Ejemplo n.º 1
0
/* Subroutine */ int slaqr0_(logical *wantt, logical *wantz, integer *n, 
	integer *ilo, integer *ihi, real *h__, integer *ldh, real *wr, real *
	wi, integer *iloz, integer *ihiz, real *z__, integer *ldz, real *work, 
	 integer *lwork, integer *info)
{
    /* System generated locals */
    integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1, r__2, r__3, r__4;

    /* Local variables */
    integer i__, k;
    real aa, bb, cc, dd;
    integer ld;
    real cs;
    integer nh, it, ks, kt;
    real sn;
    integer ku, kv, ls, ns;
    real ss;
    integer nw, inf, kdu, nho, nve, kwh, nsr, nwr, kwv, ndec, ndfl, kbot, 
	    nmin;
    real swap;
    integer ktop;
    real zdum[1]	/* was [1][1] */;
    integer kacc22, itmax, nsmax, nwmax, kwtop;
    extern /* Subroutine */ int slanv2_(real *, real *, real *, real *, real *
, real *, real *, real *, real *, real *), slaqr3_(logical *, 
	    logical *, integer *, integer *, integer *, integer *, real *, 
	    integer *, integer *, integer *, real *, integer *, integer *, 
	    integer *, real *, real *, real *, integer *, integer *, real *, 
	    integer *, integer *, real *, integer *, real *, integer *), 
	    slaqr4_(logical *, logical *, integer *, integer *, integer *, 
	    real *, integer *, real *, real *, integer *, integer *, real *, 
	    integer *, real *, integer *, integer *), slaqr5_(logical *, 
	    logical *, integer *, integer *, integer *, integer *, integer *, 
	    real *, real *, real *, integer *, integer *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *, integer *, real *
, integer *, integer *, real *, integer *);
    integer nibble;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    char jbcmpz[2];
    extern /* Subroutine */ int slahqr_(logical *, logical *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
, integer *, real *, integer *, integer *), slacpy_(char *, 
	    integer *, integer *, real *, integer *, real *, integer *);
    integer nwupbd;
    logical sorted;
    integer lwkopt;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*     Purpose */
/*     ======= */

/*     SLAQR0 computes the eigenvalues of a Hessenberg matrix H */
/*     and, optionally, the matrices T and Z from the Schur decomposition */
/*     H = Z T Z**T, where T is an upper quasi-triangular matrix (the */
/*     Schur form), and Z is the orthogonal matrix of Schur vectors. */

/*     Optionally Z may be postmultiplied into an input orthogonal */
/*     matrix Q so that this routine can give the Schur factorization */
/*     of a matrix A which has been reduced to the Hessenberg form H */
/*     by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T. */

/*     Arguments */
/*     ========= */

/*     WANTT   (input) LOGICAL */
/*          = .TRUE. : the full Schur form T is required; */
/*          = .FALSE.: only eigenvalues are required. */

/*     WANTZ   (input) LOGICAL */
/*          = .TRUE. : the matrix of Schur vectors Z is required; */
/*          = .FALSE.: Schur vectors are not required. */

/*     N     (input) INTEGER */
/*           The order of the matrix H.  N .GE. 0. */

/*     ILO   (input) INTEGER */
/*     IHI   (input) INTEGER */
/*           It is assumed that H is already upper triangular in rows */
/*           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, */
/*           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
/*           previous call to SGEBAL, and then passed to SGEHRD when the */
/*           matrix output by SGEBAL is reduced to Hessenberg form. */
/*           Otherwise, ILO and IHI should be set to 1 and N, */
/*           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. */
/*           If N = 0, then ILO = 1 and IHI = 0. */

/*     H     (input/output) REAL array, dimension (LDH,N) */
/*           On entry, the upper Hessenberg matrix H. */
/*           On exit, if INFO = 0 and WANTT is .TRUE., then H contains */
/*           the upper quasi-triangular matrix T from the Schur */
/*           decomposition (the Schur form); 2-by-2 diagonal blocks */
/*           (corresponding to complex conjugate pairs of eigenvalues) */
/*           are returned in standard form, with H(i,i) = H(i+1,i+1) */
/*           and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is */
/*           .FALSE., then the contents of H are unspecified on exit. */
/*           (The output value of H when INFO.GT.0 is given under the */
/*           description of INFO below.) */

/*           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and */
/*           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */

/*     LDH   (input) INTEGER */
/*           The leading dimension of the array H. LDH .GE. max(1,N). */

/*     WR    (output) REAL array, dimension (IHI) */
/*     WI    (output) REAL array, dimension (IHI) */
/*           The real and imaginary parts, respectively, of the computed */
/*           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI) */
/*           and WI(ILO:IHI). If two eigenvalues are computed as a */
/*           complex conjugate pair, they are stored in consecutive */
/*           elements of WR and WI, say the i-th and (i+1)th, with */
/*           WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then */
/*           the eigenvalues are stored in the same order as on the */
/*           diagonal of the Schur form returned in H, with */
/*           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal */
/*           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and */
/*           WI(i+1) = -WI(i). */

/*     ILOZ     (input) INTEGER */
/*     IHIZ     (input) INTEGER */
/*           Specify the rows of Z to which transformations must be */
/*           applied if WANTZ is .TRUE.. */
/*           1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. */

/*     Z     (input/output) REAL array, dimension (LDZ,IHI) */
/*           If WANTZ is .FALSE., then Z is not referenced. */
/*           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
/*           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
/*           orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
/*           (The output value of Z when INFO.GT.0 is given under */
/*           the description of INFO below.) */

/*     LDZ   (input) INTEGER */
/*           The leading dimension of the array Z.  if WANTZ is .TRUE. */
/*           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1. */

/*     WORK  (workspace/output) REAL array, dimension LWORK */
/*           On exit, if LWORK = -1, WORK(1) returns an estimate of */
/*           the optimal value for LWORK. */

/*     LWORK (input) INTEGER */
/*           The dimension of the array WORK.  LWORK .GE. max(1,N) */
/*           is sufficient, but LWORK typically as large as 6*N may */
/*           be required for optimal performance.  A workspace query */
/*           to determine the optimal workspace size is recommended. */

/*           If LWORK = -1, then SLAQR0 does a workspace query. */
/*           In this case, SLAQR0 checks the input parameters and */
/*           estimates the optimal workspace size for the given */
/*           values of N, ILO and IHI.  The estimate is returned */
/*           in WORK(1).  No error message related to LWORK is */
/*           issued by XERBLA.  Neither H nor Z are accessed. */


/*     INFO  (output) INTEGER */
/*             =  0:  successful exit */
/*           .GT. 0:  if INFO = i, SLAQR0 failed to compute all of */
/*                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR */
/*                and WI contain those eigenvalues which have been */
/*                successfully computed.  (Failures are rare.) */

/*                If INFO .GT. 0 and WANT is .FALSE., then on exit, */
/*                the remaining unconverged eigenvalues are the eigen- */
/*                values of the upper Hessenberg matrix rows and */
/*                columns ILO through INFO of the final, output */
/*                value of H. */

/*                If INFO .GT. 0 and WANTT is .TRUE., then on exit */

/*           (*)  (initial value of H)*U  = U*(final value of H) */

/*                where U is an orthogonal matrix.  The final */
/*                value of H is upper Hessenberg and quasi-triangular */
/*                in rows and columns INFO+1 through IHI. */

/*                If INFO .GT. 0 and WANTZ is .TRUE., then on exit */

/*                  (final value of Z(ILO:IHI,ILOZ:IHIZ) */
/*                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */

/*                where U is the orthogonal matrix in (*) (regard- */
/*                less of the value of WANTT.) */

/*                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not */
/*                accessed. */

/*     ================================================================ */
/*     Based on contributions by */
/*        Karen Braman and Ralph Byers, Department of Mathematics, */
/*        University of Kansas, USA */

/*     ================================================================ */
/*     References: */
/*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
/*       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
/*       Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
/*       929--947, 2002. */

/*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
/*       Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
/*       of Matrix Analysis, volume 23, pages 948--973, 2002. */

/*     ================================================================ */
/*     .. Parameters .. */

/*     ==== Matrices of order NTINY or smaller must be processed by */
/*     .    SLAHQR because of insufficient subdiagonal scratch space. */
/*     .    (This is a hard limit.) ==== */

/*     ==== Exceptional deflation windows:  try to cure rare */
/*     .    slow convergence by varying the size of the */
/*     .    deflation window after KEXNW iterations. ==== */

/*     ==== Exceptional shifts: try to cure rare slow convergence */
/*     .    with ad-hoc exceptional shifts every KEXSH iterations. */
/*     .    ==== */

/*     ==== The constants WILK1 and WILK2 are used to form the */
/*     .    exceptional shifts. ==== */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */
    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --wr;
    --wi;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    *info = 0;

/*     ==== Quick return for N = 0: nothing to do. ==== */

    if (*n == 0) {
	work[1] = 1.f;
	return 0;
    }

    if (*n <= 11) {

/*        ==== Tiny matrices must use SLAHQR. ==== */

	lwkopt = 1;
	if (*lwork != -1) {
	    slahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &
		    wi[1], iloz, ihiz, &z__[z_offset], ldz, info);
	}
    } else {

/*        ==== Use small bulge multi-shift QR with aggressive early */
/*        .    deflation on larger-than-tiny matrices. ==== */

/*        ==== Hope for the best. ==== */

	*info = 0;

/*        ==== Set up job flags for ILAENV. ==== */

	if (*wantt) {
	    *(unsigned char *)jbcmpz = 'S';
	} else {
	    *(unsigned char *)jbcmpz = 'E';
	}
	if (*wantz) {
	    *(unsigned char *)&jbcmpz[1] = 'V';
	} else {
	    *(unsigned char *)&jbcmpz[1] = 'N';
	}

/*        ==== NWR = recommended deflation window size.  At this */
/*        .    point,  N .GT. NTINY = 11, so there is enough */
/*        .    subdiagonal workspace for NWR.GE.2 as required. */
/*        .    (In fact, there is enough subdiagonal space for */
/*        .    NWR.GE.3.) ==== */

	nwr = ilaenv_(&c__13, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
	nwr = max(2,nwr);
/* Computing MIN */
	i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = min(i__1,i__2);
	nwr = min(i__1,nwr);

/*        ==== NSR = recommended number of simultaneous shifts. */
/*        .    At this point N .GT. NTINY = 11, so there is at */
/*        .    enough subdiagonal workspace for NSR to be even */
/*        .    and greater than or equal to two as required. ==== */

	nsr = ilaenv_(&c__15, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
/* Computing MIN */
	i__1 = nsr, i__2 = (*n + 6) / 9, i__1 = min(i__1,i__2), i__2 = *ihi - 
		*ilo;
	nsr = min(i__1,i__2);
/* Computing MAX */
	i__1 = 2, i__2 = nsr - nsr % 2;
	nsr = max(i__1,i__2);

/*        ==== Estimate optimal workspace ==== */

/*        ==== Workspace query call to SLAQR3 ==== */

	i__1 = nwr + 1;
	slaqr3_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz, 
		ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[
		h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], 
		ldh, &work[1], &c_n1);

/*        ==== Optimal workspace = MAX(SLAQR5, SLAQR3) ==== */

/* Computing MAX */
	i__1 = nsr * 3 / 2, i__2 = (integer) work[1];
	lwkopt = max(i__1,i__2);

/*        ==== Quick return in case of workspace query. ==== */

	if (*lwork == -1) {
	    work[1] = (real) lwkopt;
	    return 0;
	}

/*        ==== SLAHQR/SLAQR0 crossover point ==== */

	nmin = ilaenv_(&c__12, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
	nmin = max(11,nmin);

/*        ==== Nibble crossover point ==== */

	nibble = ilaenv_(&c__14, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
	nibble = max(0,nibble);

/*        ==== Accumulate reflections during ttswp?  Use block */
/*        .    2-by-2 structure during matrix-matrix multiply? ==== */

	kacc22 = ilaenv_(&c__16, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
	kacc22 = max(0,kacc22);
	kacc22 = min(2,kacc22);

/*        ==== NWMAX = the largest possible deflation window for */
/*        .    which there is sufficient workspace. ==== */

/* Computing MIN */
	i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
	nwmax = min(i__1,i__2);
	nw = nwmax;

/*        ==== NSMAX = the Largest number of simultaneous shifts */
/*        .    for which there is sufficient workspace. ==== */

/* Computing MIN */
	i__1 = (*n + 6) / 9, i__2 = (*lwork << 1) / 3;
	nsmax = min(i__1,i__2);
	nsmax -= nsmax % 2;

/*        ==== NDFL: an iteration count restarted at deflation. ==== */

	ndfl = 1;

/*        ==== ITMAX = iteration limit ==== */

/* Computing MAX */
	i__1 = 10, i__2 = *ihi - *ilo + 1;
	itmax = max(i__1,i__2) * 30;

/*        ==== Last row and column in the active block ==== */

	kbot = *ihi;

/*        ==== Main Loop ==== */

	i__1 = itmax;
	for (it = 1; it <= i__1; ++it) {

/*           ==== Done when KBOT falls below ILO ==== */

	    if (kbot < *ilo) {
		goto L90;
	    }

/*           ==== Locate active block ==== */

	    i__2 = *ilo + 1;
	    for (k = kbot; k >= i__2; --k) {
		if (h__[k + (k - 1) * h_dim1] == 0.f) {
		    goto L20;
		}
/* L10: */
	    }
	    k = *ilo;
L20:
	    ktop = k;

/*           ==== Select deflation window size: */
/*           .    Typical Case: */
/*           .      If possible and advisable, nibble the entire */
/*           .      active block.  If not, use size MIN(NWR,NWMAX) */
/*           .      or MIN(NWR+1,NWMAX) depending upon which has */
/*           .      the smaller corresponding subdiagonal entry */
/*           .      (a heuristic). */
/*           . */
/*           .    Exceptional Case: */
/*           .      If there have been no deflations in KEXNW or */
/*           .      more iterations, then vary the deflation window */
/*           .      size.   At first, because, larger windows are, */
/*           .      in general, more powerful than smaller ones, */
/*           .      rapidly increase the window to the maximum possible. */
/*           .      Then, gradually reduce the window size. ==== */

	    nh = kbot - ktop + 1;
	    nwupbd = min(nh,nwmax);
	    if (ndfl < 5) {
		nw = min(nwupbd,nwr);
	    } else {
/* Computing MIN */
		i__2 = nwupbd, i__3 = nw << 1;
		nw = min(i__2,i__3);
	    }
	    if (nw < nwmax) {
		if (nw >= nh - 1) {
		    nw = nh;
		} else {
		    kwtop = kbot - nw + 1;
		    if ((r__1 = h__[kwtop + (kwtop - 1) * h_dim1], dabs(r__1))
			     > (r__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1], 
			    dabs(r__2))) {
			++nw;
		    }
		}
	    }
	    if (ndfl < 5) {
		ndec = -1;
	    } else if (ndec >= 0 || nw >= nwupbd) {
		++ndec;
		if (nw - ndec < 2) {
		    ndec = 0;
		}
		nw -= ndec;
	    }

/*           ==== Aggressive early deflation: */
/*           .    split workspace under the subdiagonal into */
/*           .      - an nw-by-nw work array V in the lower */
/*           .        left-hand-corner, */
/*           .      - an NW-by-at-least-NW-but-more-is-better */
/*           .        (NW-by-NHO) horizontal work array along */
/*           .        the bottom edge, */
/*           .      - an at-least-NW-but-more-is-better (NHV-by-NW) */
/*           .        vertical work array along the left-hand-edge. */
/*           .        ==== */

	    kv = *n - nw + 1;
	    kt = nw + 1;
	    nho = *n - nw - 1 - kt + 1;
	    kwv = nw + 2;
	    nve = *n - nw - kwv + 1;

/*           ==== Aggressive early deflation ==== */

	    slaqr3_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh, 
		    iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], 
		     &h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], 
		    ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork);

/*           ==== Adjust KBOT accounting for new deflations. ==== */

	    kbot -= ld;

/*           ==== KS points to the shifts. ==== */

	    ks = kbot - ls + 1;

/*           ==== Skip an expensive QR sweep if there is a (partly */
/*           .    heuristic) reason to expect that many eigenvalues */
/*           .    will deflate without it.  Here, the QR sweep is */
/*           .    skipped if many eigenvalues have just been deflated */
/*           .    or if the remaining active block is small. */

	    if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > min(
		    nmin,nwmax)) {

/*              ==== NS = nominal number of simultaneous shifts. */
/*              .    This may be lowered (slightly) if SLAQR3 */
/*              .    did not provide that many shifts. ==== */

/* Computing MIN */
/* Computing MAX */
		i__4 = 2, i__5 = kbot - ktop;
		i__2 = min(nsmax,nsr), i__3 = max(i__4,i__5);
		ns = min(i__2,i__3);
		ns -= ns % 2;

