Ejemplo n.º 1
0
/*
 * Read host bridge PCI config registers from Silicon Backplane ( >= rev8 ).
 *
 * It returns TRUE to indicate that access to the host bridge's pci config
 * from SI is ok, and values in 'addr' and 'val' are valid.
 *
 * It can only read registers at multiple of 4-bytes. Callers must pick up
 * needed bytes from 'val' based on 'off' value. Value in 'addr' reflects
 * the register address where value in 'val' is read.
 */
static bool
si_pcihb_read_config(si_t *sih, uint bus, uint dev, uint func, uint off, uint32 **addr,
    uint32 *val)
{
    sbpciregs_t *pci;
    osl_t *osh;
    uint coreidx;
    bool ret = FALSE;
    uint8 port;

    /* sanity check */
    ASSERT(PCIE_IS_BUS_HOST_BRIDGE(bus));
    ASSERT(dev == pci_hbslot);

    /* we support only two functions on device 0 */
    if (func > 1)
        return FALSE;

    /* Convert logical bus to physical port/bus for following processing */
    port = PCIE_GET_PORT_BY_BUS(bus);

    osh = si_osh(sih);

    /* read pci config when core rev >= 8 */
    coreidx = si_coreidx(sih);
    pci = (sbpciregs_t *)si_setcore(sih, PCI_CORE_ID, port);
    if (pci) {
        if (si_corerev(sih) >= PCI_HBSBCFG_REV) {
            *addr = (uint32 *)&pci->pcicfg[func][off >> 2];
            *val = R_REG(osh, *addr);
            ret = TRUE;
        }
    } else {
Ejemplo n.º 2
0
/*
 * Read host bridge PCI config registers from Silicon Backplane ( >= rev8 ).
 *
 * It returns TRUE to indicate that access to the host bridge's pci config
 * from SI is ok, and values in 'addr' and 'val' are valid.
 *
 * It can only read registers at multiple of 4-bytes. Callers must pick up
 * needed bytes from 'val' based on 'off' value. Value in 'addr' reflects
 * the register address where value in 'val' is read.
 */
static bool
si_pcihb_read_config(si_t *sih, uint coreunit, uint bus, uint dev, uint func,
	uint off, uint32 **addr, uint32 *val)
{
	sbpciregs_t *pci;
	osl_t *osh;
	uint coreidx;
	bool ret = FALSE;

	/* sanity check */
	ASSERT(hndpci_is_hostbridge(bus, dev));

	/* we support only two functions on device 0 */
	if (func > 1)
		return FALSE;

	osh = si_osh(sih);

	/* read pci config when core rev >= 8 */
	coreidx = si_coreidx(sih);
	pci = (sbpciregs_t *)si_setcore(sih, PCI_CORE_ID, coreunit);
	if (pci) {
		if (si_corerev(sih) >= PCI_HBSBCFG_REV) {
			*addr = (uint32 *)&pci->pcicfg[func][off >> 2];
			*val = R_REG(osh, *addr);
			ret = TRUE;
		}
	} else {
Ejemplo n.º 3
0
/* Return the RAM size of the SOCRAM core */
uint32
si_socram_size(si_t *sih)
{
	si_info_t *sii;
	uint origidx;
	uint intr_val = 0;

	sbsocramregs_t *regs;
	bool wasup;
	uint corerev;
	uint32 coreinfo;
	uint memsize = 0;

	sii = SI_INFO(sih);

	/* Block ints and save current core */
	INTR_OFF(sii, intr_val);
	origidx = si_coreidx(sih);

	/* Switch to SOCRAM core */
	if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
		goto done;

	/* Get info for determining size */
	if (!(wasup = si_iscoreup(sih)))
		si_core_reset(sih, 0, 0);
	corerev = si_corerev(sih);
	coreinfo = R_REG(sii->osh, &regs->coreinfo);

