************
int main(int argc, char **argv)
{
    gp_argc = &argc;
    gp_argv = &argv;

    shrQAStart(argc, argv);

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    shrLog("clGetPlatformID...\n");

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    shrLog("clGetPlatformID...\n");

    //Get all the devices
    cl_uint uiNumDevices = 0;           // Number of devices available
    cl_uint uiTargetDevice = 0;	        // Default Device to compute on
    cl_uint uiNumComputeUnits;          // Number of compute units (SM's on NV GPU)
    shrLog("Get the Device info and select Device...\n");
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &uiNumDevices);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    cdDevices = (cl_device_id *)malloc(uiNumDevices * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, uiNumDevices, cdDevices, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);

    // Get command line device options and config accordingly
    shrLog("  # of Devices Available = %u\n", uiNumDevices);
    if(shrGetCmdLineArgumentu(argc, (const char**)argv, "device", &uiTargetDevice)== shrTRUE)
    {
        uiTargetDevice = CLAMP(uiTargetDevice, 0, (uiNumDevices - 1));
    }
    shrLog("  Using Device %u: ", uiTargetDevice);
    oclPrintDevName(LOGBOTH, cdDevices[uiTargetDevice]);
    ciErrNum = clGetDeviceInfo(cdDevices[uiTargetDevice], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(uiNumComputeUnits), &uiNumComputeUnits, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    shrLog("\n  # of Compute Units = %u\n", uiNumComputeUnits);

    // get command line arg for quick test, if provided
    bNoPrompt = shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");

    // start logs
    cExecutableName = argv[0];
    shrSetLogFileName ("oclDotProduct.txt");
    shrLog("%s Starting...\n\n# of float elements per Array \t= %u\n", argv[0], iNumElements);

    // set and log Global and Local work size dimensions
    szLocalWorkSize = 256;
    szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, iNumElements);  // rounded up to the nearest multiple of the LocalWorkSize
    shrLog("Global Work Size \t\t= %u\nLocal Work Size \t\t= %u\n# of Work Groups \t\t= %u\n\n",
           szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize));

    // Allocate and initialize host arrays
    shrLog( "Allocate and Init Host Mem...\n");
    srcA = (void *)malloc(sizeof(cl_float4) * szGlobalWorkSize);
    srcB = (void *)malloc(sizeof(cl_float4) * szGlobalWorkSize);
    dst = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
    Golden = (void *)malloc(sizeof(cl_float) * iNumElements);
    shrFillArray((float*)srcA, 4 * iNumElements);
    shrFillArray((float*)srcB, 4 * iNumElements);

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Get a GPU device
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevices[uiTargetDevice], NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create the context
    cxGPUContext = clCreateContext(0, 1, &cdDevices[uiTargetDevice], NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create a command-queue
    shrLog("clCreateCommandQueue...\n");
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[uiTargetDevice], 0, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Allocate the OpenCL buffer memory objects for source and result on the device GMEM
    shrLog("clCreateBuffer (SrcA, SrcB and Dst in Device GMEM)...\n");
    cmDevSrcA = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize * 4, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmDevSrcB = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize * 4, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmDevDst = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Read the OpenCL kernel in from source file
    shrLog("oclLoadProgSource (%s)...\n", cSourceFile);
    cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);
    oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);

    // Create the program
    shrLog("clCreateProgramWithSource...\n");
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErrNum);

    // Build the program with 'mad' Optimization option
#ifdef MAC
    char* flags = "-cl-fast-relaxed-math -DMAC";
#else
    char* flags = "-cl-fast-relaxed-math";
#endif
    shrLog("clBuildProgram...\n");
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclDotProduct.ptx");
        Cleanup(EXIT_FAILURE);
    }

    // Create the kernel
    shrLog("clCreateKernel (DotProduct)...\n");
    ckKernel = clCreateKernel(cpProgram, "DotProduct", &ciErrNum);