/*              ==== If there have been no deflations */
/*              .    in a multiple of KEXSH iterations, */
/*              .    then try exceptional shifts. */
/*              .    Otherwise use shifts provided by */
/*              .    SLAQR3 above or from the eigenvalues */
/*              .    of a trailing principal submatrix. ==== */

		if (ndfl % 6 == 0) {
		    ks = kbot - ns + 1;
/* Computing MAX */
		    i__3 = ks + 1, i__4 = ktop + 2;
		    i__2 = max(i__3,i__4);
		    for (i__ = kbot; i__ >= i__2; i__ += -2) {
			ss = (r__1 = h__[i__ + (i__ - 1) * h_dim1], dabs(r__1)
				) + (r__2 = h__[i__ - 1 + (i__ - 2) * h_dim1],
				 dabs(r__2));
			aa = ss * .75f + h__[i__ + i__ * h_dim1];
			bb = ss;
			cc = ss * -.4375f;
			dd = aa;
			slanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1]
, &wr[i__], &wi[i__], &cs, &sn);
/* L30: */
		    }
		    if (ks == ktop) {
			wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1];
			wi[ks + 1] = 0.f;
			wr[ks] = wr[ks + 1];
			wi[ks] = wi[ks + 1];
		    }
		} else {

/*                 ==== Got NS/2 or fewer shifts? Use SLAQR4 or */
/*                 .    SLAHQR on a trailing principal submatrix to */
/*                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9, */
/*                 .    there is enough space below the subdiagonal */
/*                 .    to fit an NS-by-NS scratch array.) ==== */

		    if (kbot - ks + 1 <= ns / 2) {
			ks = kbot - ns + 1;
			kt = *n - ns + 1;
			slacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
				h__[kt + h_dim1], ldh);
			if (ns > nmin) {
			    slaqr4_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
				    kt + h_dim1], ldh, &wr[ks], &wi[ks], &
				    c__1, &c__1, zdum, &c__1, &work[1], lwork, 
				     &inf);
			} else {
			    slahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
				    kt + h_dim1], ldh, &wr[ks], &wi[ks], &
				    c__1, &c__1, zdum, &c__1, &inf);
			}
			ks += inf;

/*                    ==== In case of a rare QR failure use */
/*                    .    eigenvalues of the trailing 2-by-2 */
/*                    .    principal submatrix.  ==== */

			if (ks >= kbot) {
			    aa = h__[kbot - 1 + (kbot - 1) * h_dim1];
			    cc = h__[kbot + (kbot - 1) * h_dim1];
			    bb = h__[kbot - 1 + kbot * h_dim1];
			    dd = h__[kbot + kbot * h_dim1];
			    slanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[
				    kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn)
				    ;
			    ks = kbot - 1;
			}
		    }

		    if (kbot - ks + 1 > ns) {

/*                    ==== Sort the shifts (Helps a little) */
/*                    .    Bubble sort keeps complex conjugate */
/*                    .    pairs together. ==== */

			sorted = FALSE_;
			i__2 = ks + 1;
			for (k = kbot; k >= i__2; --k) {
			    if (sorted) {
				goto L60;
			    }
			    sorted = TRUE_;
			    i__3 = k - 1;
			    for (i__ = ks; i__ <= i__3; ++i__) {
				if ((r__1 = wr[i__], dabs(r__1)) + (r__2 = wi[
					i__], dabs(r__2)) < (r__3 = wr[i__ + 
					1], dabs(r__3)) + (r__4 = wi[i__ + 1],
					 dabs(r__4))) {
				    sorted = FALSE_;

				    swap = wr[i__];
				    wr[i__] = wr[i__ + 1];
				    wr[i__ + 1] = swap;

				    swap = wi[i__];
				    wi[i__] = wi[i__ + 1];
				    wi[i__ + 1] = swap;
				}
/* L40: */
			    }
/* L50: */
			}
L60:
			;
		    }

/*                 ==== Shuffle shifts into pairs of real shifts */
/*                 .    and pairs of complex conjugate shifts */
/*                 .    assuming complex conjugate shifts are */
/*                 .    already adjacent to one another. (Yes, */
/*                 .    they are.)  ==== */

		    i__2 = ks + 2;
		    for (i__ = kbot; i__ >= i__2; i__ += -2) {
			if (wi[i__] != -wi[i__ - 1]) {

			    swap = wr[i__];
			    wr[i__] = wr[i__ - 1];
			    wr[i__ - 1] = wr[i__ - 2];
			    wr[i__ - 2] = swap;

			    swap = wi[i__];
			    wi[i__] = wi[i__ - 1];
			    wi[i__ - 1] = wi[i__ - 2];
			    wi[i__ - 2] = swap;
			}
/* L70: */
		    }
		}

/*              ==== If there are only two shifts and both are */
/*              .    real, then use only one.  ==== */

		if (kbot - ks + 1 == 2) {
		    if (wi[kbot] == 0.f) {
			if ((r__1 = wr[kbot] - h__[kbot + kbot * h_dim1], 
				dabs(r__1)) < (r__2 = wr[kbot - 1] - h__[kbot 
				+ kbot * h_dim1], dabs(r__2))) {
			    wr[kbot - 1] = wr[kbot];
			} else {
			    wr[kbot] = wr[kbot - 1];
			}
		    }
		}

/*              ==== Use up to NS of the the smallest magnatiude */
/*              .    shifts.  If there aren't NS shifts available, */
/*              .    then use them all, possibly dropping one to */
/*              .    make the number of shifts even. ==== */

/* Computing MIN */
		i__2 = ns, i__3 = kbot - ks + 1;
		ns = min(i__2,i__3);
		ns -= ns % 2;
		ks = kbot - ns + 1;

/*              ==== Small-bulge multi-shift QR sweep: */
/*              .    split workspace under the subdiagonal into */
/*              .    - a KDU-by-KDU work array U in the lower */
/*              .      left-hand-corner, */
/*              .    - a KDU-by-at-least-KDU-but-more-is-better */
/*              .      (KDU-by-NHo) horizontal work array WH along */
/*              .      the bottom edge, */
/*              .    - and an at-least-KDU-but-more-is-better-by-KDU */
/*              .      (NVE-by-KDU) vertical work WV arrow along */
/*              .      the left-hand-edge. ==== */

		kdu = ns * 3 - 3;
		ku = *n - kdu + 1;
		kwh = kdu + 1;
		nho = *n - kdu - 3 - (kdu + 1) + 1;
		kwv = kdu + 4;
		nve = *n - kdu - kwv + 1;

/*              ==== Small-bulge multi-shift QR sweep ==== */

		slaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks], 
			&wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[
			z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1], 
			ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku + 
			kwh * h_dim1], ldh);
	    }

/*           ==== Note progress (or the lack of it). ==== */

	    if (ld > 0) {
		ndfl = 1;
	    } else {
		++ndfl;
	    }

/*           ==== End of main loop ==== */
/* L80: */
	}

/*        ==== Iteration limit exceeded.  Set INFO to show where */
/*        .    the problem occurred and exit. ==== */

	*info = kbot;
L90:
	;
    }

/*     ==== Return the optimal value of LWORK. ==== */

    work[1] = (real) lwkopt;

/*     ==== End of SLAQR0 ==== */

    return 0;
} /* slaqr0_ */
Ejemplo n.º 2
0
/* Subroutine */
int slaqr2_(logical *wantt, logical *wantz, integer *n, integer *ktop, integer *kbot, integer *nw, real *h__, integer *ldh, integer *iloz, integer *ihiz, real *z__, integer *ldz, integer *ns, integer *nd, real *sr, real *si, real *v, integer *ldv, integer *nh, real *t, integer *ldt, integer *nv, real *wv, integer *ldwv, real * work, integer *lwork)
{
    /* System generated locals */
    integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3, r__4, r__5, r__6;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    integer i__, j, k;
    real s, aa, bb, cc, dd, cs, sn;
    integer jw;
    real evi, evk, foo;
    integer kln;
    real tau, ulp;
    integer lwk1, lwk2;
    real beta;
    integer kend, kcol, info, ifst, ilst, ltop, krow;
    logical bulge;
    extern /* Subroutine */
    int slarf_(char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *), sgemm_( char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *);
    integer infqr;
    extern /* Subroutine */
    int scopy_(integer *, real *, integer *, real *, integer *);
    integer kwtop;
    extern /* Subroutine */
    int slanv2_(real *, real *, real *, real *, real * , real *, real *, real *, real *, real *), slabad_(real *, real *) ;
    extern real slamch_(char *);
    extern /* Subroutine */
    int sgehrd_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *);
    real safmin;
    extern /* Subroutine */
    int slarfg_(integer *, real *, real *, integer *, real *);
    real safmax;
    extern /* Subroutine */
    int slahqr_(logical *, logical *, integer *, integer *, integer *, real *, integer *, real *, real *, integer * , integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *);
    logical sorted;
    extern /* Subroutine */
    int strexc_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, integer *), sormhr_(char *, char *, integer *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *);
    real smlnum;
    integer lwkopt;
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ================================================================ */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* ==== Estimate optimal workspace. ==== */
    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --sr;
    --si;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    wv_dim1 = *ldwv;
    wv_offset = 1 + wv_dim1;
    wv -= wv_offset;
    --work;
    /* Function Body */
    /* Computing MIN */
    i__1 = *nw;
    i__2 = *kbot - *ktop + 1; // , expr subst
    jw = min(i__1,i__2);
    if (jw <= 2)
    {
        lwkopt = 1;
    }
    else
    {
        /* ==== Workspace query call to SGEHRD ==== */
        i__1 = jw - 1;
        sgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], & c_n1, &info);
        lwk1 = (integer) work[1];
        /* ==== Workspace query call to SORMHR ==== */
        i__1 = jw - 1;
        sormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &v[v_offset], ldv, &work[1], &c_n1, &info);
        lwk2 = (integer) work[1];
        /* ==== Optimal workspace ==== */
        lwkopt = jw + max(lwk1,lwk2);
    }
    /* ==== Quick return in case of workspace query. ==== */
    if (*lwork == -1)
    {
        work[1] = (real) lwkopt;
        return 0;
    }
    /* ==== Nothing to do ... */
    /* ... for an empty active block ... ==== */
    *ns = 0;
    *nd = 0;
    work[1] = 1.f;
    if (*ktop > *kbot)
    {
        return 0;
    }
    /* ... nor for an empty deflation window. ==== */
    if (*nw < 1)
    {
        return 0;
    }
    /* ==== Machine constants ==== */
    safmin = slamch_("SAFE MINIMUM");
    safmax = 1.f / safmin;
    slabad_(&safmin, &safmax);
    ulp = slamch_("PRECISION");
    smlnum = safmin * ((real) (*n) / ulp);
    /* ==== Setup deflation window ==== */
    /* Computing MIN */
    i__1 = *nw;
    i__2 = *kbot - *ktop + 1; // , expr subst
    jw = min(i__1,i__2);
    kwtop = *kbot - jw + 1;
    if (kwtop == *ktop)
    {
        s = 0.f;
    }
    else
    {
        s = h__[kwtop + (kwtop - 1) * h_dim1];
    }
    if (*kbot == kwtop)
    {
        /* ==== 1-by-1 deflation window: not much to do ==== */
        sr[kwtop] = h__[kwtop + kwtop * h_dim1];
        si[kwtop] = 0.f;
        *ns = 1;
        *nd = 0;
        /* Computing MAX */
        r__2 = smlnum;
        r__3 = ulp * (r__1 = h__[kwtop + kwtop * h_dim1], abs( r__1)); // , expr subst
        if (abs(s) <= max(r__2,r__3))
        {
            *ns = 0;
            *nd = 1;
            if (kwtop > *ktop)
            {
                h__[kwtop + (kwtop - 1) * h_dim1] = 0.f;
            }
        }
        work[1] = 1.f;
        return 0;
    }
    /* ==== Convert to spike-triangular form. (In case of a */
    /* . rare QR failure, this routine continues to do */
    /* . aggressive early deflation using that part of */
    /* . the deflation window that converged using INFQR */
    /* . here and there to keep track.) ==== */
    slacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset], ldt);
    i__1 = jw - 1;
    i__2 = *ldh + 1;
    i__3 = *ldt + 1;
    scopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], & i__3);
    slaset_("A", &jw, &jw, &c_b12, &c_b13, &v[v_offset], ldv);
    slahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
    /* ==== STREXC needs a clean margin near the diagonal ==== */
    i__1 = jw - 3;
    for (j = 1;
            j <= i__1;
            ++j)
    {
        t[j + 2 + j * t_dim1] = 0.f;
        t[j + 3 + j * t_dim1] = 0.f;
        /* L10: */
    }
    if (jw > 2)
    {
        t[jw + (jw - 2) * t_dim1] = 0.f;
    }
    /* ==== Deflation detection loop ==== */
    *ns = jw;
    ilst = infqr + 1;
L20:
    if (ilst <= *ns)
    {
        if (*ns == 1)
        {
            bulge = FALSE_;
        }
        else
        {
            bulge = t[*ns + (*ns - 1) * t_dim1] != 0.f;
        }
        /* ==== Small spike tip test for deflation ==== */
        if (! bulge)
        {
            /* ==== Real eigenvalue ==== */
            foo = (r__1 = t[*ns + *ns * t_dim1], abs(r__1));
            if (foo == 0.f)
            {
                foo = abs(s);
            }
            /* Computing MAX */
            r__2 = smlnum;
            r__3 = ulp * foo; // , expr subst
            if ((r__1 = s * v[*ns * v_dim1 + 1], abs(r__1)) <= max(r__2,r__3))
            {
                /* ==== Deflatable ==== */
                --(*ns);
            }
            else
            {
                /* ==== Undeflatable. Move it up out of the way. */
                /* . (STREXC can not fail in this case.) ==== */
                ifst = *ns;
                strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &ilst, &work[1], &info);
                ++ilst;
            }
        }
        else
        {
            /* ==== Complex conjugate pair ==== */
            foo = (r__3 = t[*ns + *ns * t_dim1], abs(r__3)) + sqrt((r__1 = t[* ns + (*ns - 1) * t_dim1], abs(r__1))) * sqrt((r__2 = t[* ns - 1 + *ns * t_dim1], abs(r__2)));
            if (foo == 0.f)
            {
                foo = abs(s);
            }
            /* Computing MAX */
            r__3 = (r__1 = s * v[*ns * v_dim1 + 1], abs(r__1));
            r__4 = (r__2 = s * v[(*ns - 1) * v_dim1 + 1], abs(r__2)); // , expr subst
            /* Computing MAX */
            r__5 = smlnum;
            r__6 = ulp * foo; // , expr subst
            if (max(r__3,r__4) <= max(r__5,r__6))
            {
                /* ==== Deflatable ==== */
                *ns += -2;
            }
            else
            {
                /* ==== Undeflatable. Move them up out of the way. */
                /* . Fortunately, STREXC does the right thing with */
                /* . ILST in case of a rare exchange failure. ==== */
                ifst = *ns;
                strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &ilst, &work[1], &info);
                ilst += 2;
            }
        }
        /* ==== End deflation detection loop ==== */
        goto L20;
    }
    /* ==== Return to Hessenberg form ==== */
    if (*ns == 0)
    {
        s = 0.f;
    }
    if (*ns < jw)
    {
        /* ==== sorting diagonal blocks of T improves accuracy for */
        /* . graded matrices. Bubble sort deals well with */
        /* . exchange failures. ==== */
        sorted = FALSE_;
        i__ = *ns + 1;
L30:
        if (sorted)
        {
            goto L50;
        }
        sorted = TRUE_;
        kend = i__ - 1;
        i__ = infqr + 1;
        if (i__ == *ns)
        {
            k = i__ + 1;
        }
        else if (t[i__ + 1 + i__ * t_dim1] == 0.f)
        {
            k = i__ + 1;
        }
        else
        {
            k = i__ + 2;
        }
L40:
        if (k <= kend)
        {
            if (k == i__ + 1)
            {
                evi = (r__1 = t[i__ + i__ * t_dim1], abs(r__1));
            }
            else
            {
                evi = (r__3 = t[i__ + i__ * t_dim1], abs(r__3)) + sqrt((r__1 = t[i__ + 1 + i__ * t_dim1], abs(r__1))) * sqrt((r__2 = t[i__ + (i__ + 1) * t_dim1], abs(r__2)));
            }
            if (k == kend)
            {
                evk = (r__1 = t[k + k * t_dim1], abs(r__1));
            }
            else if (t[k + 1 + k * t_dim1] == 0.f)
            {
                evk = (r__1 = t[k + k * t_dim1], abs(r__1));
            }
            else
            {
                evk = (r__3 = t[k + k * t_dim1], abs(r__3)) + sqrt((r__1 = t[ k + 1 + k * t_dim1], abs(r__1))) * sqrt((r__2 = t[k + (k + 1) * t_dim1], abs(r__2)));
            }
            if (evi >= evk)
            {
                i__ = k;
            }
            else
            {
                sorted = FALSE_;
                ifst = i__;
                ilst = k;
                strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &ilst, &work[1], &info);
                if (info == 0)
                {
                    i__ = ilst;
                }
                else
                {
                    i__ = k;
                }
            }
            if (i__ == kend)
            {
                k = i__ + 1;
            }
            else if (t[i__ + 1 + i__ * t_dim1] == 0.f)
            {
                k = i__ + 1;
            }
            else
            {
                k = i__ + 2;
            }
            goto L40;
        }
        goto L30;
L50:
        ;
    }
    /* ==== Restore shift/eigenvalue array from T ==== */
    i__ = jw;
L60:
    if (i__ >= infqr + 1)
    {
        if (i__ == infqr + 1)
        {
            sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
            si[kwtop + i__ - 1] = 0.f;
            --i__;
        }
        else if (t[i__ + (i__ - 1) * t_dim1] == 0.f)
        {
            sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
            si[kwtop + i__ - 1] = 0.f;
            --i__;
        }
        else
        {
            aa = t[i__ - 1 + (i__ - 1) * t_dim1];
            cc = t[i__ + (i__ - 1) * t_dim1];
            bb = t[i__ - 1 + i__ * t_dim1];
            dd = t[i__ + i__ * t_dim1];
            slanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__ - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, & sn);
            i__ += -2;
        }
        goto L60;
    }
    if (*ns < jw || s == 0.f)
    {
        if (*ns > 1 && s != 0.f)
        {
            /* ==== Reflect spike back into lower triangle ==== */
            scopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
            beta = work[1];
            slarfg_(ns, &beta, &work[2], &c__1, &tau);
            work[1] = 1.f;
            i__1 = jw - 2;
            i__2 = jw - 2;
            slaset_("L", &i__1, &i__2, &c_b12, &c_b12, &t[t_dim1 + 3], ldt);
            slarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, & work[jw + 1]);
            slarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, & work[jw + 1]);
            slarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, & work[jw + 1]);
            i__1 = *lwork - jw;
            sgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1] , &i__1, &info);
        }
        /* ==== Copy updated reduced window into place ==== */
        if (kwtop > 1)
        {
            h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
        }
        slacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1] , ldh);
        i__1 = jw - 1;
        i__2 = *ldt + 1;
        i__3 = *ldh + 1;
        scopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1], &i__3);
        /* ==== Accumulate orthogonal matrix in order update */
        /* . H and Z, if requested. ==== */
        if (*ns > 1 && s != 0.f)
        {
            i__1 = *lwork - jw;
            sormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1], &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
        }
        /* ==== Update vertical slab in H ==== */
        if (*wantt)
        {
            ltop = 1;
        }
        else
        {
            ltop = *ktop;
        }
        i__1 = kwtop - 1;
        i__2 = *nv;
        for (krow = ltop;
                i__2 < 0 ? krow >= i__1 : krow <= i__1;
                krow += i__2)
        {
            /* Computing MIN */
            i__3 = *nv;
            i__4 = kwtop - krow; // , expr subst
            kln = min(i__3,i__4);
            sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &h__[krow + kwtop * h_dim1], ldh, &v[v_offset], ldv, &c_b12, &wv[wv_offset], ldwv);
            slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop * h_dim1], ldh);
            /* L70: */
        }
        /* ==== Update horizontal slab in H ==== */
        if (*wantt)
        {
            i__2 = *n;
            i__1 = *nh;
            for (kcol = *kbot + 1;
                    i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
                    kcol += i__1)
            {
                /* Computing MIN */
                i__3 = *nh;
                i__4 = *n - kcol + 1; // , expr subst
                kln = min(i__3,i__4);
                sgemm_("C", "N", &jw, &kln, &jw, &c_b13, &v[v_offset], ldv, & h__[kwtop + kcol * h_dim1], ldh, &c_b12, &t[t_offset], ldt);
                slacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol * h_dim1], ldh);
                /* L80: */
            }
        }
        /* ==== Update vertical slab in Z ==== */
        if (*wantz)
        {
            i__1 = *ihiz;
            i__2 = *nv;
            for (krow = *iloz;
                    i__2 < 0 ? krow >= i__1 : krow <= i__1;
                    krow += i__2)
            {
                /* Computing MIN */
                i__3 = *nv;
                i__4 = *ihiz - krow + 1; // , expr subst
                kln = min(i__3,i__4);
                sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &z__[krow + kwtop * z_dim1], ldz, &v[v_offset], ldv, &c_b12, &wv[ wv_offset], ldwv);
                slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow + kwtop * z_dim1], ldz);
                /* L90: */
            }
        }
    }
    /* ==== Return the number of deflations ... ==== */
    *nd = jw - *ns;
    /* ==== ... and the number of shifts. (Subtracting */
    /* . INFQR from the spike length takes care */
    /* . of the case of a rare QR failure while */
    /* . calculating eigenvalues of the deflation */
    /* . window.) ==== */
    *ns -= infqr;
    /* ==== Return optimal workspace. ==== */
    work[1] = (real) lwkopt;
    /* ==== End of SLAQR2 ==== */
    return 0;
}
Ejemplo n.º 3
0
/* ----------------------------------------------------------------------- */
/* Subroutine */ int sneupd_(logical *rvec, char *howmny, logical *select, 
	real *dr, real *di, real *z__, integer *ldz, real *sigmar, real *
	sigmai, real *workev, char *bmat, integer *n, char *which, integer *
	nev, real *tol, real *resid, integer *ncv, real *v, integer *ldv, 
	integer *iparam, integer *ipntr, real *workd, real *workl, integer *
	lworkl, integer *info, ftnlen howmny_len, ftnlen bmat_len, ftnlen 
	which_len)
{
    /* System generated locals */
    integer v_dim1, v_offset, z_dim1, z_offset, i__1;
    real r__1, r__2;
    doublereal d__1;