	/* Calculate size from coreinfo based on rev */
	if (corerev == 0)
		memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
	else if (corerev < 3) {
		memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
		memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
	} else {
Ejemplo n.º 4
0
int
si_bist_d11(si_t *sih, uint32 *biststatus1, uint32 *biststatus2)
{
	si_info_t *sii;
	uint origidx;
    uint intr_val = 0;
    void *regs;
    int error = 0;
    bool wasup;
    uint32 offset = SBCONFIGOFF + SBTMSTATELOW;
    uint32 max_res_mask;
    uint32 pmu_ctrl;

    *biststatus1 = 0;
    *biststatus2 = 0;

    SI_ERROR(("doing the bist on D11\n"));

    sii = SI_INFO(sih);

    if (CHIPTYPE(sih->socitype) != SOCI_SB) {
     return 0;
    }

    /* Block ints and save current core */
    INTR_OFF(sii, intr_val);
    origidx = si_coreidx(sih);

    /* Switch to D11 core */
    if (!(regs = si_setcore(sih, D11_CORE_ID, 0)))
	    goto done;

    /* Get info for determining size */
    /* coming out of reset device shoudl have clk enabled, bw set, etc */
    if (!(wasup = si_iscoreup(sih)))
        si_core_reset(sih, 0x4F, 0x4F);

    max_res_mask = si_corereg(sih, 0, OFFSETOF(chipcregs_t, max_res_mask), 0, 0);
    si_corereg(sih, 0, OFFSETOF(chipcregs_t, max_res_mask), ~0, 0x3fffff);

    if (si_corerev(&sii->pub) == 20) {
        uint32 phy_reset_val;
        uint32 bist_test_val, bist_status;

        /* XXX: enable the phy PLL */
        pmu_ctrl = si_corereg(sih, si_coreidx(&sii->pub), 0x1e8, 0, 0);
        pmu_ctrl |= 0x000010000;
        si_corereg(sih, si_coreidx(&sii->pub), 0x1e8, ~0, pmu_ctrl);
        SPINWAIT(((si_corereg(sih, si_coreidx(&sii->pub), 0x1e8, 0, 0) & 0x01000000) == 0),
                1000000);
        pmu_ctrl = si_corereg(sih, si_coreidx(&sii->pub), 0x1e8, 0, 0);

        /* take the phy out of reset */
        phy_reset_val = si_corereg(sih, si_coreidx(&sii->pub), offset, 0, 0);
        phy_reset_val &= ~(0x0008 << SBTML_SICF_SHIFT);
        si_corereg(sih, si_coreidx(&sii->pub), offset, ~0, phy_reset_val);
        phy_reset_val = si_corereg(sih, si_coreidx(&sii->pub), offset, 0, 0);

        /* enable bist first */
        bist_test_val = si_corereg(sih, si_coreidx(&sii->pub), offset, 0, 0);
        bist_test_val |= (SICF_BIST_EN << 16);
        si_corereg(sih, si_coreidx(&sii->pub), offset, ~0, bist_test_val);
        SPINWAIT(((si_core_sflags(sih, 0, 0) & SISF_BIST_DONE) == 0), 1000000);
        bist_status = si_core_sflags(sih, 0, 0);
        SI_ERROR(("status are 0x%08x\n", bist_status));
        if (bist_status & SISF_BIST_DONE) {
            if (bist_status & SISF_BIST_ERROR) {
                error = 1;
                *biststatus1 = si_corereg(sih,  si_coreidx(&sii->pub), 12, 0, 0);
                *biststatus2 = si_corereg(sih,  si_coreidx(&sii->pub), 16, 0, 0);
            }
        }
        /* stop the phy pll */
        pmu_ctrl = si_corereg(sih, si_coreidx(&sii->pub), 0x1e8, 0, 0);
        pmu_ctrl &= ~0x10000;
        si_corereg(sih, si_coreidx(&sii->pub), 0x1e8, ~0, pmu_ctrl);
    }

    /* remove the resource mask */
    si_corereg(sih, 0, OFFSETOF(chipcregs_t, max_res_mask), ~0, max_res_mask);