    // Set the Argument values
    shrLog("clSetKernelArg 0 - 3...\n\n");
    ciErrNum = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrcA);
    ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrcB);
    ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevDst);
    ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(cl_int), (void*)&iNumElements);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // --------------------------------------------------------
    // Core sequence... copy input data to GPU, compute, copy results back

    // Asynchronous write of data to GPU device
    shrLog("clEnqueueWriteBuffer (SrcA and SrcB)...\n");
    ciErrNum = clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcA, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize * 4, srcA, 0, NULL, NULL);
    ciErrNum |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcB, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize * 4, srcB, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Launch kernel
    shrLog("clEnqueueNDRangeKernel (DotProduct)...\n");
    ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Read back results and check accumulated errors
    shrLog("clEnqueueReadBuffer (Dst)...\n\n");
    ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmDevDst, CL_TRUE, 0, sizeof(cl_float) * szGlobalWorkSize, dst, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Compute and compare results for golden-host and report errors and pass/fail
    shrLog("Comparing against Host/C++ computation...\n\n");
    DotProductHost ((const float*)srcA, (const float*)srcB, (float*)Golden, iNumElements);
    shrBOOL bMatch = shrComparefet((const float*)Golden, (const float*)dst, (unsigned int)iNumElements, 0.0f, 0);

    // Cleanup and leave
    Cleanup (EXIT_SUCCESS);
}
Ejemplo n.º 26
0
bool CheckRender::compareBin2BinFloat(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold)
{
    float *src_buffer, *ref_buffer;
    FILE *src_fp = NULL, *ref_fp = NULL;

    unsigned long error_count = 0;

    #ifdef WIN32
        fopen_s(&src_fp, src_file, "rb");
    #else
        src_fp = fopen(src_file, "rb");
    #endif

    if (src_fp == NULL) {
        shrLog("compareBin2Bin <float> unable to open src_file: %s\n", src_file);   
        error_count = 1;
    }
    char *ref_file_path = shrFindFilePath(ref_file, m_ExecPath);
    if (ref_file_path == NULL) {
        shrLog("compareBin2Bin <float> unable to find <%s> in <%s>\n", ref_file, m_ExecPath);
        shrLog(">>> Check info.xml and [project//data] folder <%s> <<<\n", m_ExecPath);
        shrLog("Aborting comparison!\n");
        error_count++;

        if (src_fp) fclose(src_fp);
        if (ref_fp) fclose(ref_fp);
    } 
    else 
    {
        #ifdef WIN32
            fopen_s(&ref_fp, ref_file_path, "rb");
        #else
            ref_fp = fopen(ref_file_path, "rb");
        #endif

        if (ref_fp == NULL) {
            shrLog("compareBin2Bin <float> unable to open ref_file: %s\n", ref_file_path);   
            error_count = 1;
        }

        if (src_fp && ref_fp) {
            src_buffer = (float *)malloc(nelements*sizeof(float));
            ref_buffer = (float *)malloc(nelements*sizeof(float));

            fread(src_buffer, nelements, sizeof(float), src_fp);
            fread(ref_buffer, nelements, sizeof(float), ref_fp);

            shrLog("> compareBin2Bin <float> nelements=%d, epsilon=%.2f, threshold=%.2f\n", nelements, epsilon, threshold);
			shrLog("   src_file <%s>\n", src_file);
			shrLog("   ref_file <%s>\n", ref_file_path);

            if (!shrComparefet( ref_buffer, src_buffer, nelements, epsilon, threshold)) {
                error_count++;
            }

            fclose(src_fp);
            fclose(ref_fp);

            free(src_buffer);
            free(ref_buffer);
        } else {
            if (src_fp) fclose(src_fp);
            if (ref_fp) fclose(ref_fp);
        }
    }

    if (error_count == 0) { 
        shrLog("   Data Matches\n"); 
    } else {
        shrLog("   Data Doesn't Match!!! %d errors...\n", (unsigned int)error_count);
    }

    return (error_count == 0);  // returns true if all pixels pass
}
Ejemplo n.º 27
0
bool CheckRender::compareBin2BinUint(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold)
{
    unsigned int *src_buffer, *ref_buffer;
    FILE *src_fp = NULL, *ref_fp = NULL;

    unsigned long error_count = 0;

