Ejemplo n.º 1
0
void        CodeGen::siBeginBlock(BasicBlock* block)
{
    assert(block != nullptr);

    if (!compiler->opts.compScopeInfo)
        return;
    
    if (compiler->info.compVarScopesCount == 0)
        return;

#if FEATURE_EH_FUNCLETS
    if (siInFuncletRegion)
        return;

    if (block->bbFlags & BBF_FUNCLET_BEG)
    {
        // For now, don't report any scopes in funclets. JIT64 doesn't.
        siInFuncletRegion = true;

        JITDUMP("Scope info: found beginning of funclet region at block BB%02u; ignoring following blocks\n",
            block->bbNum);

        return;
    }
#endif // FEATURE_EH_FUNCLETS

#ifdef DEBUG
    if  (verbose)
    {
        printf("\nScope info: begin block BB%02u, IL range ", block->bbNum);
        block->dspBlockILRange();
        printf("\n");
    }
#endif // DEBUG

    unsigned beginOffs = block->bbCodeOffs;

    if (beginOffs == BAD_IL_OFFSET)
    {
        JITDUMP("Scope info: ignoring block beginning\n");
        return;
    }

    if (!compiler->opts.compDbgCode)
    {
        /* For non-debuggable code */
        
        // End scope of variables which are not live for this block

        siUpdate();

        // Check that vars which are live on entry have an open scope

        VARSET_ITER_INIT(compiler, iter, block->bbLiveIn, i);
        while (iter.NextElem(compiler, &i))
        {
            unsigned varNum = compiler->lvaTrackedToVarNum[i];
            // lvRefCnt may go down to 0 after liveness-analysis.
            // So we need to check if this tracked variable is actually used.
            if (!compiler->lvaTable[varNum].lvIsInReg() && !compiler->lvaTable[varNum].lvOnFrame)
            {
                assert(compiler->lvaTable[varNum].lvRefCnt == 0);
                continue;
            }

            siCheckVarScope(varNum, beginOffs);
        }
    }
    else
    {
        // For debuggable code, scopes can begin only on block boundaries.
        // Check if there are any scopes on the current block's start boundary.

        VarScopeDsc* varScope;

#if FEATURE_EH_FUNCLETS

        // If we find a spot where the code offset isn't what we expect, because
        // there is a gap, it might be because we've moved the funclets out of
        // line. Catch up with the enter and exit scopes of the current block.
        // Ignore the enter/exit scope changes of the missing scopes, which for
        // funclets must be matched.

        if  (siLastEndOffs != beginOffs)
        {
            assert(beginOffs > 0);
            assert(siLastEndOffs < beginOffs);

            JITDUMP("Scope info: found offset hole. lastOffs=%u, currOffs=%u\n",
                siLastEndOffs, beginOffs);

            // Skip enter scopes
            while ((varScope = compiler->compGetNextEnterScope(beginOffs - 1, true)) != NULL)
            {
                /* do nothing */
                JITDUMP("Scope info: skipping enter scope, LVnum=%u\n", varScope->vsdLVnum);
            }

            // Skip exit scopes
            while ((varScope = compiler->compGetNextExitScope(beginOffs - 1, true)) != NULL)
            {
                /* do nothing */
                JITDUMP("Scope info: skipping exit scope, LVnum=%u\n", varScope->vsdLVnum);
            }
        }

#else // FEATURE_EH_FUNCLETS

        if  (siLastEndOffs != beginOffs)
        {
            assert(siLastEndOffs < beginOffs);
            return;
        }

#endif // FEATURE_EH_FUNCLETS

        while ((varScope = compiler->compGetNextEnterScope(beginOffs)) != NULL)
        {
            // brace-matching editor workaround for following line: (
            JITDUMP("Scope info: opening scope, LVnum=%u [%03X..%03X)\n", varScope->vsdLVnum, varScope->vsdLifeBeg, varScope->vsdLifeEnd);

            siNewScope(varScope->vsdLVnum, varScope->vsdVarNum);