    /* Return to previous state and core */
    if (!wasup)
        si_core_disable(sih, 0);

    /* Return to previous state and core */
    si_setcoreidx(sih, origidx);
done:
    INTR_RESTORE(sii, intr_val);
    return error;
}
Ejemplo n.º 5
0
static bool
si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
	uint *origidx, void *regs)
{
	bool pci, pcie;
	uint i;
	uint pciidx, pcieidx, pcirev, pcierev;

	cc = si_setcoreidx(&sii->pub, SI_CC_IDX);
	ASSERT((uintptr)cc);

	/* get chipcommon rev */
	sii->pub.ccrev = (int)si_corerev(&sii->pub);

	/* get chipcommon chipstatus */
	if (sii->pub.ccrev >= 11)
		sii->pub.chipst = R_REG(sii->osh, &cc->chipstatus);

	/* get chipcommon capabilites */
	sii->pub.cccaps = R_REG(sii->osh, &cc->capabilities);

	/* get pmu rev and caps */
	if (sii->pub.cccaps & CC_CAP_PMU) {
		sii->pub.pmucaps = R_REG(sii->osh, &cc->pmucapabilities);
		sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK;
	}

	SI_MSG(("Chipc: rev %d, caps 0x%x, chipst 0x%x pmurev %d, pmucaps 0x%x\n",
		sii->pub.ccrev, sii->pub.cccaps, sii->pub.chipst, sii->pub.pmurev,
		sii->pub.pmucaps));

	/* figure out bus/orignal core idx */
	sii->pub.buscoretype = NODEV_CORE_ID;
	sii->pub.buscorerev = NOREV;
	sii->pub.buscoreidx = BADIDX;

	pci = pcie = FALSE;
	pcirev = pcierev = NOREV;
	pciidx = pcieidx = BADIDX;

	for (i = 0; i < sii->numcores; i++) {
		uint cid, crev;

		si_setcoreidx(&sii->pub, i);
		cid = si_coreid(&sii->pub);
		crev = si_corerev(&sii->pub);

		/* Display cores found */
		SI_MSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n",
		        i, cid, crev, sii->common_info->coresba[i], sii->common_info->regs[i]));

		if (BUSTYPE(bustype) == PCI_BUS) {
			if (cid == PCI_CORE_ID) {
				pciidx = i;
				pcirev = crev;
				pci = TRUE;
			} else if (cid == PCIE_CORE_ID) {
				pcieidx = i;
				pcierev = crev;
				pcie = TRUE;
			}
		} else if ((BUSTYPE(bustype) == PCMCIA_BUS) &&
		           (cid == PCMCIA_CORE_ID)) {
			sii->pub.buscorerev = crev;
			sii->pub.buscoretype = cid;
			sii->pub.buscoreidx = i;
		}
		else if (((BUSTYPE(bustype) == SDIO_BUS) ||
		          (BUSTYPE(bustype) == SPI_BUS)) &&
		         ((cid == PCMCIA_CORE_ID) ||
		          (cid == SDIOD_CORE_ID))) {
			sii->pub.buscorerev = crev;
			sii->pub.buscoretype = cid;
			sii->pub.buscoreidx = i;
		}

		/* find the core idx before entering this func. */
		if ((savewin && (savewin == sii->common_info->coresba[i])) ||
		    (regs == sii->common_info->regs[i]))
			*origidx = i;
	}


	SI_MSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx, sii->pub.buscoretype,
		sii->pub.buscorerev));

	if (BUSTYPE(sii->pub.bustype) == SI_BUS && (CHIPID(sii->pub.chip) == BCM4712_CHIP_ID) &&
	    (sii->pub.chippkg != BCM4712LARGE_PKG_ID) && (sii->pub.chiprev <= 3))
		OR_REG(sii->osh, &cc->slow_clk_ctl, SCC_SS_XTAL);