    #ifdef WIN32
        errno_t err;
        if ((err = fopen_s(&src_fp, src_file, "rb")) != 0)
    #else
        if ((src_fp = fopen(src_file, "rb")) == NULL)
    #endif
        {
            printf(" compareBin2Bin <unsigned int> unable to open src_file: %s\n", src_file);
            error_count++;
        }

    char *ref_file_path = shrFindFilePath(ref_file, m_ExecPath);
    if (ref_file_path == NULL) {
        printf(" compareBin2Bin <unsigned int>  unable to find <%s> in <%s>\n", ref_file, m_ExecPath);
        printf(" >>> Check info.xml and [project//data] folder <%s> <<<\n", ref_file);
        printf(" Aborting comparison!\n");
        printf("  FAILED!\n");
        error_count++;

        if (src_fp) fclose(src_fp);
        if (ref_fp) fclose(ref_fp);
    }
    else
    {
        #ifdef WIN32
            errno_t err;
            if ((err = fopen_s(&ref_fp, ref_file_path, "rb")) != 0)
        #else
            if ((ref_fp = fopen(ref_file_path, "rb")) == NULL)
        #endif
            {
                printf("compareBin2Bin <unsigned int>  unable to open ref_file: %s\n", ref_file_path);
                error_count++;
            }

        if (src_fp && ref_fp) {
            src_buffer = (unsigned int *)malloc(nelements*sizeof(unsigned int));
            ref_buffer = (unsigned int *)malloc(nelements*sizeof(unsigned int));

            if (fread(src_buffer, sizeof(unsigned int), nelements, src_fp) != nelements)
            {
                printf("compareBin2Bin <unsigned int>  unable to read from src_file: %s\n", src_file);
                error_count++;
            }
            else if (fread(ref_buffer, sizeof(unsigned int), nelements, ref_fp) != nelements)
            {
                printf("compareBin2Bin <unsigned int>  unable to read from ref_file: %s\n", ref_file_path);
                error_count++;
            }
            else
            {
                printf(" > compareBin2Bin <unsigned int> nelements=%d, epsilon=%4.2f, threshold=%4.2f\n", nelements, epsilon, threshold);
                printf("   src_file <%s>\n", src_file);
                printf("   ref_file <%s>\n", ref_file_path);
                if (!shrCompareuit( ref_buffer, src_buffer, nelements, epsilon, threshold))
                    error_count++;
            }

            fclose(src_fp);
            fclose(ref_fp);

            free(src_buffer);
            free(ref_buffer);
        }
        else
        {
            if (src_fp) fclose(src_fp);
            if (ref_fp) fclose(ref_fp);
        }
    }

    if (error_count == 0)
    {
        printf("TEST PASSED\n\n");
    }
    else
    {
        printf("TEST FAILED !!! %d errors...\n\n", (unsigned int)error_count);
    }

    return (error_count == 0);  // returns true if all pixels pass
}
// Init OpenCL
//*****************************************************************************
int initCL(int argc, const char** argv)
{
    cl_platform_id cpPlatform;
    cl_uint uiDevCount;
    cl_device_id *cdDevices;

    //Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Get the number of GPU devices available to the platform
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &uiDevCount);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create the device list
    cdDevices = new cl_device_id [uiDevCount];
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, uiDevCount, cdDevices, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Get device requested on command line, if any
    unsigned int uiDeviceUsed = 0;
    unsigned int uiEndDev = uiDevCount - 1;
    if(shrGetCmdLineArgumentu(argc, argv, "device", &uiDeviceUsed))
    {
      uiDeviceUsed = CLAMP(uiDeviceUsed, 0, uiEndDev);
      uiEndDev = uiDeviceUsed; 
    } 