    /* Local variables */
    static integer j, k, ih, jj, np;
    static real vl[1]	/* was [1][1] */;
    static integer ibd, ldh, ldq, iri;
    static real sep;
    static integer irr, wri, wrr, mode;
    static real eps23;
    extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, 
	    integer *, real *, integer *, real *, integer *);
    static integer ierr;
    static real temp;
    static integer iwev;
    static char type__[6];
    static real temp1;
    extern doublereal snrm2_(integer *, real *, integer *);
    static integer ihbds, iconj;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static real conds;
    static logical reord;
    extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *, 
	    ftnlen);
    static integer nconv, iwork[1];
    static real rnorm;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    static integer ritzi;
    extern /* Subroutine */ int strmm_(char *, char *, char *, char *, 
	    integer *, integer *, real *, real *, integer *, real *, integer *
	    , ftnlen, ftnlen, ftnlen, ftnlen), ivout_(integer *, integer *, 
	    integer *, integer *, char *, ftnlen), smout_(integer *, integer *
	    , integer *, real *, integer *, integer *, char *, ftnlen);
    static integer ritzr;
    extern /* Subroutine */ int svout_(integer *, integer *, real *, integer *
	    , char *, ftnlen), sgeqr2_(integer *, integer *, real *, integer *
	    , real *, real *, integer *);
    static integer nconv2;
    extern doublereal slapy2_(real *, real *);
    extern /* Subroutine */ int sorm2r_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *, ftnlen, ftnlen);
    static integer iheigi, iheigr, bounds, invsub, iuptri, msglvl, outncv, 
	    ishift, numcnv;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, ftnlen), slahqr_(logical *, logical 
	    *, integer *, integer *, integer *, real *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *), 
	    slaset_(char *, integer *, integer *, real *, real *, real *, 
	    integer *, ftnlen), strevc_(char *, char *, logical *, integer *, 
	    real *, integer *, real *, integer *, real *, integer *, integer *
	    , integer *, real *, integer *, ftnlen, ftnlen), strsen_(char *, 
	    char *, logical *, integer *, real *, integer *, real *, integer *
	    , real *, real *, integer *, real *, real *, real *, integer *, 
	    integer *, integer *, integer *, ftnlen, ftnlen);
    extern doublereal slamch_(char *, ftnlen);
    extern /* Subroutine */ int sngets_(integer *, char *, integer *, integer 
	    *, real *, real *, real *, real *, real *, ftnlen);


/*     %----------------------------------------------------% */
/*     | Include files for debugging and timing information | */
/*     %----------------------------------------------------% */


/* \SCCS Information: @(#) */
/* FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 */

/*     %---------------------------------% */
/*     | See debug.doc for documentation | */
/*     %---------------------------------% */

/*     %------------------% */
/*     | Scalar Arguments | */
/*     %------------------% */

/*     %--------------------------------% */
/*     | See stat.doc for documentation | */
/*     %--------------------------------% */

/* \SCCS Information: @(#) */
/* FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 */



/*     %-----------------% */
/*     | Array Arguments | */
/*     %-----------------% */


/*     %------------% */
/*     | Parameters | */
/*     %------------% */


/*     %---------------% */
/*     | Local Scalars | */
/*     %---------------% */


/*     %----------------------% */
/*     | External Subroutines | */
/*     %----------------------% */


/*     %--------------------% */
/*     | External Functions | */
/*     %--------------------% */


/*     %---------------------% */
/*     | Intrinsic Functions | */
/*     %---------------------% */


/*     %-----------------------% */
/*     | Executable Statements | */
/*     %-----------------------% */

/*     %------------------------% */
/*     | Set default parameters | */
/*     %------------------------% */

    /* Parameter adjustments */
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --workd;
    --resid;
    --di;
    --dr;
    --workev;
    --select;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --iparam;
    --ipntr;
    --workl;

    /* Function Body */
    msglvl = debug_1.mneupd;
    mode = iparam[7];
    nconv = iparam[5];
    *info = 0;

/*     %---------------------------------% */
/*     | Get machine dependent constant. | */
/*     %---------------------------------% */

    eps23 = slamch_("Epsilon-Machine", (ftnlen)15);
    d__1 = (doublereal) eps23;
    eps23 = pow_dd(&d__1, &c_b3);

/*     %--------------% */
/*     | Quick return | */
/*     %--------------% */

    ierr = 0;

    if (nconv <= 0) {
	ierr = -14;
    } else if (*n <= 0) {
	ierr = -1;
    } else if (*nev <= 0) {
	ierr = -2;
    } else if (*ncv <= *nev + 1 || *ncv > *n) {
	ierr = -3;
    } else if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, 
	    "SM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LR", (ftnlen)2, 
	    (ftnlen)2) != 0 && s_cmp(which, "SR", (ftnlen)2, (ftnlen)2) != 0 
	    && s_cmp(which, "LI", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, 
	    "SI", (ftnlen)2, (ftnlen)2) != 0) {
	ierr = -5;
    } else if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G')
	     {
	ierr = -6;
    } else /* if(complicated condition) */ {
/* Computing 2nd power */
	i__1 = *ncv;
	if (*lworkl < i__1 * i__1 * 3 + *ncv * 6) {
	    ierr = -7;
	} else if (*(unsigned char *)howmny != 'A' && *(unsigned char *)
		howmny != 'P' && *(unsigned char *)howmny != 'S' && *rvec) {
	    ierr = -13;
	} else if (*(unsigned char *)howmny == 'S') {
	    ierr = -12;
	}
    }

    if (mode == 1 || mode == 2) {
	s_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6);
    } else if (mode == 3 && *sigmai == 0.f) {
	s_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6);
    } else if (mode == 3) {
	s_copy(type__, "REALPT", (ftnlen)6, (ftnlen)6);
    } else if (mode == 4) {
	s_copy(type__, "IMAGPT", (ftnlen)6, (ftnlen)6);
    } else {
	ierr = -10;
    }
    if (mode == 1 && *(unsigned char *)bmat == 'G') {
	ierr = -11;
    }

/*     %------------% */
/*     | Error Exit | */
/*     %------------% */

    if (ierr != 0) {
	*info = ierr;
	goto L9000;
    }

/*     %--------------------------------------------------------% */
/*     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q   | */
/*     | etc... and the remaining workspace.                    | */
/*     | Also update pointer to be used on output.              | */
/*     | Memory is laid out as follows:                         | */
/*     | workl(1:ncv*ncv) := generated Hessenberg matrix        | */
/*     | workl(ncv*ncv+1:ncv*ncv+2*ncv) := real and imaginary   | */
/*     |                                   parts of ritz values | */
/*     | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := error bounds   | */
/*     %--------------------------------------------------------% */

/*     %-----------------------------------------------------------% */
/*     | The following is used and set by SNEUPD.                  | */
/*     | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed | */
/*     |                             real part of the Ritz values. | */
/*     | workl(ncv*ncv+4*ncv+1:ncv*ncv+5*ncv) := The untransformed | */
/*     |                        imaginary part of the Ritz values. | */
/*     | workl(ncv*ncv+5*ncv+1:ncv*ncv+6*ncv) := The untransformed | */
/*     |                           error bounds of the Ritz values | */
/*     | workl(ncv*ncv+6*ncv+1:2*ncv*ncv+6*ncv) := Holds the upper | */
/*     |                             quasi-triangular matrix for H | */
/*     | workl(2*ncv*ncv+6*ncv+1: 3*ncv*ncv+6*ncv) := Holds the    | */
/*     |       associated matrix representation of the invariant   | */
/*     |       subspace for H.                                     | */
/*     | GRAND total of NCV * ( 3 * NCV + 6 ) locations.           | */
/*     %-----------------------------------------------------------% */

    ih = ipntr[5];
    ritzr = ipntr[6];
    ritzi = ipntr[7];
    bounds = ipntr[8];
    ldh = *ncv;
    ldq = *ncv;
    iheigr = bounds + ldh;
    iheigi = iheigr + ldh;
    ihbds = iheigi + ldh;
    iuptri = ihbds + ldh;
    invsub = iuptri + ldh * *ncv;
    ipntr[9] = iheigr;
    ipntr[10] = iheigi;
    ipntr[11] = ihbds;
    ipntr[12] = iuptri;
    ipntr[13] = invsub;
    wrr = 1;
    wri = *ncv + 1;
    iwev = wri + *ncv;

/*     %-----------------------------------------% */
/*     | irr points to the REAL part of the Ritz | */
/*     |     values computed by _neigh before    | */
/*     |     exiting _naup2.                     | */
/*     | iri points to the IMAGINARY part of the | */
/*     |     Ritz values computed by _neigh      | */
/*     |     before exiting _naup2.              | */
/*     | ibd points to the Ritz estimates        | */
/*     |     computed by _neigh before exiting   | */
/*     |     _naup2.                             | */
/*     %-----------------------------------------% */

    irr = ipntr[14] + *ncv * *ncv;
    iri = irr + *ncv;
    ibd = iri + *ncv;

/*     %------------------------------------% */
/*     | RNORM is B-norm of the RESID(1:N). | */
/*     %------------------------------------% */

    rnorm = workl[ih + 2];
    workl[ih + 2] = 0.f;

    if (msglvl > 2) {
	svout_(&debug_1.logfil, ncv, &workl[irr], &debug_1.ndigit, "_neupd: "
		"Real part of Ritz values passed in from _NAUPD.", (ftnlen)55);
	svout_(&debug_1.logfil, ncv, &workl[iri], &debug_1.ndigit, "_neupd: "
		"Imag part of Ritz values passed in from _NAUPD.", (ftnlen)55);
	svout_(&debug_1.logfil, ncv, &workl[ibd], &debug_1.ndigit, "_neupd: "
		"Ritz estimates passed in from _NAUPD.", (ftnlen)45);
    }

    if (*rvec) {

	reord = FALSE_;

/*        %---------------------------------------------------% */
/*        | Use the temporary bounds array to store indices   | */
/*        | These will be used to mark the select array later | */
/*        %---------------------------------------------------% */

	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
	    workl[bounds + j - 1] = (real) j;
	    select[j] = FALSE_;
/* L10: */
	}

/*        %-------------------------------------% */
/*        | Select the wanted Ritz values.      | */
/*        | Sort the Ritz values so that the    | */
/*        | wanted ones appear at the tailing   | */
/*        | NEV positions of workl(irr) and     | */
/*        | workl(iri).  Move the corresponding | */
/*        | error estimates in workl(bound)     | */
/*        | accordingly.                        | */
/*        %-------------------------------------% */

	np = *ncv - *nev;
	ishift = 0;
	sngets_(&ishift, which, nev, &np, &workl[irr], &workl[iri], &workl[
		bounds], &workl[1], &workl[np + 1], (ftnlen)2);

	if (msglvl > 2) {
	    svout_(&debug_1.logfil, ncv, &workl[irr], &debug_1.ndigit, "_neu"
		    "pd: Real part of Ritz values after calling _NGETS.", (
		    ftnlen)54);
	    svout_(&debug_1.logfil, ncv, &workl[iri], &debug_1.ndigit, "_neu"
		    "pd: Imag part of Ritz values after calling _NGETS.", (
		    ftnlen)54);
	    svout_(&debug_1.logfil, ncv, &workl[bounds], &debug_1.ndigit, 
		    "_neupd: Ritz value indices after calling _NGETS.", (
		    ftnlen)48);
	}