	/* Make sure any on-chip ARM is off (in case strapping is wrong), or downloaded code was
	 * already running.
	 */
	if ((BUSTYPE(bustype) == SDIO_BUS) || (BUSTYPE(bustype) == SPI_BUS)) {
		if (si_setcore(&sii->pub, ARM7S_CORE_ID, 0) ||
		    si_setcore(&sii->pub, ARMCM3_CORE_ID, 0))
			si_core_disable(&sii->pub, 0);
	}

	/* return to the original core */
	si_setcoreidx(&sii->pub, *origidx);

	return TRUE;
}
Ejemplo n.º 6
0
static bool
si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
	uint *origidx, void *regs)
{
	bool pci, pcie, pcie_gen2 = FALSE;
	uint i;
	uint pciidx, pcieidx, pcirev, pcierev;

	cc = si_setcoreidx(&sii->pub, SI_CC_IDX);
	ASSERT((uintptr)cc);

	/* get chipcommon rev */
	sii->pub.ccrev = (int)si_corerev(&sii->pub);

	/* get chipcommon chipstatus */
	if (sii->pub.ccrev >= 11)
		sii->pub.chipst = R_REG(sii->osh, &cc->chipstatus);

	/* get chipcommon capabilites */
	sii->pub.cccaps = R_REG(sii->osh, &cc->capabilities);
	/* get chipcommon extended capabilities */

	if (sii->pub.ccrev >= 35)
		sii->pub.cccaps_ext = R_REG(sii->osh, &cc->capabilities_ext);

	/* get pmu rev and caps */
	if (sii->pub.cccaps & CC_CAP_PMU) {
		sii->pub.pmucaps = R_REG(sii->osh, &cc->pmucapabilities);
		sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK;
	}

	SI_MSG(("Chipc: rev %d, caps 0x%x, chipst 0x%x pmurev %d, pmucaps 0x%x\n",
		sii->pub.ccrev, sii->pub.cccaps, sii->pub.chipst, sii->pub.pmurev,
		sii->pub.pmucaps));

	/* figure out bus/orignal core idx */
	sii->pub.buscoretype = NODEV_CORE_ID;
	sii->pub.buscorerev = (uint)NOREV;
	sii->pub.buscoreidx = BADIDX;

	pci = pcie = FALSE;
	pcirev = pcierev = (uint)NOREV;
	pciidx = pcieidx = BADIDX;

	for (i = 0; i < sii->numcores; i++) {
		uint cid, crev;

		si_setcoreidx(&sii->pub, i);
		cid = si_coreid(&sii->pub);
		crev = si_corerev(&sii->pub);

		/* Display cores found */
		SI_VMSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n",
		        i, cid, crev, sii->coresba[i], sii->regs[i]));

		if (BUSTYPE(bustype) == PCI_BUS) {
			if (cid == PCI_CORE_ID) {
				pciidx = i;
				pcirev = crev;
				pci = TRUE;
			} else if ((cid == PCIE_CORE_ID) || (cid == PCIE2_CORE_ID)) {
				pcieidx = i;
				pcierev = crev;
				pcie = TRUE;
				if (cid == PCIE2_CORE_ID)
					pcie_gen2 = TRUE;
			}
		} else if ((BUSTYPE(bustype) == PCMCIA_BUS) &&
		           (cid == PCMCIA_CORE_ID)) {
			sii->pub.buscorerev = crev;
			sii->pub.buscoretype = cid;
			sii->pub.buscoreidx = i;
		}
		else if (((BUSTYPE(bustype) == SDIO_BUS) ||
		          (BUSTYPE(bustype) == SPI_BUS)) &&
		         ((cid == PCMCIA_CORE_ID) ||
		          (cid == SDIOD_CORE_ID))) {
			sii->pub.buscorerev = crev;
			sii->pub.buscoretype = cid;
			sii->pub.buscoreidx = i;
		}