    // Check if the requested device (or any of the devices if none requested) supports context sharing with OpenGL   
    if(bGLinterop && !bQATest)
    {
        bool bSharingSupported = false;
        for(unsigned int i = uiDeviceUsed; (!bSharingSupported && (i <= uiEndDev)); ++i) 
        {
            size_t extensionSize;
            ciErrNum = clGetDeviceInfo(cdDevices[i], CL_DEVICE_EXTENSIONS, 0, NULL, &extensionSize );
            oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
            if(extensionSize > 0) 
            {
                char* extensions = (char*)malloc(extensionSize);
                ciErrNum = clGetDeviceInfo(cdDevices[i], CL_DEVICE_EXTENSIONS, extensionSize, extensions, &extensionSize);
                oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
                std::string stdDevString(extensions);
                free(extensions);

                size_t szOldPos = 0;
                size_t szSpacePos = stdDevString.find(' ', szOldPos); // extensions string is space delimited
                while (szSpacePos != stdDevString.npos)
                {
                    if( strcmp(GL_SHARING_EXTENSION, stdDevString.substr(szOldPos, szSpacePos - szOldPos).c_str()) == 0 ) 
                    {
                        // Device supports context sharing with OpenGL
                        uiDeviceUsed = i;
                        bSharingSupported = true;
                        break;
                    }
                    do 
                    {
                        szOldPos = szSpacePos + 1;
                        szSpacePos = stdDevString.find(' ', szOldPos);
                    } 
                    while (szSpacePos == szOldPos);
                }
            }
        }
       
        shrLog("%s...\n\n", bSharingSupported ? "Using CL-GL Interop" : "No device found that supports CL/GL context sharing");  
        oclCheckErrorEX(bSharingSupported, true, pCleanup);

        // Define OS-specific context properties and create the OpenCL context
        #if defined (__APPLE__) || defined (MACOSX)
            CGLContextObj kCGLContext = CGLGetCurrentContext();
            CGLShareGroupObj kCGLShareGroup = CGLGetShareGroup(kCGLContext);
            cl_context_properties props[] = 
            {
                CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE, (cl_context_properties)kCGLShareGroup, 
                0 
            };
            cxGPUContext = clCreateContext(props, 0,0, NULL, NULL, &ciErrNum);
        #else
            #ifdef UNIX
                cl_context_properties props[] = 
                {
                    CL_GL_CONTEXT_KHR, (cl_context_properties)glXGetCurrentContext(), 
                    CL_GLX_DISPLAY_KHR, (cl_context_properties)glXGetCurrentDisplay(), 
                    CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform, 
                    0
                };
                cxGPUContext = clCreateContext(props, 1, &cdDevices[uiDeviceUsed], NULL, NULL, &ciErrNum);
            #else // Win32
                cl_context_properties props[] = 
                {
                    CL_GL_CONTEXT_KHR, (cl_context_properties)wglGetCurrentContext(), 
                    CL_WGL_HDC_KHR, (cl_context_properties)wglGetCurrentDC(), 
                    CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform, 
                    0
                };
                cxGPUContext = clCreateContext(props, 1, &cdDevices[uiDeviceUsed], NULL, NULL, &ciErrNum);
            #endif
        #endif
    }
    else 
    {
		// No GL interop
        cl_context_properties props[] = {CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform, 0};
        cxGPUContext = clCreateContext(props, 1, &cdDevices[uiDeviceUsed], NULL, NULL, &ciErrNum);

		bGLinterop = shrFALSE;
    }

    shrCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Log device used 
    shrLog("Device # %u, ", uiDeviceUsed);
    oclPrintDevName(LOGBOTH, cdDevices[uiDeviceUsed]);
    shrLog("\n");