/*        %-----------------------------------------------------% */
/*        | Record indices of the converged wanted Ritz values  | */
/*        | Mark the select array for possible reordering       | */
/*        %-----------------------------------------------------% */

	numcnv = 0;
	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    r__1 = eps23, r__2 = slapy2_(&workl[irr + *ncv - j], &workl[iri + 
		    *ncv - j]);
	    temp1 = dmax(r__1,r__2);
	    jj = workl[bounds + *ncv - j];
	    if (numcnv < nconv && workl[ibd + jj - 1] <= *tol * temp1) {
		select[jj] = TRUE_;
		++numcnv;
		if (jj > nconv) {
		    reord = TRUE_;
		}
	    }
/* L11: */
	}

/*        %-----------------------------------------------------------% */
/*        | Check the count (numcnv) of converged Ritz values with    | */
/*        | the number (nconv) reported by dnaupd.  If these two      | */
/*        | are different then there has probably been an error       | */
/*        | caused by incorrect passing of the dnaupd data.           | */
/*        %-----------------------------------------------------------% */

	if (msglvl > 2) {
	    ivout_(&debug_1.logfil, &c__1, &numcnv, &debug_1.ndigit, "_neupd"
		    ": Number of specified eigenvalues", (ftnlen)39);
	    ivout_(&debug_1.logfil, &c__1, &nconv, &debug_1.ndigit, "_neupd:"
		    " Number of \"converged\" eigenvalues", (ftnlen)41);
	}

	if (numcnv != nconv) {
	    *info = -15;
	    goto L9000;
	}

/*        %-----------------------------------------------------------% */
/*        | Call LAPACK routine slahqr to compute the real Schur form | */
/*        | of the upper Hessenberg matrix returned by SNAUPD.        | */
/*        | Make a copy of the upper Hessenberg matrix.               | */
/*        | Initialize the Schur vector matrix Q to the identity.     | */
/*        %-----------------------------------------------------------% */

	i__1 = ldh * *ncv;
	scopy_(&i__1, &workl[ih], &c__1, &workl[iuptri], &c__1);
	slaset_("All", ncv, ncv, &c_b37, &c_b38, &workl[invsub], &ldq, (
		ftnlen)3);
	slahqr_(&c_true, &c_true, ncv, &c__1, ncv, &workl[iuptri], &ldh, &
		workl[iheigr], &workl[iheigi], &c__1, ncv, &workl[invsub], &
		ldq, &ierr);
	scopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &c__1);

	if (ierr != 0) {
	    *info = -8;
	    goto L9000;
	}

	if (msglvl > 1) {
	    svout_(&debug_1.logfil, ncv, &workl[iheigr], &debug_1.ndigit, 
		    "_neupd: Real part of the eigenvalues of H", (ftnlen)41);
	    svout_(&debug_1.logfil, ncv, &workl[iheigi], &debug_1.ndigit, 
		    "_neupd: Imaginary part of the Eigenvalues of H", (ftnlen)
		    46);
	    svout_(&debug_1.logfil, ncv, &workl[ihbds], &debug_1.ndigit, 
		    "_neupd: Last row of the Schur vector matrix", (ftnlen)43)
		    ;
	    if (msglvl > 3) {
		smout_(&debug_1.logfil, ncv, ncv, &workl[iuptri], &ldh, &
			debug_1.ndigit, "_neupd: The upper quasi-triangular "
			"matrix ", (ftnlen)42);
	    }
	}

	if (reord) {

/*           %-----------------------------------------------------% */
/*           | Reorder the computed upper quasi-triangular matrix. | */
/*           %-----------------------------------------------------% */

	    strsen_("None", "V", &select[1], ncv, &workl[iuptri], &ldh, &
		    workl[invsub], &ldq, &workl[iheigr], &workl[iheigi], &
		    nconv2, &conds, &sep, &workl[ihbds], ncv, iwork, &c__1, &
		    ierr, (ftnlen)4, (ftnlen)1);

	    if (nconv2 < nconv) {
		nconv = nconv2;
	    }
	    if (ierr == 1) {
		*info = 1;
		goto L9000;
	    }

	    if (msglvl > 2) {
		svout_(&debug_1.logfil, ncv, &workl[iheigr], &debug_1.ndigit, 
			"_neupd: Real part of the eigenvalues of H--reordered"
			, (ftnlen)52);
		svout_(&debug_1.logfil, ncv, &workl[iheigi], &debug_1.ndigit, 
			"_neupd: Imag part of the eigenvalues of H--reordered"
			, (ftnlen)52);
		if (msglvl > 3) {
		    smout_(&debug_1.logfil, ncv, ncv, &workl[iuptri], &ldq, &
			    debug_1.ndigit, "_neupd: Quasi-triangular matrix"
			    " after re-ordering", (ftnlen)49);
		}
	    }

	}

/*        %---------------------------------------% */
/*        | Copy the last row of the Schur vector | */
/*        | into workl(ihbds).  This will be used | */
/*        | to compute the Ritz estimates of      | */
/*        | converged Ritz values.                | */
/*        %---------------------------------------% */

	scopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &c__1);

/*        %----------------------------------------------------% */
/*        | Place the computed eigenvalues of H into DR and DI | */
/*        | if a spectral transformation was not used.         | */
/*        %----------------------------------------------------% */

	if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {
	    scopy_(&nconv, &workl[iheigr], &c__1, &dr[1], &c__1);
	    scopy_(&nconv, &workl[iheigi], &c__1, &di[1], &c__1);
	}

/*        %----------------------------------------------------------% */
/*        | Compute the QR factorization of the matrix representing  | */
/*        | the wanted invariant subspace located in the first NCONV | */
/*        | columns of workl(invsub,ldq).                            | */
/*        %----------------------------------------------------------% */

	sgeqr2_(ncv, &nconv, &workl[invsub], &ldq, &workev[1], &workev[*ncv + 
		1], &ierr);

/*        %---------------------------------------------------------% */
/*        | * Postmultiply V by Q using sorm2r.                     | */
/*        | * Copy the first NCONV columns of VQ into Z.            | */
/*        | * Postmultiply Z by R.                                  | */
/*        | The N by NCONV matrix Z is now a matrix representation  | */
/*        | of the approximate invariant subspace associated with   | */
/*        | the Ritz values in workl(iheigr) and workl(iheigi)      | */
/*        | The first NCONV columns of V are now approximate Schur  | */
/*        | vectors associated with the real upper quasi-triangular | */
/*        | matrix of order NCONV in workl(iuptri)                  | */
/*        %---------------------------------------------------------% */

	sorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[invsub], &ldq, 
		&workev[1], &v[v_offset], ldv, &workd[*n + 1], &ierr, (ftnlen)
		5, (ftnlen)11);
	slacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz, (
		ftnlen)3);

	i__1 = nconv;
	for (j = 1; j <= i__1; ++j) {

/*           %---------------------------------------------------% */
/*           | Perform both a column and row scaling if the      | */
/*           | diagonal element of workl(invsub,ldq) is negative | */
/*           | I'm lazy and don't take advantage of the upper    | */
/*           | quasi-triangular form of workl(iuptri,ldq)        | */
/*           | Note that since Q is orthogonal, R is a diagonal  | */
/*           | matrix consisting of plus or minus ones           | */
/*           %---------------------------------------------------% */

	    if (workl[invsub + (j - 1) * ldq + j - 1] < 0.f) {
		sscal_(&nconv, &c_b64, &workl[iuptri + j - 1], &ldq);
		sscal_(&nconv, &c_b64, &workl[iuptri + (j - 1) * ldq], &c__1);
	    }

/* L20: */
	}

	if (*(unsigned char *)howmny == 'A') {

/*           %--------------------------------------------% */
/*           | Compute the NCONV wanted eigenvectors of T | */
/*           | located in workl(iuptri,ldq).              | */
/*           %--------------------------------------------% */

	    i__1 = *ncv;
	    for (j = 1; j <= i__1; ++j) {
		if (j <= nconv) {
		    select[j] = TRUE_;
		} else {
		    select[j] = FALSE_;
		}
/* L30: */
	    }

	    strevc_("Right", "Select", &select[1], ncv, &workl[iuptri], &ldq, 
		    vl, &c__1, &workl[invsub], &ldq, ncv, &outncv, &workev[1],
		     &ierr, (ftnlen)5, (ftnlen)6);

	    if (ierr != 0) {
		*info = -9;
		goto L9000;
	    }

/*           %------------------------------------------------% */
/*           | Scale the returning eigenvectors so that their | */
/*           | Euclidean norms are all one. LAPACK subroutine | */
/*           | strevc returns each eigenvector normalized so  | */
/*           | that the element of largest magnitude has      | */
/*           | magnitude 1;                                   | */
/*           %------------------------------------------------% */

	    iconj = 0;
	    i__1 = nconv;
	    for (j = 1; j <= i__1; ++j) {

		if (workl[iheigi + j - 1] == 0.f) {

/*                 %----------------------% */
/*                 | real eigenvalue case | */
/*                 %----------------------% */

		    temp = snrm2_(ncv, &workl[invsub + (j - 1) * ldq], &c__1);
		    r__1 = 1.f / temp;
		    sscal_(ncv, &r__1, &workl[invsub + (j - 1) * ldq], &c__1);

		} else {

/*                 %-------------------------------------------% */
/*                 | Complex conjugate pair case. Note that    | */
/*                 | since the real and imaginary part of      | */
/*                 | the eigenvector are stored in consecutive | */
/*                 | columns, we further normalize by the      | */
/*                 | square root of two.                       | */
/*                 %-------------------------------------------% */

		    if (iconj == 0) {
			r__1 = snrm2_(ncv, &workl[invsub + (j - 1) * ldq], &
				c__1);
			r__2 = snrm2_(ncv, &workl[invsub + j * ldq], &c__1);
			temp = slapy2_(&r__1, &r__2);
			r__1 = 1.f / temp;
			sscal_(ncv, &r__1, &workl[invsub + (j - 1) * ldq], &
				c__1);
			r__1 = 1.f / temp;
			sscal_(ncv, &r__1, &workl[invsub + j * ldq], &c__1);
			iconj = 1;
		    } else {
			iconj = 0;
		    }

		}

/* L40: */
	    }

	    sgemv_("T", ncv, &nconv, &c_b38, &workl[invsub], &ldq, &workl[
		    ihbds], &c__1, &c_b37, &workev[1], &c__1, (ftnlen)1);

	    iconj = 0;
	    i__1 = nconv;
	    for (j = 1; j <= i__1; ++j) {
		if (workl[iheigi + j - 1] != 0.f) {

/*                 %-------------------------------------------% */
/*                 | Complex conjugate pair case. Note that    | */
/*                 | since the real and imaginary part of      | */
/*                 | the eigenvector are stored in consecutive | */
/*                 %-------------------------------------------% */

		    if (iconj == 0) {
			workev[j] = slapy2_(&workev[j], &workev[j + 1]);
			workev[j + 1] = workev[j];
			iconj = 1;
		    } else {
			iconj = 0;
		    }
		}
/* L45: */
	    }

	    if (msglvl > 2) {
		scopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &
			c__1);
		svout_(&debug_1.logfil, ncv, &workl[ihbds], &debug_1.ndigit, 
			"_neupd: Last row of the eigenvector matrix for T", (
			ftnlen)48);
		if (msglvl > 3) {
		    smout_(&debug_1.logfil, ncv, ncv, &workl[invsub], &ldq, &
			    debug_1.ndigit, "_neupd: The eigenvector matrix "
			    "for T", (ftnlen)36);
		}
	    }

/*           %---------------------------------------% */
/*           | Copy Ritz estimates into workl(ihbds) | */
/*           %---------------------------------------% */

	    scopy_(&nconv, &workev[1], &c__1, &workl[ihbds], &c__1);

/*           %---------------------------------------------------------% */
/*           | Compute the QR factorization of the eigenvector matrix  | */
/*           | associated with leading portion of T in the first NCONV | */
/*           | columns of workl(invsub,ldq).                           | */
/*           %---------------------------------------------------------% */

	    sgeqr2_(ncv, &nconv, &workl[invsub], &ldq, &workev[1], &workev[*
		    ncv + 1], &ierr);

/*           %----------------------------------------------% */
/*           | * Postmultiply Z by Q.                       | */
/*           | * Postmultiply Z by R.                       | */
/*           | The N by NCONV matrix Z is now contains the  | */
/*           | Ritz vectors associated with the Ritz values | */
/*           | in workl(iheigr) and workl(iheigi).          | */
/*           %----------------------------------------------% */

	    sorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[invsub], &
		    ldq, &workev[1], &z__[z_offset], ldz, &workd[*n + 1], &
		    ierr, (ftnlen)5, (ftnlen)11);

	    strmm_("Right", "Upper", "No transpose", "Non-unit", n, &nconv, &
		    c_b38, &workl[invsub], &ldq, &z__[z_offset], ldz, (ftnlen)
		    5, (ftnlen)5, (ftnlen)12, (ftnlen)8);

	}

    } else {

/*        %------------------------------------------------------% */
/*        | An approximate invariant subspace is not needed.     | */
/*        | Place the Ritz values computed SNAUPD into DR and DI | */
/*        %------------------------------------------------------% */

	scopy_(&nconv, &workl[ritzr], &c__1, &dr[1], &c__1);
	scopy_(&nconv, &workl[ritzi], &c__1, &di[1], &c__1);
	scopy_(&nconv, &workl[ritzr], &c__1, &workl[iheigr], &c__1);
	scopy_(&nconv, &workl[ritzi], &c__1, &workl[iheigi], &c__1);
	scopy_(&nconv, &workl[bounds], &c__1, &workl[ihbds], &c__1);
    }

/*     %------------------------------------------------% */
/*     | Transform the Ritz values and possibly vectors | */
/*     | and corresponding error bounds of OP to those  | */
/*     | of A*x = lambda*B*x.                           | */
/*     %------------------------------------------------% */

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {

	if (*rvec) {
	    sscal_(ncv, &rnorm, &workl[ihbds], &c__1);
	}

    } else {

/*        %---------------------------------------% */
/*        |   A spectral transformation was used. | */
/*        | * Determine the Ritz estimates of the | */
/*        |   Ritz values in the original system. | */
/*        %---------------------------------------% */

	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {

	    if (*rvec) {
		sscal_(ncv, &rnorm, &workl[ihbds], &c__1);
	    }

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		temp = slapy2_(&workl[iheigr + k - 1], &workl[iheigi + k - 1])
			;
		workl[ihbds + k - 1] = (r__1 = workl[ihbds + k - 1], dabs(
			r__1)) / temp / temp;
/* L50: */
	    }

	} else if (s_cmp(type__, "REALPT", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* L60: */
	    }

	} else if (s_cmp(type__, "IMAGPT", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* L70: */
	    }

	}

/*        %-----------------------------------------------------------% */
/*        | *  Transform the Ritz values back to the original system. | */
/*        |    For TYPE = 'SHIFTI' the transformation is              | */
/*        |             lambda = 1/theta + sigma                      | */
/*        |    For TYPE = 'REALPT' or 'IMAGPT' the user must from     | */
/*        |    Rayleigh quotients or a projection. See remark 3 above.| */
/*        | NOTES:                                                    | */
/*        | *The Ritz vectors are not affected by the transformation. | */
/*        %-----------------------------------------------------------% */

	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		temp = slapy2_(&workl[iheigr + k - 1], &workl[iheigi + k - 1])
			;
		workl[iheigr + k - 1] = workl[iheigr + k - 1] / temp / temp + 
			*sigmar;
		workl[iheigi + k - 1] = -workl[iheigi + k - 1] / temp / temp 
			+ *sigmai;
/* L80: */
	    }

	    scopy_(&nconv, &workl[iheigr], &c__1, &dr[1], &c__1);
	    scopy_(&nconv, &workl[iheigi], &c__1, &di[1], &c__1);

	} else if (s_cmp(type__, "REALPT", (ftnlen)6, (ftnlen)6) == 0 || 
		s_cmp(type__, "IMAGPT", (ftnlen)6, (ftnlen)6) == 0) {

	    scopy_(&nconv, &workl[iheigr], &c__1, &dr[1], &c__1);
	    scopy_(&nconv, &workl[iheigi], &c__1, &di[1], &c__1);

	}

    }

    if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 && msglvl > 1) {
	svout_(&debug_1.logfil, &nconv, &dr[1], &debug_1.ndigit, "_neupd: Un"
		"transformed real part of the Ritz valuess.", (ftnlen)52);
	svout_(&debug_1.logfil, &nconv, &di[1], &debug_1.ndigit, "_neupd: Un"
		"transformed imag part of the Ritz valuess.", (ftnlen)52);
	svout_(&debug_1.logfil, &nconv, &workl[ihbds], &debug_1.ndigit, "_ne"
		"upd: Ritz estimates of untransformed Ritz values.", (ftnlen)
		52);
    } else if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && msglvl > 
	    1) {
	svout_(&debug_1.logfil, &nconv, &dr[1], &debug_1.ndigit, "_neupd: Re"
		"al parts of converged Ritz values.", (ftnlen)44);
	svout_(&debug_1.logfil, &nconv, &di[1], &debug_1.ndigit, "_neupd: Im"
		"ag parts of converged Ritz values.", (ftnlen)44);
	svout_(&debug_1.logfil, &nconv, &workl[ihbds], &debug_1.ndigit, "_ne"
		"upd: Associated Ritz estimates.", (ftnlen)34);
    }