		/* find the core idx before entering this func. */
		if ((savewin && (savewin == sii->coresba[i])) ||
		    (regs == sii->regs[i]))
			*origidx = i;
	}

	if (pci) {
		sii->pub.buscoretype = PCI_CORE_ID;
		sii->pub.buscorerev = pcirev;
		sii->pub.buscoreidx = pciidx;
	} else if (pcie) {
		if (pcie_gen2)
			sii->pub.buscoretype = PCIE2_C
Ejemplo n.º 7
0
struct hnddma_pub *dma_attach(struct osl_info *osh, char *name, si_t *sih,
		     void *dmaregstx, void *dmaregsrx, uint ntxd,
		     uint nrxd, uint rxbufsize, int rxextheadroom,
		     uint nrxpost, uint rxoffset, uint *msg_level)
{
	dma_info_t *di;
	uint size;

	/* allocate private info structure */
	di = kzalloc(sizeof(dma_info_t), GFP_ATOMIC);
	if (di == NULL) {
#ifdef BCMDBG
		printf("dma_attach: out of memory\n");
#endif
		return NULL;
	}

	di->msg_level = msg_level ? msg_level : &dma_msg_level;

	/* old chips w/o sb is no longer supported */
	ASSERT(sih != NULL);

	di->dma64 = ((si_core_sflags(sih, 0, 0) & SISF_DMA64) == SISF_DMA64);

	/* check arguments */
	ASSERT(ISPOWEROF2(ntxd));
	ASSERT(ISPOWEROF2(nrxd));

	if (nrxd == 0)
		ASSERT(dmaregsrx == NULL);
	if (ntxd == 0)
		ASSERT(dmaregstx == NULL);

	/* init dma reg pointer */
	ASSERT(ntxd <= D64MAXDD);
	ASSERT(nrxd <= D64MAXDD);
	di->d64txregs = (dma64regs_t *) dmaregstx;
	di->d64rxregs = (dma64regs_t *) dmaregsrx;
	di->hnddma.di_fn = (const di_fcn_t *)&dma64proc;

	/* Default flags (which can be changed by the driver calling dma_ctrlflags
	 * before enable): For backwards compatibility both Rx Overflow Continue
	 * and Parity are DISABLED.
	 * supports it.
	 */
	di->hnddma.di_fn->ctrlflags(&di->hnddma, DMA_CTRL_ROC | DMA_CTRL_PEN,
				    0);

	DMA_TRACE(("%s: dma_attach: %s osh %p flags 0x%x ntxd %d nrxd %d "
		   "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
		   "dmaregstx %p dmaregsrx %p\n", name, "DMA64", osh,
		   di->hnddma.dmactrlflags, ntxd, nrxd, rxbufsize,
		   rxextheadroom, nrxpost, rxoffset, dmaregstx, dmaregsrx));

	/* make a private copy of our callers name */
	strncpy(di->name, name, MAXNAMEL);
	di->name[MAXNAMEL - 1] = '\0';

	di->osh = osh;
	di->sih = sih;

	/* save tunables */
	di->ntxd = (u16) ntxd;
	di->nrxd = (u16) nrxd;

	/* the actual dma size doesn't include the extra headroom */
	di->rxextrahdrroom =
	    (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
	if (rxbufsize > BCMEXTRAHDROOM)
		di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
	else
		di->rxbufsize = (u16) rxbufsize;

	di->nrxpost = (u16) nrxpost;
	di->rxoffset = (u8) rxoffset;

	/*
	 * figure out the DMA physical address offset for dd and data
	 *     PCI/PCIE: they map silicon backplace address to zero based memory, need offset
	 *     Other bus: use zero
	 *     SI_BUS BIGENDIAN kludge: use sdram swapped region for data buffer, not descriptor
	 */
	di->ddoffsetlow = 0;
	di->dataoffsetlow = 0;
	/* for pci bus, add offset */
	if (sih->bustype == PCI_BUS) {
		/* pcie with DMA64 */
		di->ddoffsetlow = 0;
		di->ddoffsethigh = SI_PCIE_DMA_H32;
		di->dataoffsetlow = di->ddoffsetlow;
		di->dataoffsethigh = di->ddoffsethigh;
	}
#if defined(__mips__) && defined(IL_BIGENDIAN)
	di->dataoffsetlow = di->dataoffsetlow + SI_SDRAM_SWAPPED;
#endif				/* defined(__mips__) && defined(IL_BIGENDIAN) */
	/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
	if ((si_coreid(sih) == SDIOD_CORE_ID)
	    && ((si_corerev(sih) > 0) && (si_corerev(sih) <= 2)))
		di->addrext = 0;
	else if ((si_coreid(sih) == I2S_CORE_ID) &&
		 ((si_corerev(sih) == 0) || (si_corerev(sih) == 1)))
		di->addrext = 0;
	else
		di->addrext = _dma_isaddrext(di);