    // create a command-queue
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[uiDeviceUsed], 0, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Memory Setup
	if( bGLinterop ) {
        cl_pbos[0] = clCreateFromGLBuffer(cxGPUContext, CL_MEM_READ_ONLY, pbo_source, &ciErrNum);
        cl_pbos[1] = clCreateFromGLBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, pbo_dest, &ciErrNum);
	} else {
        cl_pbos[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, 4 * image_width * image_height, NULL, &ciErrNum);
        cl_pbos[1] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, 4 * image_width * image_height, NULL, &ciErrNum);
	}
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Program Setup
    size_t program_length;
    const char* source_path = shrFindFilePath(clSourcefile, argv[0]);
    char *source = oclLoadProgSource(source_path, "", &program_length);
    oclCheckErrorEX(source != NULL, shrTRUE, pCleanup);

    // create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1,(const char **) &source, &program_length, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    free(source);

    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclPostProcessGL.ptx");
        Cleanup(EXIT_FAILURE); 
    }

    // create the kernel
    ckKernel = clCreateKernel(cpProgram, "postprocess", &ciErrNum);

    // set the args values
    ciErrNum |= clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void *) &(cl_pbos[0]));
    ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void *) &(cl_pbos[1]));
    ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(image_width), &image_width);
    ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(image_width), &image_height);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    
    return 0;
}
Ejemplo n.º 29
0
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for 
////////////////////////////////////////////////////////////////////////////////
int runTest(int argc, const char** argv)
{
    cl_platform_id cpPlatform = NULL;
    cl_uint ciDeviceCount = 0;
    cl_device_id *cdDevices = NULL;
    cl_int ciErrNum = CL_SUCCESS;

    //Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create OpenCL context!\n");
        return ciErrNum;
    }

    //Get the devices
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &ciDeviceCount);
    cdDevices = (cl_device_id *)malloc(ciDeviceCount * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, ciDeviceCount, cdDevices, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create OpenCL context!\n");
        return ciErrNum;
    }

    //Create the context
    cxGPUContext = clCreateContext(0, ciDeviceCount, cdDevices, NULL, NULL, &ciErrNum);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create OpenCL context!\n");
        return ciErrNum;
    }

    if(shrCheckCmdLineFlag(argc, (const char**)argv, "device"))
    {
        // User specified GPUs
        char* deviceList;
        char* deviceStr;
        char* next_token;
        shrGetCmdLineArgumentstr(argc, (const char**)argv, "device", &deviceList);

        #ifdef WIN32
            deviceStr = strtok_s (deviceList," ,.-", &next_token);
        #else
            deviceStr = strtok (deviceList," ,.-");
        #endif   
        ciDeviceCount = 0;
        while(deviceStr != NULL) 
        {
            // get and print the device for this queue
            cl_device_id device = oclGetDev(cxGPUContext, atoi(deviceStr));
			if( device == (cl_device_id) -1  ) {
				shrLog(" Device %s does not exist!\n", deviceStr);
				return -1;
			}
			
			shrLog("Device %s: ", deviceStr);
            oclPrintDevName(LOGBOTH, device);            
            shrLog("\n");
           
            // create command queue
            commandQueue[ciDeviceCount] = clCreateCommandQueue(cxGPUContext, device, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            if (ciErrNum != CL_SUCCESS)
            {
                shrLog(" Error %i in clCreateCommandQueue call !!!\n\n", ciErrNum);
                return ciErrNum;
            }
                
            ++ciDeviceCount;

            #ifdef WIN32
                deviceStr = strtok_s (NULL," ,.-", &next_token);
            #else            
                deviceStr = strtok (NULL," ,.-");
            #endif
        }

        free(deviceList);
    } 
    else 
    {
        // Find out how many GPU's to compute on all available GPUs
	    size_t nDeviceBytes;
	    ciErrNum |= clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &nDeviceBytes);
	    ciDeviceCount = (cl_uint)nDeviceBytes/sizeof(cl_device_id);

        if (ciErrNum != CL_SUCCESS)
        {
            shrLog(" Error %i in clGetDeviceIDs call !!!\n\n", ciErrNum);
            return ciErrNum;
        }
        else if (ciDeviceCount == 0)
        {
            shrLog(" There are no devices supporting OpenCL (return code %i)\n\n", ciErrNum);
            return -1;
        } 