/*     %-------------------------------------------------% */
/*     | Eigenvector Purification step. Formally perform | */
/*     | one of inverse subspace iteration. Only used    | */
/*     | for MODE = 2.                                   | */
/*     %-------------------------------------------------% */

    if (*rvec && *(unsigned char *)howmny == 'A' && s_cmp(type__, "SHIFTI", (
	    ftnlen)6, (ftnlen)6) == 0) {

/*        %------------------------------------------------% */
/*        | Purify the computed Ritz vectors by adding a   | */
/*        | little bit of the residual vector:             | */
/*        |                      T                         | */
/*        |          resid(:)*( e    s ) / theta           | */
/*        |                      NCV                       | */
/*        | where H s = s theta. Remember that when theta  | */
/*        | has nonzero imaginary part, the corresponding  | */
/*        | Ritz vector is stored across two columns of Z. | */
/*        %------------------------------------------------% */

	iconj = 0;
	i__1 = nconv;
	for (j = 1; j <= i__1; ++j) {
	    if (workl[iheigi + j - 1] == 0.f) {
		workev[j] = workl[invsub + (j - 1) * ldq + *ncv - 1] / workl[
			iheigr + j - 1];
	    } else if (iconj == 0) {
		temp = slapy2_(&workl[iheigr + j - 1], &workl[iheigi + j - 1])
			;
		workev[j] = (workl[invsub + (j - 1) * ldq + *ncv - 1] * workl[
			iheigr + j - 1] + workl[invsub + j * ldq + *ncv - 1] *
			 workl[iheigi + j - 1]) / temp / temp;
		workev[j + 1] = (workl[invsub + j * ldq + *ncv - 1] * workl[
			iheigr + j - 1] - workl[invsub + (j - 1) * ldq + *ncv 
			- 1] * workl[iheigi + j - 1]) / temp / temp;
		iconj = 1;
	    } else {
		iconj = 0;
	    }
/* L110: */
	}

/*        %---------------------------------------% */
/*        | Perform a rank one update to Z and    | */
/*        | purify all the Ritz vectors together. | */
/*        %---------------------------------------% */

	sger_(n, &nconv, &c_b38, &resid[1], &c__1, &workev[1], &c__1, &z__[
		z_offset], ldz);

    }

L9000:

    return 0;

/*     %---------------% */
/*     | End of SNEUPD | */
/*     %---------------% */

} /* sneupd_ */
Ejemplo n.º 4
0
/* Subroutine */ int slaqr2_(logical *wantt, logical *wantz, integer *n, 
	integer *ktop, integer *kbot, integer *nw, real *h__, integer *ldh, 
	integer *iloz, integer *ihiz, real *z__, integer *ldz, integer *ns, 
	integer *nd, real *sr, real *si, real *v, integer *ldv, integer *nh, 
	real *t, integer *ldt, integer *nv, real *wv, integer *ldwv, real *
	work, integer *lwork)
{
    /* System generated locals */
    integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1, 
	    wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3, r__4, r__5, r__6;

    /* Local variables */
    integer i__, j, k;
    real s, aa, bb, cc, dd, cs, sn;
    integer jw;
    real evi, evk, foo;
    integer kln;
    real tau, ulp;
    integer lwk1, lwk2;
    real beta;
    integer kend, kcol, info, ifst, ilst, ltop, krow;
    logical bulge;
    integer infqr;
    integer kwtop;
    real safmin;
    real safmax;
    logical sorted;
    real smlnum;
    integer lwkopt;

/*  -- LAPACK auxiliary routine (version 3.2.1)                        -- */
/*  -- April 2009                                                      -- */

/*     This subroutine is identical to SLAQR3 except that it avoids */
/*     recursion by calling SLAHQR instead of SLAQR4. */

/*     ****************************************************************** */
/*     Aggressive early deflation: */

/*     This subroutine accepts as input an upper Hessenberg matrix */
/*     H and performs an orthogonal similarity transformation */
/*     designed to detect and deflate fully converged eigenvalues from */
/*     a trailing principal submatrix.  On output H has been over- */
/*     written by a new Hessenberg matrix that is a perturbation of */
/*     an orthogonal similarity transformation of H.  It is to be */
/*     hoped that the final version of H has many zero subdiagonal */
/*     entries. */

/*     ****************************************************************** */
/*     WANTT   (input) LOGICAL */
/*          If .TRUE., then the Hessenberg matrix H is fully updated */
/*          so that the quasi-triangular Schur factor may be */
/*          computed (in cooperation with the calling subroutine). */
/*          If .FALSE., then only enough of H is updated to preserve */
/*          the eigenvalues. */

/*     WANTZ   (input) LOGICAL */
/*          If .TRUE., then the orthogonal matrix Z is updated so */
/*          so that the orthogonal Schur factor may be computed */
/*          (in cooperation with the calling subroutine). */
/*          If .FALSE., then Z is not referenced. */

/*     N       (input) INTEGER */
/*          The order of the matrix H and (if WANTZ is .TRUE.) the */
/*          order of the orthogonal matrix Z. */

/*     KTOP    (input) INTEGER */
/*          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
/*          KBOT and KTOP together determine an isolated block */
/*          along the diagonal of the Hessenberg matrix. */

/*     KBOT    (input) INTEGER */
/*          It is assumed without a check that either */
/*          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together */
/*          determine an isolated block along the diagonal of the */
/*          Hessenberg matrix. */

/*     NW      (input) INTEGER */
/*          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1). */

/*     H       (input/output) REAL array, dimension (LDH,N) */
/*          On input the initial N-by-N section of H stores the */
/*          Hessenberg matrix undergoing aggressive early deflation. */
/*          On output H has been transformed by an orthogonal */
/*          similarity transformation, perturbed, and the returned */
/*          to Hessenberg form that (it is to be hoped) has some */
/*          zero subdiagonal entries. */

/*     LDH     (input) integer */
/*          Leading dimension of H just as declared in the calling */
/*          subroutine.  N .LE. LDH */

/*     ILOZ    (input) INTEGER */
/*     IHIZ    (input) INTEGER */
/*          Specify the rows of Z to which transformations must be */

/*     Z       (input/output) REAL array, dimension (LDZ,N) */
/*          IF WANTZ is .TRUE., then on output, the orthogonal */
/*          similarity transformation mentioned above has been */
/*          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. */
/*          If WANTZ is .FALSE., then Z is unreferenced. */

/*     LDZ     (input) integer */
/*          The leading dimension of Z just as declared in the */
/*          calling subroutine.  1 .LE. LDZ. */

/*     NS      (output) integer */
/*          The number of unconverged (ie approximate) eigenvalues */
/*          returned in SR and SI that may be used as shifts by the */
/*          calling subroutine. */

/*     ND      (output) integer */
/*          The number of converged eigenvalues uncovered by this */
/*          subroutine. */

/*     SR      (output) REAL array, dimension KBOT */
/*     SI      (output) REAL array, dimension KBOT */
/*          On output, the real and imaginary parts of approximate */
/*          eigenvalues that may be used for shifts are stored in */
/*          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
/*          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
/*          The real and imaginary parts of converged eigenvalues */
/*          are stored in SR(KBOT-ND+1) through SR(KBOT) and */
/*          SI(KBOT-ND+1) through SI(KBOT), respectively. */

/*     V       (workspace) REAL array, dimension (LDV,NW) */
/*          An NW-by-NW work array. */

/*     LDV     (input) integer scalar */
/*          The leading dimension of V just as declared in the */
/*          calling subroutine.  NW .LE. LDV */

/*     NH      (input) integer scalar */
/*          The number of columns of T.  NH.GE.NW. */

/*     T       (workspace) REAL array, dimension (LDT,NW) */

/*     LDT     (input) integer */
/*          The leading dimension of T just as declared in the */
/*          calling subroutine.  NW .LE. LDT */

/*     NV      (input) integer */
/*          The number of rows of work array WV available for */
/*          workspace.  NV.GE.NW. */

/*     WV      (workspace) REAL array, dimension (LDWV,NW) */

/*     LDWV    (input) integer */
/*          The leading dimension of W just as declared in the */
/*          calling subroutine.  NW .LE. LDV */

/*     WORK    (workspace) REAL array, dimension LWORK. */
/*          On exit, WORK(1) is set to an estimate of the optimal value */
/*          of LWORK for the given values of N, NW, KTOP and KBOT. */

/*     LWORK   (input) integer */
/*          The dimension of the work array WORK.  LWORK = 2*NW */
/*          suffices, but greater efficiency may result from larger */
/*          values of LWORK. */

/*          If LWORK = -1, then a workspace query is assumed; SLAQR2 */
/*          only estimates the optimal workspace size for the given */
/*          values of N, NW, KTOP and KBOT.  The estimate is returned */
/*          in WORK(1).  No error message related to LWORK is issued */
/*          by XERBLA.  Neither H nor Z are accessed. */

/*     ================================================================ */
/*     Based on contributions by */
/*        Karen Braman and Ralph Byers, Department of Mathematics, */
/*        University of Kansas, USA */

/*     ================================================================ */

/*     ==== Estimate optimal workspace. ==== */

    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --sr;
    --si;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    wv_dim1 = *ldwv;
    wv_offset = 1 + wv_dim1;
    wv -= wv_offset;
    --work;

    /* Function Body */
/* Computing MIN */
    i__1 = *nw, i__2 = *kbot - *ktop + 1;
    jw = min(i__1,i__2);
    if (jw <= 2) {
	lwkopt = 1;
    } else {

/*        ==== Workspace query call to SGEHRD ==== */

	i__1 = jw - 1;
	sgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
		c_n1, &info);
	lwk1 = (integer) work[1];

/*        ==== Workspace query call to SORMHR ==== */

	i__1 = jw - 1;
	sormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], 
		 &v[v_offset], ldv, &work[1], &c_n1, &info);
	lwk2 = (integer) work[1];

/*        ==== Optimal workspace ==== */

	lwkopt = jw + max(lwk1,lwk2);
    }

/*     ==== Quick return in case of workspace query. ==== */

    if (*lwork == -1) {
	work[1] = (real) lwkopt;
	return 0;
    }

    *ns = 0;
    *nd = 0;
    work[1] = 1.f;
    if (*ktop > *kbot) {
	return 0;
    }
    if (*nw < 1) {
	return 0;
    }

/*     ==== Machine constants ==== */

    safmin = slamch_("SAFE MINIMUM");
    safmax = 1.f / safmin;
    slabad_(&safmin, &safmax);
    ulp = slamch_("PRECISION");
    smlnum = safmin * ((real) (*n) / ulp);

/*     ==== Setup deflation window ==== */

/* Computing MIN */
    i__1 = *nw, i__2 = *kbot - *ktop + 1;
    jw = min(i__1,i__2);
    kwtop = *kbot - jw + 1;
    if (kwtop == *ktop) {
	s = 0.f;
    } else {
	s = h__[kwtop + (kwtop - 1) * h_dim1];
    }

    if (*kbot == kwtop) {

/*        ==== 1-by-1 deflation window: not much to do ==== */

	sr[kwtop] = h__[kwtop + kwtop * h_dim1];
	si[kwtop] = 0.f;
	*ns = 1;
	*nd = 0;
/* Computing MAX */
	r__2 = smlnum, r__3 = ulp * (r__1 = h__[kwtop + kwtop * h_dim1], dabs(
		r__1));
	if (dabs(s) <= dmax(r__2,r__3)) {
	    *ns = 0;
	    *nd = 1;
	    if (kwtop > *ktop) {
		h__[kwtop + (kwtop - 1) * h_dim1] = 0.f;
	    }
	}
	work[1] = 1.f;
	return 0;
    }

/*     ==== Convert to spike-triangular form.  (In case of a */
/*     .    rare QR failure, this routine continues to do */
/*     .    aggressive early deflation using that part of */
/*     .    the deflation window that converged using INFQR */
/*     .    here and there to keep track.) ==== */

    slacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset], 
	    ldt);
    i__1 = jw - 1;
    i__2 = *ldh + 1;
    i__3 = *ldt + 1;
    scopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
	    i__3);

    slaset_("A", &jw, &jw, &c_b12, &c_b13, &v[v_offset], ldv);
    slahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[kwtop], 
	    &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);

/*     ==== STREXC needs a clean margin near the diagonal ==== */

    i__1 = jw - 3;
    for (j = 1; j <= i__1; ++j) {
	t[j + 2 + j * t_dim1] = 0.f;
	t[j + 3 + j * t_dim1] = 0.f;
    }
    if (jw > 2) {
	t[jw + (jw - 2) * t_dim1] = 0.f;
    }

/*     ==== Deflation detection loop ==== */

    *ns = jw;
    ilst = infqr + 1;
L20:
    if (ilst <= *ns) {
	if (*ns == 1) {
	    bulge = FALSE_;
	} else {
	    bulge = t[*ns + (*ns - 1) * t_dim1] != 0.f;
	}

/*        ==== Small spike tip test for deflation ==== */

	if (! bulge) {

/*           ==== Real eigenvalue ==== */

	    foo = (r__1 = t[*ns + *ns * t_dim1], dabs(r__1));
	    if (foo == 0.f) {
		foo = dabs(s);
	    }
/* Computing MAX */
	    r__2 = smlnum, r__3 = ulp * foo;
	    if ((r__1 = s * v[*ns * v_dim1 + 1], dabs(r__1)) <= dmax(r__2,
		    r__3)) {

/*              ==== Deflatable ==== */

		--(*ns);
	    } else {

/*              ==== Undeflatable.   Move it up out of the way. */
/*              .    (STREXC can not fail in this case.) ==== */

		ifst = *ns;
		strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 
			 &ilst, &work[1], &info);
		++ilst;
	    }
	} else {

/*           ==== Complex conjugate pair ==== */

	    foo = (r__3 = t[*ns + *ns * t_dim1], dabs(r__3)) + sqrt((r__1 = t[
		    *ns + (*ns - 1) * t_dim1], dabs(r__1))) * sqrt((r__2 = t[*
		    ns - 1 + *ns * t_dim1], dabs(r__2)));
	    if (foo == 0.f) {
		foo = dabs(s);
	    }
/* Computing MAX */
	    r__3 = (r__1 = s * v[*ns * v_dim1 + 1], dabs(r__1)), r__4 = (r__2 
		    = s * v[(*ns - 1) * v_dim1 + 1], dabs(r__2));
/* Computing MAX */
	    r__5 = smlnum, r__6 = ulp * foo;
	    if (dmax(r__3,r__4) <= dmax(r__5,r__6)) {

/*              ==== Deflatable ==== */

		*ns += -2;
	    } else {

/*              ==== Undeflatable. Move them up out of the way. */
/*              .    Fortunately, STREXC does the right thing with */
/*              .    ILST in case of a rare exchange failure. ==== */

		ifst = *ns;
		strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 
			 &ilst, &work[1], &info);
		ilst += 2;
	    }
	}

/*        ==== End deflation detection loop ==== */

	goto L20;
    }

/*        ==== Return to Hessenberg form ==== */

    if (*ns == 0) {
	s = 0.f;
    }

    if (*ns < jw) {

/*        ==== sorting diagonal blocks of T improves accuracy for */
/*        .    graded matrices.  Bubble sort deals well with */
/*        .    exchange failures. ==== */

	sorted = FALSE_;
	i__ = *ns + 1;
L30:
	if (sorted) {
	    goto L50;
	}
	sorted = TRUE_;

	kend = i__ - 1;
	i__ = infqr + 1;
	if (i__ == *ns) {
	    k = i__ + 1;
	} else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
	    k = i__ + 1;
	} else {
	    k = i__ + 2;
	}
L40:
	if (k <= kend) {
	    if (k == i__ + 1) {
		evi = (r__1 = t[i__ + i__ * t_dim1], dabs(r__1));
	    } else {
		evi = (r__3 = t[i__ + i__ * t_dim1], dabs(r__3)) + sqrt((r__1 
			= t[i__ + 1 + i__ * t_dim1], dabs(r__1))) * sqrt((
			r__2 = t[i__ + (i__ + 1) * t_dim1], dabs(r__2)));
	    }

	    if (k == kend) {
		evk = (r__1 = t[k + k * t_dim1], dabs(r__1));
	    } else if (t[k + 1 + k * t_dim1] == 0.f) {
		evk = (r__1 = t[k + k * t_dim1], dabs(r__1));
	    } else {
		evk = (r__3 = t[k + k * t_dim1], dabs(r__3)) + sqrt((r__1 = t[
			k + 1 + k * t_dim1], dabs(r__1))) * sqrt((r__2 = t[k 
			+ (k + 1) * t_dim1], dabs(r__2)));
	    }

	    if (evi >= evk) {
		i__ = k;
	    } else {
		sorted = FALSE_;
		ifst = i__;
		ilst = k;
		strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 
			 &ilst, &work[1], &info);
		if (info == 0) {
		    i__ = ilst;
		} else {
		    i__ = k;
		}
	    }
	    if (i__ == kend) {
		k = i__ + 1;
	    } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
		k = i__ + 1;
	    } else {
		k = i__ + 2;
	    }
	    goto L40;
	}
	goto L30;
L50:
	;
    }