	/* does the descriptors need to be aligned and if yes, on 4K/8K or not */
	di->aligndesc_4k = _dma_descriptor_align(di);
	if (di->aligndesc_4k) {
		di->dmadesc_align = D64RINGALIGN_BITS;
		if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2)) {
			/* for smaller dd table, HW relax alignment reqmnt */
			di->dmadesc_align = D64RINGALIGN_BITS - 1;
		}
	} else
		di->dmadesc_align = 4;	/* 16 byte alignment */

	DMA_NONE(("DMA descriptor align_needed %d, align %d\n",
		  di->aligndesc_4k, di->dmadesc_align));

	/* allocate tx packet pointer vector */
	if (ntxd) {
		size = ntxd * sizeof(void *);
		di->txp = kzalloc(size, GFP_ATOMIC);
		if (di->txp == NULL) {
			DMA_ERROR(("%s: dma_attach: out of tx memory\n", di->name));
			goto fail;
		}
	}

	/* allocate rx packet pointer vector */
	if (nrxd) {
		size = nrxd * sizeof(void *);
		di->rxp = kzalloc(size, GFP_ATOMIC);
		if (di->rxp == NULL) {
			DMA_ERROR(("%s: dma_attach: out of rx memory\n", di->name));
			goto fail;
		}
	}

	/* allocate transmit descriptor ring, only need ntxd descriptors but it must be aligned */
	if (ntxd) {
		if (!_dma_alloc(di, DMA_TX))
			goto fail;
	}

	/* allocate receive descriptor ring, only need nrxd descriptors but it must be aligned */
	if (nrxd) {
		if (!_dma_alloc(di, DMA_RX))
			goto fail;
	}

	if ((di->ddoffsetlow != 0) && !di->addrext) {
		if (PHYSADDRLO(di->txdpa) > SI_PCI_DMA_SZ) {
			DMA_ERROR(("%s: dma_attach: txdpa 0x%x: addrext not supported\n", di->name, (u32) PHYSADDRLO(di->txdpa)));
			goto fail;
		}
		if (PHYSADDRLO(di->rxdpa) > SI_PCI_DMA_SZ) {
			DMA_ERROR(("%s: dma_attach: rxdpa 0x%x: addrext not supported\n", di->name, (u32) PHYSADDRLO(di->rxdpa)));
			goto fail;
		}
	}

	DMA_TRACE(("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh " "0x%x addrext %d\n", di->ddoffsetlow, di->ddoffsethigh, di->dataoffsetlow, di->dataoffsethigh, di->addrext));

	/* allocate DMA mapping vectors */
	if (DMASGLIST_ENAB) {
		if (ntxd) {
			size = ntxd * sizeof(hnddma_seg_map_t);
			di->txp_dmah = kzalloc(size, GFP_ATOMIC);
			if (di->txp_dmah == NULL)
				goto fail;
		}

		if (nrxd) {
			size = nrxd * sizeof(hnddma_seg_map_t);
			di->rxp_dmah = kzalloc(size, GFP_ATOMIC);
			if (di->rxp_dmah == NULL)
				goto fail;
		}
	}

	return (struct hnddma_pub *) di;

 fail:
	_dma_detach(di);
	return NULL;
}
Ejemplo n.º 8
0
static void *
chipattach(etc_info_t *etc, void *osh, void *regsva)
{
	struct bcm4xxx *ch;
	bcmenetregs_t *regs;
	char name[16];
	char *var;
	uint boardflags, boardtype;