        // create command-queues
        for(unsigned int i = 0; i < ciDeviceCount; ++i) 
        {
            // get and print the device for this queue
            cl_device_id device = oclGetDev(cxGPUContext, i);
            shrLog("Device %d: ", i);
            oclPrintDevName(LOGBOTH, device);            
            shrLog("\n");

            // create command queue
            commandQueue[i] = clCreateCommandQueue(cxGPUContext, device, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            if (ciErrNum != CL_SUCCESS)
            {
                shrLog(" Error %i in clCreateCommandQueue call !!!\n\n", ciErrNum);
                return ciErrNum;
            }
        }
    }

    // Optional Command-line multiplier for matrix sizes
    shrGetCmdLineArgumenti(argc, (const char**)argv, "sizemult", &iSizeMultiple); 
    iSizeMultiple = CLAMP(iSizeMultiple, 1, 10);
    uiWA = WA * iSizeMultiple;
    uiHA = HA * iSizeMultiple;
    uiWB = WB * iSizeMultiple;
    uiHB = HB * iSizeMultiple;
    uiWC = WC * iSizeMultiple;
    uiHC = HC * iSizeMultiple;
    shrLog("\nUsing Matrix Sizes: A(%u x %u), B(%u x %u), C(%u x %u)\n", 
            uiWA, uiHA, uiWB, uiHB, uiWC, uiHC);

    // allocate host memory for matrices A and B
    unsigned int size_A = uiWA * uiHA;
    unsigned int mem_size_A = sizeof(float) * size_A;
    float* h_A_data = (float*)malloc(mem_size_A);
    unsigned int size_B = uiWB * uiHB;
    unsigned int mem_size_B = sizeof(float) * size_B;
    float* h_B_data = (float*)malloc(mem_size_B);

    // initialize host memory
    srand(2006);
    shrFillArray(h_A_data, size_A);
    shrFillArray(h_B_data, size_B);

    // allocate host memory for result
    unsigned int size_C = uiWC * uiHC;
    unsigned int mem_size_C = sizeof(float) * size_C;
    float* h_C = (float*) malloc(mem_size_C);

    // create OpenCL buffer pointing to the host memory
    cl_mem h_A = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
				    mem_size_A, h_A_data, &ciErrNum);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: clCreateBuffer\n");
        return ciErrNum;
    }

    // Program Setup
    size_t program_length;
    const char* header_path = shrFindFilePath("matrixMul.h", argv[0]);
    oclCheckError(header_path != NULL, shrTRUE);
    char* header = oclLoadProgSource(header_path, "", &program_length);
    if(!header)
    {
        shrLog("Error: Failed to load the header %s!\n", header_path);
        return -1000;
    }
    const char* source_path = shrFindFilePath("matrixMul.cl", argv[0]);
    oclCheckError(source_path != NULL, shrTRUE);
    char *source = oclLoadProgSource(source_path, header, &program_length);
    if(!source)
    {
        shrLog("Error: Failed to load compute program %s!\n", source_path);
        return -2000;
    }

    // create the program
    cl_program cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&source, 
                                                    &program_length, &ciErrNum);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create program\n");
        return ciErrNum;
    }
    free(header);
    free(source);
    
    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then return error
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclMatrixMul.ptx");
        return ciErrNum;
    }

    // write out PTX if requested on the command line
    if(shrCheckCmdLineFlag(argc, argv, "dump-ptx") )
    {
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclMatrixMul.ptx");
    }

    // Create Kernel
    for(unsigned int i = 0; i < ciDeviceCount; ++i) {
        multiplicationKernel[i] = clCreateKernel(cpProgram, "matrixMul", &ciErrNum);
        if (ciErrNum != CL_SUCCESS)
        {
            shrLog("Error: Failed to create kernel\n");
            return ciErrNum;
        }
    }
        