/*     ==== Restore shift/eigenvalue array from T ==== */

    i__ = jw;
L60:
    if (i__ >= infqr + 1) {
	if (i__ == infqr + 1) {
	    sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
	    si[kwtop + i__ - 1] = 0.f;
	    --i__;
	} else if (t[i__ + (i__ - 1) * t_dim1] == 0.f) {
	    sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
	    si[kwtop + i__ - 1] = 0.f;
	    --i__;
	} else {
	    aa = t[i__ - 1 + (i__ - 1) * t_dim1];
	    cc = t[i__ + (i__ - 1) * t_dim1];
	    bb = t[i__ - 1 + i__ * t_dim1];
	    dd = t[i__ + i__ * t_dim1];
	    slanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__ 
		    - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
		    sn);
	    i__ += -2;
	}
	goto L60;
    }

    if (*ns < jw || s == 0.f) {
	if (*ns > 1 && s != 0.f) {

/*           ==== Reflect spike back into lower triangle ==== */

	    scopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
	    beta = work[1];
	    slarfg_(ns, &beta, &work[2], &c__1, &tau);
	    work[1] = 1.f;

	    i__1 = jw - 2;
	    i__2 = jw - 2;
	    slaset_("L", &i__1, &i__2, &c_b12, &c_b12, &t[t_dim1 + 3], ldt);

	    slarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
		    work[jw + 1]);
	    slarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
		    work[jw + 1]);
	    slarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
		    work[jw + 1]);

	    i__1 = *lwork - jw;
	    sgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
, &i__1, &info);
	}

/*        ==== Copy updated reduced window into place ==== */

	if (kwtop > 1) {
	    h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
	}
	slacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
, ldh);
	i__1 = jw - 1;
	i__2 = *ldt + 1;
	i__3 = *ldh + 1;
	scopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1], 
		 &i__3);

/*        ==== Accumulate orthogonal matrix in order update */
/*        .    H and Z, if requested.  ==== */

	if (*ns > 1 && s != 0.f) {
	    i__1 = *lwork - jw;
	    sormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1], 
		     &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
	}

/*        ==== Update vertical slab in H ==== */

	if (*wantt) {
	    ltop = 1;
	} else {
	    ltop = *ktop;
	}
	i__1 = kwtop - 1;
	i__2 = *nv;
	for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow += 
		i__2) {
/* Computing MIN */
	    i__3 = *nv, i__4 = kwtop - krow;
	    kln = min(i__3,i__4);
	    sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &h__[krow + kwtop * 
		    h_dim1], ldh, &v[v_offset], ldv, &c_b12, &wv[wv_offset], 
		    ldwv);
	    slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop * 
		    h_dim1], ldh);
	}

/*        ==== Update horizontal slab in H ==== */

	if (*wantt) {
	    i__2 = *n;
	    i__1 = *nh;
	    for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2; 
		    kcol += i__1) {
/* Computing MIN */
		i__3 = *nh, i__4 = *n - kcol + 1;
		kln = min(i__3,i__4);
		sgemm_("C", "N", &jw, &kln, &jw, &c_b13, &v[v_offset], ldv, &
			h__[kwtop + kcol * h_dim1], ldh, &c_b12, &t[t_offset], 
			 ldt);
		slacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
			 h_dim1], ldh);
	    }
	}

/*        ==== Update vertical slab in Z ==== */

	if (*wantz) {
	    i__1 = *ihiz;
	    i__2 = *nv;
	    for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
		     i__2) {
/* Computing MIN */
		i__3 = *nv, i__4 = *ihiz - krow + 1;
		kln = min(i__3,i__4);
		sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &z__[krow + kwtop * 
			z_dim1], ldz, &v[v_offset], ldv, &c_b12, &wv[
			wv_offset], ldwv);
		slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow + 
			kwtop * z_dim1], ldz);
	    }
	}
    }

    *nd = jw - *ns;

/*     .    INFQR from the spike length takes care */
/*     .    of the case of a rare QR failure while */
/*     .    calculating eigenvalues of the deflation */
/*     .    window.)  ==== */

    *ns -= infqr;

/*      ==== Return optimal workspace. ==== */

    work[1] = (real) lwkopt;

/*     ==== End of SLAQR2 ==== */

    return 0;
} /* slaqr2_ */
Ejemplo n.º 5
0
/* Subroutine */
int slaqr0_(logical *wantt, logical *wantz, integer *n, integer *ilo, integer *ihi, real *h__, integer *ldh, real *wr, real * wi, integer *iloz, integer *ihiz, real *z__, integer *ldz, real *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1, r__2, r__3, r__4;
    /* Local variables */
    integer i__, k;
    real aa, bb, cc, dd;
    integer ld;
    real cs;
    integer nh, it, ks, kt;
    real sn;
    integer ku, kv, ls, ns;
    real ss;
    integer nw, inf, kdu, nho, nve, kwh, nsr, nwr, kwv, ndec, ndfl, kbot, nmin;
    real swap;
    integer ktop;
    real zdum[1] /* was [1][1] */
    ;
    integer kacc22, itmax, nsmax, nwmax, kwtop;
    extern /* Subroutine */
    int slanv2_(real *, real *, real *, real *, real * , real *, real *, real *, real *, real *), slaqr3_(logical *, logical *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *, integer *, real *, integer *, integer *, real *, integer *, real *, integer *), slaqr4_(logical *, logical *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *, real *, integer *, real *, integer *, integer *), slaqr5_(logical *, logical *, integer *, integer *, integer *, integer *, integer *, real *, real *, real *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, integer *, real * , integer *, integer *, real *, integer *);
    integer nibble;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
    char jbcmpz[2];
    extern /* Subroutine */
    int slahqr_(logical *, logical *, integer *, integer *, integer *, real *, integer *, real *, real *, integer * , integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *);
    integer nwupbd;
    logical sorted;
    integer lwkopt;
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ================================================================ */
    /* .. Parameters .. */
    /* ==== Matrices of order NTINY or smaller must be processed by */
    /* . SLAHQR because of insufficient subdiagonal scratch space. */
    /* . (This is a hard limit.) ==== */
    /* ==== Exceptional deflation windows: try to cure rare */
    /* . slow convergence by varying the size of the */
    /* . deflation window after KEXNW iterations. ==== */
    /* ==== Exceptional shifts: try to cure rare slow convergence */
    /* . with ad-hoc exceptional shifts every KEXSH iterations. */
    /* . ==== */
    /* ==== The constants WILK1 and WILK2 are used to form the */
    /* . exceptional shifts. ==== */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --wr;
    --wi;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    /* Function Body */
    *info = 0;
    /* ==== Quick return for N = 0: nothing to do. ==== */
    if (*n == 0)
    {
        work[1] = 1.f;
        return 0;
    }
    if (*n <= 11)
    {
        /* ==== Tiny matrices must use SLAHQR. ==== */
        lwkopt = 1;
        if (*lwork != -1)
        {
            slahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], & wi[1], iloz, ihiz, &z__[z_offset], ldz, info);
        }
    }
    else
    {
        /* ==== Use small bulge multi-shift QR with aggressive early */
        /* . deflation on larger-than-tiny matrices. ==== */
        /* ==== Hope for the best. ==== */
        *info = 0;
        /* ==== Set up job flags for ILAENV. ==== */
        if (*wantt)
        {
            *(unsigned char *)jbcmpz = 'S';
        }
        else
        {
            *(unsigned char *)jbcmpz = 'E';
        }
        if (*wantz)
        {
            *(unsigned char *)&jbcmpz[1] = 'V';
        }
        else
        {
            *(unsigned char *)&jbcmpz[1] = 'N';
        }
        /* ==== NWR = recommended deflation window size. At this */
        /* . point, N .GT. NTINY = 11, so there is enough */
        /* . subdiagonal workspace for NWR.GE.2 as required. */
        /* . (In fact, there is enough subdiagonal space for */
        /* . NWR.GE.3.) ==== */
        nwr = ilaenv_(&c__13, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
        nwr = max(2,nwr);
        /* Computing MIN */
        i__1 = *ihi - *ilo + 1;
        i__2 = (*n - 1) / 3;
        i__1 = min(i__1,i__2); // ; expr subst
        nwr = min(i__1,nwr);
        /* ==== NSR = recommended number of simultaneous shifts. */
        /* . At this point N .GT. NTINY = 11, so there is at */
        /* . enough subdiagonal workspace for NSR to be even */
        /* . and greater than or equal to two as required. ==== */
        nsr = ilaenv_(&c__15, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
        /* Computing MIN */
        i__1 = nsr, i__2 = (*n + 6) / 9;
        i__1 = min(i__1,i__2);
        i__2 = *ihi - *ilo; // ; expr subst
        nsr = min(i__1,i__2);
        /* Computing MAX */
        i__1 = 2;
        i__2 = nsr - nsr % 2; // , expr subst
        nsr = max(i__1,i__2);
        /* ==== Estimate optimal workspace ==== */
        /* ==== Workspace query call to SLAQR3 ==== */
        i__1 = nwr + 1;
        slaqr3_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[ h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1], &c_n1);
        /* ==== Optimal workspace = MAX(SLAQR5, SLAQR3) ==== */
        /* Computing MAX */
        i__1 = nsr * 3 / 2;
        i__2 = (integer) work[1]; // , expr subst
        lwkopt = max(i__1,i__2);
        /* ==== Quick return in case of workspace query. ==== */
        if (*lwork == -1)
        {
            work[1] = (real) lwkopt;
            return 0;
        }
        /* ==== SLAHQR/SLAQR0 crossover point ==== */
        nmin = ilaenv_(&c__12, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
        nmin = max(11,nmin);
        /* ==== Nibble crossover point ==== */
        nibble = ilaenv_(&c__14, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
        nibble = max(0,nibble);
        /* ==== Accumulate reflections during ttswp? Use block */
        /* . 2-by-2 structure during matrix-matrix multiply? ==== */
        kacc22 = ilaenv_(&c__16, "SLAQR0", jbcmpz, n, ilo, ihi, lwork);
        kacc22 = max(0,kacc22);
        kacc22 = min(2,kacc22);
        /* ==== NWMAX = the largest possible deflation window for */
        /* . which there is sufficient workspace. ==== */
        /* Computing MIN */
        i__1 = (*n - 1) / 3;
        i__2 = *lwork / 2; // , expr subst
        nwmax = min(i__1,i__2);
        nw = nwmax;
        /* ==== NSMAX = the Largest number of simultaneous shifts */
        /* . for which there is sufficient workspace. ==== */
        /* Computing MIN */
        i__1 = (*n + 6) / 9;
        i__2 = (*lwork << 1) / 3; // , expr subst
        nsmax = min(i__1,i__2);
        nsmax -= nsmax % 2;
        /* ==== NDFL: an iteration count restarted at deflation. ==== */
        ndfl = 1;
        /* ==== ITMAX = iteration limit ==== */
        /* Computing MAX */
        i__1 = 10;
        i__2 = *ihi - *ilo + 1; // , expr subst
        itmax = max(i__1,i__2) * 30;
        /* ==== Last row and column in the active block ==== */
        kbot = *ihi;
        /* ==== Main Loop ==== */
        i__1 = itmax;
        for (it = 1;
                it <= i__1;
                ++it)
        {
            /* ==== Done when KBOT falls below ILO ==== */
            if (kbot < *ilo)
            {
                goto L90;
            }
            /* ==== Locate active block ==== */
            i__2 = *ilo + 1;
            for (k = kbot;
                    k >= i__2;
                    --k)
            {
                if (h__[k + (k - 1) * h_dim1] == 0.f)
                {
                    goto L20;
                }
                /* L10: */
            }
            k = *ilo;
L20:
            ktop = k;
            /* ==== Select deflation window size: */
            /* . Typical Case: */
            /* . If possible and advisable, nibble the entire */
            /* . active block. If not, use size MIN(NWR,NWMAX) */
            /* . or MIN(NWR+1,NWMAX) depending upon which has */
            /* . the smaller corresponding subdiagonal entry */
            /* . (a heuristic). */
            /* . */
            /* . Exceptional Case: */
            /* . If there have been no deflations in KEXNW or */
            /* . more iterations, then vary the deflation window */
            /* . size. At first, because, larger windows are, */
            /* . in general, more powerful than smaller ones, */
            /* . rapidly increase the window to the maximum possible. */
            /* . Then, gradually reduce the window size. ==== */
            nh = kbot - ktop + 1;
            nwupbd = min(nh,nwmax);
            if (ndfl < 5)
            {
                nw = min(nwupbd,nwr);
            }
            else
            {
                /* Computing MIN */
                i__2 = nwupbd;
                i__3 = nw << 1; // , expr subst
                nw = min(i__2,i__3);
            }
            if (nw < nwmax)
            {
                if (nw >= nh - 1)
                {
                    nw = nh;
                }
                else
                {
                    kwtop = kbot - nw + 1;
                    if ((r__1 = h__[kwtop + (kwtop - 1) * h_dim1], f2c_abs(r__1)) > (r__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1], f2c_abs(r__2)))
                    {
                        ++nw;
                    }
                }
            }
            if (ndfl < 5)
            {
                ndec = -1;
            }
            else if (ndec >= 0 || nw >= nwupbd)
            {
                ++ndec;
                if (nw - ndec < 2)
                {
                    ndec = 0;
                }
                nw -= ndec;
            }
            /* ==== Aggressive early deflation: */
            /* . split workspace under the subdiagonal into */
            /* . - an nw-by-nw work array V in the lower */
            /* . left-hand-corner, */
            /* . - an NW-by-at-least-NW-but-more-is-better */
            /* . (NW-by-NHO) horizontal work array along */
            /* . the bottom edge, */
            /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
            /* . vertical work array along the left-hand-edge. */
            /* . ==== */
            kv = *n - nw + 1;
            kt = nw + 1;
            nho = *n - nw - 1 - kt + 1;
            kwv = nw + 2;
            nve = *n - nw - kwv + 1;
            /* ==== Aggressive early deflation ==== */
            slaqr3_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork);
            /* ==== Adjust KBOT accounting for new deflations. ==== */
            kbot -= ld;
            /* ==== KS points to the shifts. ==== */
            ks = kbot - ls + 1;
            /* ==== Skip an expensive QR sweep if there is a (partly */
            /* . heuristic) reason to expect that many eigenvalues */
            /* . will deflate without it. Here, the QR sweep is */
            /* . skipped if many eigenvalues have just been deflated */
            /* . or if the remaining active block is small. */
            if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > min( nmin,nwmax))
            {
                /* ==== NS = nominal number of simultaneous shifts. */
                /* . This may be lowered (slightly) if SLAQR3 */
                /* . did not provide that many shifts. ==== */
                /* Computing MIN */
                /* Computing MAX */
                i__4 = 2;
                i__5 = kbot - ktop; // , expr subst
                i__2 = min(nsmax,nsr);
                i__3 = max(i__4,i__5); // , expr subst
                ns = min(i__2,i__3);
                ns -= ns % 2;
                /* ==== If there have been no deflations */
                /* . in a multiple of KEXSH iterations, */
                /* . then try exceptional shifts. */
                /* . Otherwise use shifts provided by */
                /* . SLAQR3 above or from the eigenvalues */
                /* . of a trailing principal submatrix. ==== */
                if (ndfl % 6 == 0)
                {
                    ks = kbot - ns + 1;
                    /* Computing MAX */
                    i__3 = ks + 1;
                    i__4 = ktop + 2; // , expr subst
                    i__2 = max(i__3,i__4);
                    for (i__ = kbot;
                            i__ >= i__2;
                            i__ += -2)
                    {
                        ss = (r__1 = h__[i__ + (i__ - 1) * h_dim1], f2c_abs(r__1)) + (r__2 = h__[i__ - 1 + (i__ - 2) * h_dim1], f2c_abs(r__2));
                        aa = ss * .75f + h__[i__ + i__ * h_dim1];
                        bb = ss;
                        cc = ss * -.4375f;
                        dd = aa;
                        slanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1] , &wr[i__], &wi[i__], &cs, &sn);
                        /* L30: */
                    }
                    if (ks == ktop)
                    {
                        wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1];
                        wi[ks + 1] = 0.f;
                        wr[ks] = wr[ks + 1];
                        wi[ks] = wi[ks + 1];
                    }
                }
                else
                {
                    /* ==== Got NS/2 or fewer shifts? Use SLAQR4 or */
                    /* . SLAHQR on a trailing principal submatrix to */
                    /* . get more. (Since NS.LE.NSMAX.LE.(N+6)/9, */
                    /* . there is enough space below the subdiagonal */
                    /* . to fit an NS-by-NS scratch array.) ==== */
                    if (kbot - ks + 1 <= ns / 2)
                    {
                        ks = kbot - ns + 1;
                        kt = *n - ns + 1;
                        slacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, & h__[kt + h_dim1], ldh);
                        if (ns > nmin)
                        {
                            slaqr4_(&c_false, &c_false, &ns, &c__1, &ns, &h__[ kt + h_dim1], ldh, &wr[ks], &wi[ks], & c__1, &c__1, zdum, &c__1, &work[1], lwork, &inf);
                        }
                        else
                        {
                            slahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[ kt + h_dim1], ldh, &wr[ks], &wi[ks], & c__1, &c__1, zdum, &c__1, &inf);
                        }
                        ks += inf;
                        /* ==== In case of a rare QR failure use */
                        /* . eigenvalues of the trailing 2-by-2 */
                        /* . principal submatrix. ==== */
                        if (ks >= kbot)
                        {
                            aa = h__[kbot - 1 + (kbot - 1) * h_dim1];
                            cc = h__[kbot + (kbot - 1) * h_dim1];
                            bb = h__[kbot - 1 + kbot * h_dim1];
                            dd = h__[kbot + kbot * h_dim1];
                            slanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[ kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn) ;
                            ks = kbot - 1;
                        }
                    }
                    if (kbot - ks + 1 > ns)
                    {
                        /* ==== Sort the shifts (Helps a little) */
                        /* . Bubble sort keeps complex conjugate */
                        /* . pairs together. ==== */
                        sorted = FALSE_;
                        i__2 = ks + 1;
                        for (k = kbot;
                                k >= i__2;
                                --k)
                        {
                            if (sorted)
                            {
                                goto L60;
                            }
                            sorted = TRUE_;
                            i__3 = k - 1;
                            for (i__ = ks;
                                    i__ <= i__3;
                                    ++i__)
                            {
                                if ((r__1 = wr[i__], f2c_abs(r__1)) + (r__2 = wi[ i__], f2c_abs(r__2)) < (r__3 = wr[i__ + 1] , f2c_abs(r__3)) + (r__4 = wi[i__ + 1], f2c_abs(r__4)))
                                {
                                    sorted = FALSE_;
                                    swap = wr[i__];
                                    wr[i__] = wr[i__ + 1];
                                    wr[i__ + 1] = swap;
                                    swap = wi[i__];
                                    wi[i__] = wi[i__ + 1];
                                    wi[i__ + 1] = swap;
                                }
                                /* L40: */
                            }
                            /* L50: */
                        }
L60:
                        ;
                    }
                    /* ==== Shuffle shifts into pairs of real shifts */
                    /* . and pairs of complex conjugate shifts */
                    /* . assuming complex conjugate shifts are */
                    /* . already adjacent to one another. (Yes, */
                    /* . they are.) ==== */
                    i__2 = ks + 2;
                    for (i__ = kbot;
                            i__ >= i__2;
                            i__ += -2)
                    {
                        if (wi[i__] != -wi[i__ - 1])
                        {
                            swap = wr[i__];
                            wr[i__] = wr[i__ - 1];
                            wr[i__ - 1] = wr[i__ - 2];
                            wr[i__ - 2] = swap;
                            swap = wi[i__];
                            wi[i__] = wi[i__ - 1];
                            wi[i__ - 1] = wi[i__ - 2];
                            wi[i__ - 2] = swap;
                        }
                        /* L70: */
                    }
                }
                /* ==== If there are only two shifts and both are */
                /* . real, then use only one. ==== */
                if (kbot - ks + 1 == 2)
                {
                    if (wi[kbot] == 0.f)
                    {
                        if ((r__1 = wr[kbot] - h__[kbot + kbot * h_dim1], f2c_abs( r__1)) < (r__2 = wr[kbot - 1] - h__[kbot + kbot * h_dim1], f2c_abs(r__2)))
                        {
                            wr[kbot - 1] = wr[kbot];
                        }
                        else
                        {
                            wr[kbot] = wr[kbot - 1];
                        }
                    }
                }
                /* ==== Use up to NS of the the smallest magnatiude */
                /* . shifts. If there aren't NS shifts available, */
                /* . then use them all, possibly dropping one to */
                /* . make the number of shifts even. ==== */
                /* Computing MIN */
                i__2 = ns;
                i__3 = kbot - ks + 1; // , expr subst
                ns = min(i__2,i__3);
                ns -= ns % 2;
                ks = kbot - ns + 1;
                /* ==== Small-bulge multi-shift QR sweep: */
                /* . split workspace under the subdiagonal into */
                /* . - a KDU-by-KDU work array U in the lower */
                /* . left-hand-corner, */
                /* . - a KDU-by-at-least-KDU-but-more-is-better */
                /* . (KDU-by-NHo) horizontal work array WH along */
                /* . the bottom edge, */
                /* . - and an at-least-KDU-but-more-is-better-by-KDU */
                /* . (NVE-by-KDU) vertical work WV arrow along */
                /* . the left-hand-edge. ==== */
                kdu = ns * 3 - 3;
                ku = *n - kdu + 1;
                kwh = kdu + 1;
                nho = *n - kdu - 3 - (kdu + 1) + 1;
                kwv = kdu + 4;
                nve = *n - kdu - kwv + 1;
                /* ==== Small-bulge multi-shift QR sweep ==== */
                slaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks], &wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[ z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1], ldh);
            }
            /* ==== Note progress (or the lack of it). ==== */
            if (ld > 0)
            {
                ndfl = 1;
            }
            else
            {
                ++ndfl;
            }
            /* ==== End of main loop ==== */
            /* L80: */
        }
        /* ==== Iteration limit exceeded. Set INFO to show where */
        /* . the problem occurred and exit. ==== */
        *info = kbot;
L90:
        ;
    }
    /* ==== Return the optimal value of LWORK. ==== */
    work[1] = (real) lwkopt;
    /* ==== End of SLAQR0 ==== */
    return 0;
}
Ejemplo n.º 6
0
/* Subroutine */ int shseqr_(char *job, char *compz, integer *n, integer *ilo,
	 integer *ihi, real *h__, integer *ldh, real *wr, real *wi, real *z__,
	 integer *ldz, real *work, integer *lwork, integer *info, ftnlen 
	job_len, ftnlen compz_len)
{
    /* System generated locals */
    address a__1[2];
    integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3[2], i__4, 
	    i__5;
    real r__1, r__2;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static integer i__, j, k, l;
    static real s[225]	/* was [15][15] */, v[16];
    static integer i1, i2, ii, nh, nr, ns, nv;
    static real vv[16];
    static integer itn;
    static real tau;
    static integer its;
    static real ulp, tst1;
    static integer maxb;
    static real absw;
    static integer ierr;
    static real unfl, temp, ovfl;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static integer itemp;
    extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *, 
	    ftnlen);
    static logical initz, wantt;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    static logical wantz;
    extern doublereal slapy2_(real *, real *);
    extern /* Subroutine */ int slabad_(real *, real *);
    extern doublereal slamch_(char *, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *, 
	    real *);
    extern integer isamax_(integer *, real *, integer *);
    extern doublereal slanhs_(char *, integer *, real *, integer *, real *, 
	    ftnlen);
    extern /* Subroutine */ int slahqr_(logical *, logical *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
	    , integer *, real *, integer *, integer *), slacpy_(char *, 
	    integer *, integer *, real *, integer *, real *, integer *, 
	    ftnlen), slaset_(char *, integer *, integer *, real *, real *, 
	    real *, integer *, ftnlen), slarfx_(char *, integer *, integer *, 
	    real *, real *, real *, integer *, real *, ftnlen);
    static real smlnum;
    static logical lquery;