#ifdef DEBUG
            LclVarDsc* lclVarDsc1 = &compiler->lvaTable[varScope->vsdVarNum];
            if (VERBOSE)
            {
                printf("Scope info: >> new scope, VarNum=%u, tracked? %s, VarIndex=%u, bbLiveIn=%s ",
                       varScope->vsdVarNum,
                       lclVarDsc1->lvTracked ? "yes" : "no",
                       lclVarDsc1->lvVarIndex,
                       VarSetOps::ToString(compiler, block->bbLiveIn));
                dumpConvertedVarSet(compiler, block->bbLiveIn);
                printf("\n");
            }
            assert(!lclVarDsc1->lvTracked || VarSetOps::IsMember(compiler, block->bbLiveIn, lclVarDsc1->lvVarIndex));
#endif // DEBUG
        }
    }

#ifdef DEBUG
    if (verbose)
        siDispOpenScopes();
#endif

}
Ejemplo n.º 2
0
void CodeGen::genFloatAssign(GenTree *tree)
{
    var_types   type       = tree->TypeGet();
    GenTreePtr  op1        = tree->gtGetOp1();
    GenTreePtr  op2        = tree->gtGetOp2();

    regMaskTP   needRegOp1 = RBM_ALLINT;
    regMaskTP   addrReg    = RBM_NONE;
    bool        volat      = false;        // Is this a volatile store
    bool        unaligned  = false;        // Is this an unaligned store
    regNumber   op2reg     = REG_NA;

#ifdef DEBUGGING_SUPPORT
    unsigned    lclVarNum  = compiler->lvaCount;
    unsigned    lclILoffs  = DUMMY_INIT(0);
#endif

    noway_assert(tree->OperGet() == GT_ASG);

    // Is the target a floating-point local variable?
    //  possibly even an enregistered floating-point local variable?
    //
    switch (op1->gtOper)
    {
        unsigned        varNum;
        LclVarDsc   *   varDsc;

    case GT_LCL_FLD:
        // Check for a misalignment on a Floating Point field
        //
        if (varTypeIsFloating(op1->TypeGet()))
        {                
            if ((op1->gtLclFld.gtLclOffs % emitTypeSize(op1->TypeGet())) != 0)
            {
                unaligned = true;
            }
        }
        break;

    case GT_LCL_VAR:
        varNum = op1->gtLclVarCommon.gtLclNum;
        noway_assert(varNum < compiler->lvaCount);
        varDsc = compiler->lvaTable + varNum;

 #ifdef DEBUGGING_SUPPORT
        // For non-debuggable code, every definition of a lcl-var has
        // to be checked to see if we need to open a new scope for it.
        // Remember the local var info to call siCheckVarScope
        // AFTER code generation of the assignment.
        //
        if (compiler->opts.compScopeInfo && !compiler->opts.compDbgCode && (compiler->info.compVarScopesCount > 0))
        {
            lclVarNum = varNum;
            lclILoffs = op1->gtLclVar.gtLclILoffs;
        }
 #endif

        // Dead Store assert (with min opts we may have dead stores)
        //
        noway_assert(!varDsc->lvTracked || compiler->opts.MinOpts() ||  !(op1->gtFlags & GTF_VAR_DEATH));

        // Does this variable live in a register?
        //
        if (genMarkLclVar(op1))
        {
             noway_assert(!compiler->opts.compDbgCode);   // We don't enregister any floats with debug codegen

            // Get hold of the target register
            //
            regNumber op1Reg = op1->gtRegVar.gtRegNum;

            // the variable being assigned should be dead in op2
            assert(!varDsc->lvTracked || !VarSetOps::IsMember(compiler, genUpdateLiveSetForward(op2), varDsc->lvVarIndex));