    // Run multiplication on 1..deviceCount GPUs to compare improvement
    shrLog("\nRunning Computations on 1 - %d GPU's...\n\n", ciDeviceCount);
    for(unsigned int k = 1; k <= ciDeviceCount; ++k) 
    {
        matrixMulGPU(k, h_A, h_B_data, mem_size_B, h_C);
    }

    // compute reference solution
    shrLog("Comparing results with CPU computation... \n\n");
    float* reference = (float*) malloc(mem_size_C);
    computeGold(reference, h_A_data, h_B_data, uiHA, uiWA, uiWB);

    // check result
    shrBOOL res = shrCompareL2fe(reference, h_C, size_C, 1.0e-6f);
    if (res != shrTRUE) 
    {
        printDiff(reference, h_C, uiWC, uiHC, 100, 1.0e-5f);
    }

    // clean up OCL resources
    ciErrNum = clReleaseMemObject(h_A);
    for(unsigned int k = 0; k < ciDeviceCount; ++k) 
    {
        ciErrNum |= clReleaseKernel( multiplicationKernel[k] );
        ciErrNum |= clReleaseCommandQueue( commandQueue[k] );
    }
    ciErrNum |= clReleaseProgram(cpProgram);
    ciErrNum |= clReleaseContext(cxGPUContext);
    if(ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failure releasing OpenCL resources: %d\n", ciErrNum);
        return ciErrNum;
    }

    // clean up memory
    free(h_A_data);
    free(h_B_data);
    free(h_C);
    free(reference);
    
    return ((shrTRUE == res) ? CL_SUCCESS : -3000);
}
Ejemplo n.º 30
0
b2CLNarrowPhase::b2CLNarrowPhase()
{
#if defined(NARROWPHASE_OPENCL)
	if (b2clGlobal_OpenCLSupported)
	{
		printf("Initializing b2CLNarrowPhase...\n");
    
		int err;
    
		//load opencl programs from files
		char* narrowPhaseKernelSource = 0;
		size_t narrowPhaseKernelSourceLen = 0;

		shrLog("...loading b2CLNarrowPhase.cl\n");
	#if defined(SCAN_OPENCL)
    #ifdef linux
    	narrowPhaseKernelSource = b2clLoadProgSource(shrFindFilePath("/opt/usr/apps/com.samsung.browser/include/Box2D/Common/OpenCL/b2CLNarrowPhase.cl", NULL), "// My comment\n", &narrowPhaseKernelSourceLen);
	#elif defined (_WIN32)   
		narrowPhaseKernelSource = b2clLoadProgSource(shrFindFilePath("../../Box2D/Common/OpenCL/b2CLNarrowPhase.cl", NULL), "// My comment\n", &narrowPhaseKernelSourceLen);
	#else
		narrowPhaseKernelSource = b2clLoadProgSource(shrFindFilePath("/usr/local/include/Box2D/Common/OpenCL/b2CLNarrowPhase.cl", NULL), "// My comment\n", &narrowPhaseKernelSourceLen);
	#endif
	#else
    #ifdef linux
    	narrowPhaseKernelSource = b2clLoadProgSource(shrFindFilePath("/opt/usr/apps/com.samsung.browser/include/Box2D/Common/OpenCL/b2CLNarrowPhase_Alone.cl", NULL), "// My comment\n", &narrowPhaseKernelSourceLen);
	#elif defined (_WIN32)
		narrowPhaseKernelSource = b2clLoadProgSource(shrFindFilePath("../../Box2D/Common/OpenCL/b2CLNarrowPhase_Alone.cl", NULL), "// My comment\n", &narrowPhaseKernelSourceLen);
	#else
		narrowPhaseKernelSource = b2clLoadProgSource(shrFindFilePath("/usr/local/include/Box2D/Common/OpenCL/b2CLNarrowPhase_Alone.cl", NULL), "// My comment\n", &narrowPhaseKernelSourceLen);
	#endif
	#endif
		if(narrowPhaseKernelSource == NULL)
		{
			b2Log("Could not load program source, is path 'b2CLNarrowPhase.cl' correct?");
		}