	ET_TRACE(("et%d: chipattach: regsva 0x%lx\n", etc->unit, (ulong)regsva));

	if ((ch = (struct bcm4xxx *)MALLOC(osh, sizeof(struct bcm4xxx))) == NULL) {
		ET_ERROR(("et%d: chipattach: out of memory, malloced %d bytes\n", etc->unit,
		          MALLOCED(osh)));
		return (NULL);
	}
	bzero((char *)ch, sizeof(struct bcm4xxx));

	ch->etc = etc;
	ch->et = etc->et;
	ch->osh = osh;

	/* store the pointer to the sw mib */
	etc->mib = (void *)&ch->mib;

	/* get si handle */
	if ((ch->sih = si_attach(etc->deviceid, ch->osh, regsva, PCI_BUS, NULL, &ch->vars,
	                         &ch->vars_size)) == NULL) {
		ET_ERROR(("et%d: chipattach: si_attach error\n", etc->unit));
		goto fail;
	}

	/* We used to have an assert here like:
	 *	si_coreid(ch->sih) == ENET_CORE_ID
	 * but srom-less systems and simulators don't have a way to
	 * provide a default bar0window so we were relying on nvram
	 * variables. At some point we decided that we could do away
	 * with that since the wireless driver was simply doing a
	 * setcore in attach. So we need to do the same here for
	 * the ethernet.
	 */
	if ((regs = (bcmenetregs_t *)si_setcore(ch->sih, ENET_CORE_ID, etc->unit)) == NULL) {
		ET_ERROR(("et%d: chipattach: Could not setcore to the ENET core\n", etc->unit));
		goto fail;
	}

	ch->regs = regs;
	etc->chip = ch->sih->chip;
	etc->chiprev = ch->sih->chiprev;
	etc->coreid = si_coreid(ch->sih);
	etc->corerev = si_corerev(ch->sih);
	etc->nicmode = !(ch->sih->bustype == SI_BUS);
	etc->coreunit = si_coreunit(ch->sih);
	etc->boardflags = getintvar(ch->vars, "boardflags");

	etc->hwrxoff = HWRXOFF;

	boardflags = etc->boardflags;
	boardtype = ch->sih->boardtype;

	/* Backplane clock ticks per microsecs: used by gptimer, intrecvlazy */
	etc->bp_ticks_usec = si_clock(ch->sih) / 1000000;

	/* get our local ether addr */
	sprintf(name, "et%dmacaddr", etc->coreunit);
	var = getvar(ch->vars, name);
	if (var == NULL) {
		ET_ERROR(("et%d: chipattach: NVRAM_GET(%s) not found\n", etc->unit, name));
		goto fail;
	}
	bcm_ether_atoe(var, &etc->perm_etheraddr);

	if (ETHER_ISNULLADDR(&etc->perm_etheraddr)) {
		ET_ERROR(("et%d: chipattach: invalid format: %s=%s\n", etc->unit, name, var));
		goto fail;
	}
	bcopy((char *)&etc->perm_etheraddr, (char *)&etc->cur_etheraddr, ETHER_ADDR_LEN);

	/*
	 * Too much can go wrong in scanning MDC/MDIO playing "whos my phy?" .
	 * Instead, explicitly require the environment var "et<coreunit>phyaddr=<val>".
	 */

	/* get our phyaddr value */
	sprintf(name, "et%dphyaddr", etc->coreunit);
	var = getvar(ch->vars, name);
	if (var == NULL) {
		ET_ERROR(("et%d: chipattach: NVRAM_GET(%s) not found\n", etc->unit, name));
		goto fail;
	}
	etc->phyaddr = bcm_atoi(var) & EPHY_MASK;

	/* nvram says no phy is present */
	if (etc->phyaddr == EPHY_NONE) {
		ET_ERROR(("et%d: chipattach: phy not present\n", etc->unit));
		goto fail;
	}