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SHSEQR computes the eigenvalues of a real upper Hessenberg matrix H */
/*  and, optionally, the matrices T and Z from the Schur decomposition */
/*  H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur */
/*  form), and Z is the orthogonal matrix of Schur vectors. */

/*  Optionally Z may be postmultiplied into an input orthogonal matrix Q, */
/*  so that this routine can give the Schur factorization of a matrix A */
/*  which has been reduced to the Hessenberg form H by the orthogonal */
/*  matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T. */

/*  Arguments */
/*  ========= */

/*  JOB     (input) CHARACTER*1 */
/*          = 'E':  compute eigenvalues only; */
/*          = 'S':  compute eigenvalues and the Schur form T. */

/*  COMPZ   (input) CHARACTER*1 */
/*          = 'N':  no Schur vectors are computed; */
/*          = 'I':  Z is initialized to the unit matrix and the matrix Z */
/*                  of Schur vectors of H is returned; */
/*          = 'V':  Z must contain an orthogonal matrix Q on entry, and */
/*                  the product Q*Z is returned. */

/*  N       (input) INTEGER */
/*          The order of the matrix H.  N >= 0. */

/*  ILO     (input) INTEGER */
/*  IHI     (input) INTEGER */
/*          It is assumed that H is already upper triangular in rows */
/*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/*          set by a previous call to SGEBAL, and then passed to SGEHRD */
/*          when the matrix output by SGEBAL is reduced to Hessenberg */
/*          form. Otherwise ILO and IHI should be set to 1 and N */
/*          respectively. */
/*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */

/*  H       (input/output) REAL array, dimension (LDH,N) */
/*          On entry, the upper Hessenberg matrix H. */
/*          On exit, if JOB = 'S', H contains the upper quasi-triangular */
/*          matrix T from the Schur decomposition (the Schur form); */
/*          2-by-2 diagonal blocks (corresponding to complex conjugate */
/*          pairs of eigenvalues) are returned in standard form, with */
/*          H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. If JOB = 'E', */
/*          the contents of H are unspecified on exit. */

/*  LDH     (input) INTEGER */
/*          The leading dimension of the array H. LDH >= max(1,N). */

/*  WR      (output) REAL array, dimension (N) */
/*  WI      (output) REAL array, dimension (N) */
/*          The real and imaginary parts, respectively, of the computed */
/*          eigenvalues. If two eigenvalues are computed as a complex */
/*          conjugate pair, they are stored in consecutive elements of */
/*          WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and */
/*          WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in the */
/*          same order as on the diagonal of the Schur form returned in */
/*          H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 */
/*          diagonal block, WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and */
/*          WI(i+1) = -WI(i). */

/*  Z       (input/output) REAL array, dimension (LDZ,N) */
/*          If COMPZ = 'N': Z is not referenced. */
/*          If COMPZ = 'I': on entry, Z need not be set, and on exit, Z */
/*          contains the orthogonal matrix Z of the Schur vectors of H. */
/*          If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q, */
/*          which is assumed to be equal to the unit matrix except for */
/*          the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z. */
/*          Normally Q is the orthogonal matrix generated by SORGHR after */
/*          the call to SGEHRD which formed the Hessenberg matrix H. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z. */
/*          LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise. */

/*  WORK    (workspace/output) REAL array, dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,N). */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, SHSEQR failed to compute all of the */
/*                eigenvalues in a total of 30*(IHI-ILO+1) iterations; */
/*                elements 1:ilo-1 and i+1:n of WR and WI contain those */
/*                eigenvalues which have been successfully computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Decode and test the input parameters */

    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --wr;
    --wi;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantt = lsame_(job, "S", (ftnlen)1, (ftnlen)1);
    initz = lsame_(compz, "I", (ftnlen)1, (ftnlen)1);
    wantz = initz || lsame_(compz, "V", (ftnlen)1, (ftnlen)1);

    *info = 0;
    work[1] = (real) max(1,*n);
    lquery = *lwork == -1;
    if (! lsame_(job, "E", (ftnlen)1, (ftnlen)1) && ! wantt) {
	*info = -1;
    } else if (! lsame_(compz, "N", (ftnlen)1, (ftnlen)1) && ! wantz) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ilo < 1 || *ilo > max(1,*n)) {
	*info = -4;
    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
	*info = -5;
    } else if (*ldh < max(1,*n)) {
	*info = -7;
    } else if (*ldz < 1 || wantz && *ldz < max(1,*n)) {
	*info = -11;
    } else if (*lwork < max(1,*n) && ! lquery) {
	*info = -13;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SHSEQR", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Initialize Z, if necessary */

    if (initz) {
	slaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz, (ftnlen)4);
    }

/*     Store the eigenvalues isolated by SGEBAL. */

    i__1 = *ilo - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	wr[i__] = h__[i__ + i__ * h_dim1];
	wi[i__] = 0.f;
/* L10: */
    }
    i__1 = *n;
    for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
	wr[i__] = h__[i__ + i__ * h_dim1];
	wi[i__] = 0.f;
/* L20: */
    }

/*     Quick return if possible. */

    if (*n == 0) {
	return 0;
    }
    if (*ilo == *ihi) {
	wr[*ilo] = h__[*ilo + *ilo * h_dim1];
	wi[*ilo] = 0.f;
	return 0;
    }

/*     Set rows and columns ILO to IHI to zero below the first */
/*     subdiagonal. */

    i__1 = *ihi - 2;
    for (j = *ilo; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = j + 2; i__ <= i__2; ++i__) {
	    h__[i__ + j * h_dim1] = 0.f;
/* L30: */
	}
/* L40: */
    }
    nh = *ihi - *ilo + 1;

/*     Determine the order of the multi-shift QR algorithm to be used. */

/* Writing concatenation */
    i__3[0] = 1, a__1[0] = job;
    i__3[1] = 1, a__1[1] = compz;
    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
    ns = ilaenv_(&c__4, "SHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
	    ftnlen)2);
/* Writing concatenation */
    i__3[0] = 1, a__1[0] = job;
    i__3[1] = 1, a__1[1] = compz;
    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
    maxb = ilaenv_(&c__8, "SHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
	    ftnlen)2);
    if (ns <= 2 || ns > nh || maxb >= nh) {

/*        Use the standard double-shift algorithm */

	slahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &wi[
		1], ilo, ihi, &z__[z_offset], ldz, info);
	return 0;
    }
    maxb = max(3,maxb);
/* Computing MIN */
    i__1 = min(ns,maxb);
    ns = min(i__1,15);

/*     Now 2 < NS <= MAXB < NH. */

/*     Set machine-dependent constants for the stopping criterion. */
/*     If norm(H) <= sqrt(OVFL), overflow should not occur. */

    unfl = slamch_("Safe minimum", (ftnlen)12);
    ovfl = 1.f / unfl;
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Precision", (ftnlen)9);
    smlnum = unfl * (nh / ulp);

/*     I1 and I2 are the indices of the first row and last column of H */
/*     to which transformations must be applied. If eigenvalues only are */
/*     being computed, I1 and I2 are set inside the main loop. */

    if (wantt) {
	i1 = 1;
	i2 = *n;
    }

/*     ITN is the total number of multiple-shift QR iterations allowed. */

    itn = nh * 30;

/*     The main loop begins here. I is the loop index and decreases from */
/*     IHI to ILO in steps of at most MAXB. Each iteration of the loop */
/*     works with the active submatrix in rows and columns L to I. */
/*     Eigenvalues I+1 to IHI have already converged. Either L = ILO or */
/*     H(L,L-1) is negligible so that the matrix splits. */

    i__ = *ihi;
L50:
    l = *ilo;
    if (i__ < *ilo) {
	goto L170;
    }

/*     Perform multiple-shift QR iterations on rows and columns ILO to I */
/*     until a submatrix of order at most MAXB splits off at the bottom */
/*     because a subdiagonal element has become negligible. */

    i__1 = itn;
    for (its = 0; its <= i__1; ++its) {

/*        Look for a single small subdiagonal element. */

	i__2 = l + 1;
	for (k = i__; k >= i__2; --k) {
	    tst1 = (r__1 = h__[k - 1 + (k - 1) * h_dim1], dabs(r__1)) + (r__2 
		    = h__[k + k * h_dim1], dabs(r__2));
	    if (tst1 == 0.f) {
		i__4 = i__ - l + 1;
		tst1 = slanhs_("1", &i__4, &h__[l + l * h_dim1], ldh, &work[1]
			, (ftnlen)1);
	    }
/* Computing MAX */
	    r__2 = ulp * tst1;
	    if ((r__1 = h__[k + (k - 1) * h_dim1], dabs(r__1)) <= dmax(r__2,
		    smlnum)) {
		goto L70;
	    }
/* L60: */
	}
L70:
	l = k;
	if (l > *ilo) {

/*           H(L,L-1) is negligible. */

	    h__[l + (l - 1) * h_dim1] = 0.f;
	}

/*        Exit from loop if a submatrix of order <= MAXB has split off. */

	if (l >= i__ - maxb + 1) {
	    goto L160;
	}

/*        Now the active submatrix is in rows and columns L to I. If */
/*        eigenvalues only are being computed, only the active submatrix */
/*        need be transformed. */

	if (! wantt) {
	    i1 = l;
	    i2 = i__;
	}

	if (its == 20 || its == 30) {

/*           Exceptional shifts. */

	    i__2 = i__;
	    for (ii = i__ - ns + 1; ii <= i__2; ++ii) {
		wr[ii] = ((r__1 = h__[ii + (ii - 1) * h_dim1], dabs(r__1)) + (
			r__2 = h__[ii + ii * h_dim1], dabs(r__2))) * 1.5f;
		wi[ii] = 0.f;
/* L80: */
	    }
	} else {