		//create the compute program from source kernel code
		narrowPhaseProgram = clCreateProgramWithSource(b2CLDevice::instance().GetContext(), 1, (const char**)&narrowPhaseKernelSource, NULL, &err);
		if (!narrowPhaseProgram)
		{
			printf("Error: Failed to create compute program!\n");
			exit(1);
		}
    
		//build the program
		err = clBuildProgram(narrowPhaseProgram, 0, NULL, OPENCL_BUILD_PATH, NULL, NULL);
		if (err != CL_SUCCESS)
		{
			size_t len;
			char buffer[204800];
        
			printf("Error: Failed to build program executable!\n");
			clGetProgramBuildInfo(narrowPhaseProgram, b2CLDevice::instance().GetCurrentDevice(), CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
			printf("%s\n", buffer);
			exit(1);
		}
    
		//create the compute kernel
		collidePolygonsKernel = clCreateKernel(narrowPhaseProgram, "b2clCollidePolygons", &err);
		if (!collidePolygonsKernel || err != CL_SUCCESS)
		{
			printf("Error: Failed to create compute kernel!\n");
			exit(1);
		}
		collideCirclesKernel = clCreateKernel(narrowPhaseProgram, "b2clCollideCircles", &err);
		if (!collideCirclesKernel || err != CL_SUCCESS)
		{
			printf("Error: Failed to create compute kernel!\n");
			exit(1);
		}
		collidePolygonAndCircleKernel = clCreateKernel(narrowPhaseProgram, "b2clCollidePolygonAndCircle", &err);
		if (!collidePolygonAndCircleKernel || err != CL_SUCCESS)
		{
			printf("Error: Failed to create compute kernel!\n");
			exit(1);
		}
		collideEdgeAndCircleKernel = clCreateKernel(narrowPhaseProgram, "b2clCollideEdgeAndCircle", &err);
		if (!collideEdgeAndCircleKernel || err != CL_SUCCESS)
		{
			printf("Error: Failed to create compute kernel!\n");
			exit(1);
		}
		collideEdgeAndPolygonKernel = clCreateKernel(narrowPhaseProgram, "b2clCollideEdgeAndPolygon", &err);
		if (!collideEdgeAndPolygonKernel || err != CL_SUCCESS)
		{
			printf("Error: Failed to create compute kernel!\n");
			exit(1);
		}

		b2CLDevice::instance().getMaximumKernelWorkGroupSize(collidePolygonsKernel, kernel_work_group_size);
		//clGetKernelWorkGroupInfo(collidePolygonsKernel, b2CLDevice::instance().GetCurrentDevice(), CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, sizeof(size_t), &kernel_preferred_work_group_size_multiple, NULL);

		//create the compute kernel
		compactForOneContactKernel = clCreateKernel(narrowPhaseProgram, "b2clCompactForOneContact", &err);
		if (!compactForOneContactKernel || err != CL_SUCCESS)
		{
			printf("Error: Failed to create compute kernel!\n");
			exit(1);
		}

		/*old_xf_num = */old_contact_num = 0;
		xfListData = NULL;
		b2CLCommonData::instance().manifoldListData = NULL;
		globalIndicesData = pairIndicesData = NULL;
	#if !defined(BROADPHASE_OPENCL)
		b2CLCommonData::instance().manifoldListBuffers[0] = 
			b2CLCommonData::instance().manifoldListBuffers[1] =
			b2CLCommonData::instance().pairIndicesBuffer = 
	#endif
	#if defined(SCAN_OPENCL)
			b2CLCommonData::instance().manifoldBinaryBitListBuffer = 
			b2CLCommonData::instance().validContactIndicesBuffer = 
	#endif
			NULL;
		
		b2CLScan::instance(); // initializing b2CLScan
	}
#endif
	b2CLCommonData::instance().currentManifoldBuffer = 0;
	manifold_nums[0] = 0;
	manifold_nums[1] = 0;
}