            // Setup register preferencing, so that we try to target the op1 enregistered variable
            //
            regMaskTP bestMask = genRegMask(op1Reg);
            if (type==TYP_DOUBLE)
            {
                assert((bestMask & RBM_DBL_REGS) != 0);
                bestMask |= genRegMask(REG_NEXT(op1Reg));
            }
            RegSet::RegisterPreference pref(RBM_ALLFLOAT, bestMask);

            // Evaluate op2 into a floating point register 
            //
            genCodeForTreeFloat(op2, &pref);
    
            noway_assert(op2->gtFlags & GTF_REG_VAL);

            // Make sure the value ends up in the right place ...
            // For example if op2 is a call that returns a result 
            // in REG_F0, we will need to do a move instruction here
            //
            if ((op2->gtRegNum != op1Reg) || (op2->TypeGet() != type))
            {
                regMaskTP spillRegs = regSet.rsMaskUsed & genRegMaskFloat(op1Reg, op1->TypeGet());
                if  (spillRegs != 0)
                    regSet.rsSpillRegs(spillRegs);

                assert(type == op1->TypeGet());

                inst_RV_RV(ins_FloatConv(type, op2->TypeGet()), op1Reg, op2->gtRegNum, type);
            }
            genUpdateLife(op1);
            goto DONE_ASG;
        }
        break;

    case GT_CLS_VAR:
    case GT_IND:
        // Check for a volatile/unaligned store
        //
        assert((op1->OperGet() == GT_CLS_VAR) || (op1->OperGet() == GT_IND));   // Required for GTF_IND_VOLATILE flag to be valid
        if (op1->gtFlags & GTF_IND_VOLATILE)
            volat = true;
        if (op1->gtFlags & GTF_IND_UNALIGNED)
            unaligned = true;
        break;

    default:
        break;
    }

    // Is the value being assigned an enregistered floating-point local variable?
    //
    switch (op2->gtOper)
    {
    case GT_LCL_VAR:

        if  (!genMarkLclVar(op2))
            break;

        __fallthrough;

    case GT_REG_VAR:

        // We must honor the order evalauation in case op1 reassigns our op2 register
        //
        if  (tree->gtFlags & GTF_REVERSE_OPS)
            break;

        // Is there an implicit conversion that we have to insert?
        // Handle this case with the normal cases below.
        //
        if (type != op2->TypeGet())
            break;

        // Make the target addressable
        //
        addrReg = genMakeAddressable(op1, needRegOp1, RegSet::KEEP_REG, true);

        noway_assert(op2->gtFlags & GTF_REG_VAL);
        noway_assert(op2->IsRegVar());
        
        op2reg = op2->gtRegVar.gtRegNum; 
        genUpdateLife(op2);

        goto CHK_VOLAT_UNALIGN;
    default:
        break;
    }

    // Is the op2 (RHS) more complex than op1 (LHS)?
    //
    if  (tree->gtFlags & GTF_REVERSE_OPS)
    {
        regMaskTP bestRegs = regSet.rsNarrowHint(RBM_ALLFLOAT, ~op1->gtRsvdRegs);
        RegSet::RegisterPreference pref(RBM_ALLFLOAT, bestRegs);

        // Generate op2 (RHS) into a floating point register
        //
        genCodeForTreeFloat(op2, &pref);
        regSet.SetUsedRegFloat(op2, true);

        // Make the target addressable
        //
        addrReg = genMakeAddressable(op1,
                                     needRegOp1,
                                     RegSet::KEEP_REG, true);

        genRecoverReg(op2, RBM_ALLFLOAT, RegSet::KEEP_REG);
        noway_assert(op2->gtFlags & GTF_REG_VAL);
        regSet.SetUsedRegFloat(op2, false);
    }
    else
    {
        needRegOp1 = regSet.rsNarrowHint(needRegOp1, ~op2->gtRsvdRegs);

        // Make the target addressable
        //
        addrReg = genMakeAddressable(op1,
                                     needRegOp1,
                                     RegSet::KEEP_REG, true);
        