	/* get our mdc/mdio port number */
	sprintf(name, "et%dmdcport", etc->coreunit);
	var = getvar(ch->vars, name);
	if (var == NULL) {
		ET_ERROR(("et%d: chipattach: NVRAM_GET(%s) not found\n", etc->unit, name));
		goto fail;
	}
	etc->mdcport = bcm_atoi(var);

	/* configure pci core */
	si_pci_setup(ch->sih, (1 << si_coreidx(ch->sih)));

	/* reset the enet core */
	chipreset(ch);

	/* dma attach */
	sprintf(name, "et%d", etc->coreunit);
	if ((ch->di = dma_attach(osh, name, ch->sih,
	                         (void *)&regs->dmaregs.xmt, (void *)&regs->dmaregs.rcv,
	                         NTXD, NRXD, RXBUFSZ, -1, NRXBUFPOST, HWRXOFF,
	                         &et_msg_level)) == NULL) {
		ET_ERROR(("et%d: chipattach: dma_attach failed\n", etc->unit));
		goto fail;
	}
	etc->txavail[TX_Q0] = (uint *)&ch->di->txavail;

	/* set default sofware intmask */
	ch->intmask = DEF_INTMASK;

	/*
	 * For the 5222 dual phy shared mdio contortion, our phy is
	 * on someone elses mdio pins.  This other enet enet
	 * may not yet be attached so we must defer the et_phyfind().
	 */
	/* if local phy: reset it once now */
	if (etc->mdcport == etc->coreunit)
		chipphyreset(ch, etc->phyaddr);

#ifdef ETROBO
	/*
	 * Broadcom Robo ethernet switch.
	 */
	if ((boardflags & BFL_ENETROBO) &&
	    (etc->phyaddr == EPHY_NOREG)) {
		/* Attach to the switch */
		if (!(etc->robo = bcm_robo_attach(ch->sih, ch, ch->vars,
		                                  (miird_f)bcm47xx_et_chops.phyrd,
		                                  (miiwr_f)bcm47xx_et_chops.phywr))) {
			ET_ERROR(("et%d: chipattach: robo_attach failed\n", etc->unit));
			goto fail;
		}
		/* Enable the switch and set it to a known good state */
		if (bcm_robo_enable_device(etc->robo)) {
			ET_ERROR(("et%d: chipattach: robo_enable_device failed\n", etc->unit));
			goto fail;
		}
		/* Configure the switch to do VLAN */
		if ((boardflags & BFL_ENETVLAN) &&
		    bcm_robo_config_vlan(etc->robo, etc->perm_etheraddr.octet)) {
			ET_ERROR(("et%d: chipattach: robo_config_vlan failed\n", etc->unit));
			goto fail;
		}
		/* Enable switching/forwarding */
		if (bcm_robo_enable_switch(etc->robo)) {
			ET_ERROR(("et%d: chipattach: robo_enable_switch failed\n", etc->unit));
			goto fail;
		}
	}
#endif /* ETROBO */

#ifdef ETADM
	/*
	 * ADMtek ethernet switch.
	 */
	if (boardflags & BFL_ENETADM) {
		/* Attach to the device */
		if (!(ch->adm = adm_attach(ch->sih, ch->vars))) {
			ET_ERROR(("et%d: chipattach: adm_attach failed\n", etc->unit));
			goto fail;
		}
		/* Enable the external switch and set it to a known good state */
		if (adm_enable_device(ch->adm)) {
			ET_ERROR(("et%d: chipattach: adm_enable_device failed\n", etc->unit));
			goto fail;
		}
		/* Configure the switch */
		if ((boardflags & BFL_ENETVLAN) && adm_config_vlan(ch->adm)) {
			ET_ERROR(("et%d: chipattach: adm_config_vlan failed\n", etc->unit));
			goto fail;
		}
	}
#endif /* ETADM */

	return ((void *)ch);

fail:
	chipdetach(ch);
	return (NULL);
}