        // Generate the RHS into any floating point register
        genCodeForTreeFloat(op2);

    }
    noway_assert(op2->gtFlags & GTF_REG_VAL);

    op2reg = op2->gtRegNum;

    // Is there an implicit conversion that we have to insert?
    //
    if (type != op2->TypeGet())
    {
        regMaskTP bestMask = genRegMask(op2reg);
        if (type==TYP_DOUBLE)
        {
            if (bestMask & RBM_DBL_REGS)
            {
                bestMask |= genRegMask(REG_NEXT(op2reg));
            }
            else
            {
                bestMask |= genRegMask(REG_PREV(op2reg));
            }
        }
        RegSet::RegisterPreference op2Pref(RBM_ALLFLOAT, bestMask);
        op2reg = regSet.PickRegFloat(type, &op2Pref);

        inst_RV_RV(ins_FloatConv(type, op2->TypeGet()), op2reg, op2->gtRegNum, type);
    }

    // Make sure the LHS is still addressable
    //
    addrReg = genKeepAddressable(op1, addrReg);

CHK_VOLAT_UNALIGN:
        
    regSet.rsLockUsedReg(addrReg);  // Must prevent unaligned regSet.rsGrabReg from choosing an addrReg
        
    if (volat)
    {
        // Emit a memory barrier instruction before the store
        instGen_MemoryBarrier();
    }
    if (unaligned)
    {
        var_types storeType = op1->TypeGet();
        assert(storeType == TYP_DOUBLE || storeType == TYP_FLOAT);

        // Unaligned Floating-Point Stores must be done using the integer register(s)
        regNumber  intRegLo    = regSet.rsGrabReg(RBM_ALLINT);
        regNumber  intRegHi    = REG_NA;
        regMaskTP  tmpLockMask = genRegMask(intRegLo);

        if (storeType == TYP_DOUBLE)
        {
            intRegHi     = regSet.rsGrabReg(RBM_ALLINT & ~genRegMask(intRegLo));
            tmpLockMask |= genRegMask(intRegHi);
        }

        // move the FP register over to the integer register(s)
        //
        if  (storeType == TYP_DOUBLE)
        {
            getEmitter()->emitIns_R_R_R(INS_vmov_d2i, EA_8BYTE, intRegLo, intRegHi, op2reg);
            regTracker.rsTrackRegTrash(intRegHi);
        }
        else 
        {
            getEmitter()->emitIns_R_R(INS_vmov_f2i, EA_4BYTE, intRegLo, op2reg);
        }
        regTracker.rsTrackRegTrash(intRegLo);

        regSet.rsLockReg(tmpLockMask);     // Temporarily lock the intRegs 
        op1->gtType = TYP_INT;      // Temporarily change the type to TYP_INT
        
        inst_TT_RV(ins_Store(TYP_INT), op1, intRegLo);

        if (storeType == TYP_DOUBLE)
        {
            inst_TT_RV(ins_Store(TYP_INT), op1, intRegHi, 4);
        }
        
        op1->gtType = storeType;    // Change the type back to the floating point type
        regSet.rsUnlockReg(tmpLockMask);   // Unlock the intRegs
    }
    else
    {
        // Move the value into the target
        //        
        inst_TT_RV(ins_Store(op1->TypeGet()), op1, op2reg);
    }

    // Free up anything that was tied up by the LHS
    //
    regSet.rsUnlockUsedReg(addrReg);
    genDoneAddressable(op1, addrReg, RegSet::KEEP_REG);

DONE_ASG:

    genUpdateLife(tree);

#ifdef DEBUGGING_SUPPORT
    /* For non-debuggable code, every definition of a lcl-var has
     * to be checked to see if we need to open a new scope for it.
     */
    if (lclVarNum < compiler->lvaCount)
        siCheckVarScope(lclVarNum, lclILoffs);
#endif
}