/*           Use eigenvalues of trailing submatrix of order NS as shifts. */

	    slacpy_("Full", &ns, &ns, &h__[i__ - ns + 1 + (i__ - ns + 1) * 
		    h_dim1], ldh, s, &c__15, (ftnlen)4);
	    slahqr_(&c_false, &c_false, &ns, &c__1, &ns, s, &c__15, &wr[i__ - 
		    ns + 1], &wi[i__ - ns + 1], &c__1, &ns, &z__[z_offset], 
		    ldz, &ierr);
	    if (ierr > 0) {

/*              If SLAHQR failed to compute all NS eigenvalues, use the */
/*              unconverged diagonal elements as the remaining shifts. */

		i__2 = ierr;
		for (ii = 1; ii <= i__2; ++ii) {
		    wr[i__ - ns + ii] = s[ii + ii * 15 - 16];
		    wi[i__ - ns + ii] = 0.f;
/* L90: */
		}
	    }
	}

/*        Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns)) */
/*        where G is the Hessenberg submatrix H(L:I,L:I) and w is */
/*        the vector of shifts (stored in WR and WI). The result is */
/*        stored in the local array V. */

	v[0] = 1.f;
	i__2 = ns + 1;
	for (ii = 2; ii <= i__2; ++ii) {
	    v[ii - 1] = 0.f;
/* L100: */
	}
	nv = 1;
	i__2 = i__;
	for (j = i__ - ns + 1; j <= i__2; ++j) {
	    if (wi[j] >= 0.f) {
		if (wi[j] == 0.f) {

/*                 real shift */

		    i__4 = nv + 1;
		    scopy_(&i__4, v, &c__1, vv, &c__1);
		    i__4 = nv + 1;
		    r__1 = -wr[j];
		    sgemv_("No transpose", &i__4, &nv, &c_b10, &h__[l + l * 
			    h_dim1], ldh, vv, &c__1, &r__1, v, &c__1, (ftnlen)
			    12);
		    ++nv;
		} else if (wi[j] > 0.f) {

/*                 complex conjugate pair of shifts */

		    i__4 = nv + 1;
		    scopy_(&i__4, v, &c__1, vv, &c__1);
		    i__4 = nv + 1;
		    r__1 = wr[j] * -2.f;
		    sgemv_("No transpose", &i__4, &nv, &c_b10, &h__[l + l * 
			    h_dim1], ldh, v, &c__1, &r__1, vv, &c__1, (ftnlen)
			    12);
		    i__4 = nv + 1;
		    itemp = isamax_(&i__4, vv, &c__1);
/* Computing MAX */
		    r__2 = (r__1 = vv[itemp - 1], dabs(r__1));
		    temp = 1.f / dmax(r__2,smlnum);
		    i__4 = nv + 1;
		    sscal_(&i__4, &temp, vv, &c__1);
		    absw = slapy2_(&wr[j], &wi[j]);
		    temp = temp * absw * absw;
		    i__4 = nv + 2;
		    i__5 = nv + 1;
		    sgemv_("No transpose", &i__4, &i__5, &c_b10, &h__[l + l * 
			    h_dim1], ldh, vv, &c__1, &temp, v, &c__1, (ftnlen)
			    12);
		    nv += 2;
		}

/*              Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero, */
/*              reset it to the unit vector. */

		itemp = isamax_(&nv, v, &c__1);
		temp = (r__1 = v[itemp - 1], dabs(r__1));
		if (temp == 0.f) {
		    v[0] = 1.f;
		    i__4 = nv;
		    for (ii = 2; ii <= i__4; ++ii) {
			v[ii - 1] = 0.f;
/* L110: */
		    }
		} else {
		    temp = dmax(temp,smlnum);
		    r__1 = 1.f / temp;
		    sscal_(&nv, &r__1, v, &c__1);
		}
	    }
/* L120: */
	}

/*        Multiple-shift QR step */

	i__2 = i__ - 1;
	for (k = l; k <= i__2; ++k) {

/*           The first iteration of this loop determines a reflection G */
/*           from the vector V and applies it from left and right to H, */
/*           thus creating a nonzero bulge below the subdiagonal. */

/*           Each subsequent iteration determines a reflection G to */
/*           restore the Hessenberg form in the (K-1)th column, and thus */
/*           chases the bulge one step toward the bottom of the active */
/*           submatrix. NR is the order of G. */

/* Computing MIN */
	    i__4 = ns + 1, i__5 = i__ - k + 1;
	    nr = min(i__4,i__5);
	    if (k > l) {
		scopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
	    }
	    slarfg_(&nr, v, &v[1], &c__1, &tau);
	    if (k > l) {
		h__[k + (k - 1) * h_dim1] = v[0];
		i__4 = i__;
		for (ii = k + 1; ii <= i__4; ++ii) {
		    h__[ii + (k - 1) * h_dim1] = 0.f;
/* L130: */
		}
	    }
	    v[0] = 1.f;

/*           Apply G from the left to transform the rows of the matrix in */
/*           columns K to I2. */

	    i__4 = i2 - k + 1;
	    slarfx_("Left", &nr, &i__4, v, &tau, &h__[k + k * h_dim1], ldh, &
		    work[1], (ftnlen)4);

/*           Apply G from the right to transform the columns of the */
/*           matrix in rows I1 to min(K+NR,I). */

/* Computing MIN */
	    i__5 = k + nr;
	    i__4 = min(i__5,i__) - i1 + 1;
	    slarfx_("Right", &i__4, &nr, v, &tau, &h__[i1 + k * h_dim1], ldh, 
		    &work[1], (ftnlen)5);

	    if (wantz) {

/*              Accumulate transformations in the matrix Z */

		slarfx_("Right", &nh, &nr, v, &tau, &z__[*ilo + k * z_dim1], 
			ldz, &work[1], (ftnlen)5);
	    }
/* L140: */
	}

/* L150: */
    }

/*     Failure to converge in remaining number of iterations */

    *info = i__;
    return 0;

L160:

/*     A submatrix of order <= MAXB in rows and columns L to I has split */
/*     off. Use the double-shift QR algorithm to handle it. */

    slahqr_(&wantt, &wantz, n, &l, &i__, &h__[h_offset], ldh, &wr[1], &wi[1], 
	    ilo, ihi, &z__[z_offset], ldz, info);
    if (*info > 0) {
	return 0;
    }

/*     Decrement number of remaining iterations, and return to start of */
/*     the main loop with a new value of I. */

    itn -= its;
    i__ = l - 1;
    goto L50;

L170:
    work[1] = (real) max(1,*n);
    return 0;

/*     End of SHSEQR */

} /* shseqr_ */
Ejemplo n.º 7
0
/* Subroutine */ int shseqr_(char *job, char *compz, integer *n, integer *ilo, 
	 integer *ihi, real *h__, integer *ldh, real *wr, real *wi, real *z__, 
	 integer *ldz, real *work, integer *lwork, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2[2], i__3;
    real r__1;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__;
    #ifdef LAPACK_DISABLE_MEMORY_HOGS
      real hl[1]    /* was [49][49] */;
      /** This function uses too much memory, so we stopped allocating the memory
       * above and assert false here. */
      assert(0 && "shseqr_ was called. This function allocates too much"
                  " memory and has been disabled.");
    #else
      real hl[2401]	/* was [49][49] */;
    #endif
    integer kbot, nmin;
    extern logical lsame_(char *, char *);
    logical initz;
    real workl[49];
    logical wantt, wantz;
    extern /* Subroutine */ int slaqr0_(logical *, logical *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
, integer *, real *, integer *, real *, integer *, integer *), 
	    xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int slahqr_(logical *, logical *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
, integer *, real *, integer *, integer *), slacpy_(char *, 
	    integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, 
	    real *, integer *);
    logical lquery;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */
/*     Purpose */
/*     ======= */

/*     SHSEQR computes the eigenvalues of a Hessenberg matrix H */
/*     and, optionally, the matrices T and Z from the Schur decomposition */
/*     H = Z T Z**T, where T is an upper quasi-triangular matrix (the */
/*     Schur form), and Z is the orthogonal matrix of Schur vectors. */

/*     Optionally Z may be postmultiplied into an input orthogonal */
/*     matrix Q so that this routine can give the Schur factorization */
/*     of a matrix A which has been reduced to the Hessenberg form H */
/*     by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T. */

/*     Arguments */
/*     ========= */

/*     JOB   (input) CHARACTER*1 */
/*           = 'E':  compute eigenvalues only; */
/*           = 'S':  compute eigenvalues and the Schur form T. */

/*     COMPZ (input) CHARACTER*1 */
/*           = 'N':  no Schur vectors are computed; */
/*           = 'I':  Z is initialized to the unit matrix and the matrix Z */
/*                   of Schur vectors of H is returned; */
/*           = 'V':  Z must contain an orthogonal matrix Q on entry, and */
/*                   the product Q*Z is returned. */

/*     N     (input) INTEGER */
/*           The order of the matrix H.  N .GE. 0. */

/*     ILO   (input) INTEGER */
/*     IHI   (input) INTEGER */
/*           It is assumed that H is already upper triangular in rows */
/*           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/*           set by a previous call to SGEBAL, and then passed to SGEHRD */
/*           when the matrix output by SGEBAL is reduced to Hessenberg */
/*           form. Otherwise ILO and IHI should be set to 1 and N */
/*           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. */
/*           If N = 0, then ILO = 1 and IHI = 0. */

/*     H     (input/output) REAL array, dimension (LDH,N) */
/*           On entry, the upper Hessenberg matrix H. */
/*           On exit, if INFO = 0 and JOB = 'S', then H contains the */
/*           upper quasi-triangular matrix T from the Schur decomposition */
/*           (the Schur form); 2-by-2 diagonal blocks (corresponding to */
/*           complex conjugate pairs of eigenvalues) are returned in */
/*           standard form, with H(i,i) = H(i+1,i+1) and */
/*           H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the */
/*           contents of H are unspecified on exit.  (The output value of */
/*           H when INFO.GT.0 is given under the description of INFO */
/*           below.) */

/*           Unlike earlier versions of SHSEQR, this subroutine may */
/*           explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1 */
/*           or j = IHI+1, IHI+2, ... N. */

/*     LDH   (input) INTEGER */
/*           The leading dimension of the array H. LDH .GE. max(1,N). */

/*     WR    (output) REAL array, dimension (N) */
/*     WI    (output) REAL array, dimension (N) */
/*           The real and imaginary parts, respectively, of the computed */
/*           eigenvalues. If two eigenvalues are computed as a complex */
/*           conjugate pair, they are stored in consecutive elements of */
/*           WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and */
/*           WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in */
/*           the same order as on the diagonal of the Schur form returned */
/*           in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 */
/*           diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and */
/*           WI(i+1) = -WI(i). */

/*     Z     (input/output) REAL array, dimension (LDZ,N) */
/*           If COMPZ = 'N', Z is not referenced. */
/*           If COMPZ = 'I', on entry Z need not be set and on exit, */
/*           if INFO = 0, Z contains the orthogonal matrix Z of the Schur */
/*           vectors of H.  If COMPZ = 'V', on entry Z must contain an */
/*           N-by-N matrix Q, which is assumed to be equal to the unit */
/*           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit, */
/*           if INFO = 0, Z contains Q*Z. */
/*           Normally Q is the orthogonal matrix generated by SORGHR */
/*           after the call to SGEHRD which formed the Hessenberg matrix */
/*           H. (The output value of Z when INFO.GT.0 is given under */
/*           the description of INFO below.) */

/*     LDZ   (input) INTEGER */
/*           The leading dimension of the array Z.  if COMPZ = 'I' or */
/*           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1. */

/*     WORK  (workspace/output) REAL array, dimension (LWORK) */
/*           On exit, if INFO = 0, WORK(1) returns an estimate of */
/*           the optimal value for LWORK. */

/*     LWORK (input) INTEGER */
/*           The dimension of the array WORK.  LWORK .GE. max(1,N) */
/*           is sufficient and delivers very good and sometimes */
/*           optimal performance.  However, LWORK as large as 11*N */
/*           may be required for optimal performance.  A workspace */
/*           query is recommended to determine the optimal workspace */
/*           size. */

/*           If LWORK = -1, then SHSEQR does a workspace query. */
/*           In this case, SHSEQR checks the input parameters and */
/*           estimates the optimal workspace size for the given */
/*           values of N, ILO and IHI.  The estimate is returned */
/*           in WORK(1).  No error message related to LWORK is */
/*           issued by XERBLA.  Neither H nor Z are accessed. */


/*     INFO  (output) INTEGER */
/*             =  0:  successful exit */
/*           .LT. 0:  if INFO = -i, the i-th argument had an illegal */
/*                    value */
/*           .GT. 0:  if INFO = i, SHSEQR failed to compute all of */
/*                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR */
/*                and WI contain those eigenvalues which have been */
/*                successfully computed.  (Failures are rare.) */

/*                If INFO .GT. 0 and JOB = 'E', then on exit, the */
/*                remaining unconverged eigenvalues are the eigen- */
/*                values of the upper Hessenberg matrix rows and */
/*                columns ILO through INFO of the final, output */
/*                value of H. */

/*                If INFO .GT. 0 and JOB   = 'S', then on exit */

/*           (*)  (initial value of H)*U  = U*(final value of H) */

/*                where U is an orthogonal matrix.  The final */
/*                value of H is upper Hessenberg and quasi-triangular */
/*                in rows and columns INFO+1 through IHI. */

/*                If INFO .GT. 0 and COMPZ = 'V', then on exit */

/*                  (final value of Z)  =  (initial value of Z)*U */

/*                where U is the orthogonal matrix in (*) (regard- */
/*                less of the value of JOB.) */

/*                If INFO .GT. 0 and COMPZ = 'I', then on exit */
/*                      (final value of Z)  = U */
/*                where U is the orthogonal matrix in (*) (regard- */
/*                less of the value of JOB.) */

/*                If INFO .GT. 0 and COMPZ = 'N', then Z is not */
/*                accessed. */

/*     ================================================================ */
/*             Default values supplied by */
/*             ILAENV(ISPEC,'SHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK). */
/*             It is suggested that these defaults be adjusted in order */
/*             to attain best performance in each particular */
/*             computational environment. */

/*            ISPEC=12: The SLAHQR vs SLAQR0 crossover point. */
/*                      Default: 75. (Must be at least 11.) */

/*            ISPEC=13: Recommended deflation window size. */
/*                      This depends on ILO, IHI and NS.  NS is the */
/*                      number of simultaneous shifts returned */
/*                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.) */
/*                      The default for (IHI-ILO+1).LE.500 is NS. */
/*                      The default for (IHI-ILO+1).GT.500 is 3*NS/2. */

/*            ISPEC=14: Nibble crossover point. (See IPARMQ for */
/*                      details.)  Default: 14% of deflation window */
/*                      size. */

/*            ISPEC=15: Number of simultaneous shifts in a multishift */
/*                      QR iteration. */

/*                      If IHI-ILO+1 is ... */

/*                      greater than      ...but less    ... the */
/*                      or equal to ...      than        default is */

/*                           1               30          NS =   2(+) */
/*                          30               60          NS =   4(+) */
/*                          60              150          NS =  10(+) */
/*                         150              590          NS =  ** */
/*                         590             3000          NS =  64 */
/*                        3000             6000          NS = 128 */
/*                        6000             infinity      NS = 256 */

/*                  (+)  By default some or all matrices of this order */
/*                       are passed to the implicit double shift routine */
/*                       SLAHQR and this parameter is ignored.  See */
/*                       ISPEC=12 above and comments in IPARMQ for */
/*                       details. */

/*                 (**)  The asterisks (**) indicate an ad-hoc */
/*                       function of N increasing from 10 to 64. */

/*            ISPEC=16: Select structured matrix multiply. */
/*                      If the number of simultaneous shifts (specified */
/*                      by ISPEC=15) is less than 14, then the default */
/*                      for ISPEC=16 is 0.  Otherwise the default for */
/*                      ISPEC=16 is 2. */

/*     ================================================================ */
/*     Based on contributions by */
/*        Karen Braman and Ralph Byers, Department of Mathematics, */
/*        University of Kansas, USA */

/*     ================================================================ */
/*     References: */
/*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
/*       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
/*       Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
/*       929--947, 2002. */

/*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
/*       Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
/*       of Matrix Analysis, volume 23, pages 948--973, 2002. */

/*     ================================================================ */
/*     .. Parameters .. */

/*     ==== Matrices of order NTINY or smaller must be processed by */
/*     .    SLAHQR because of insufficient subdiagonal scratch space. */
/*     .    (This is a hard limit.) ==== */

/*     ==== NL allocates some local workspace to help small matrices */
/*     .    through a rare SLAHQR failure.  NL .GT. NTINY = 11 is */
/*     .    required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom- */
/*     .    mended.  (The default value of NMIN is 75.)  Using NL = 49 */
/*     .    allows up to six simultaneous shifts and a 16-by-16 */
/*     .    deflation window.  ==== */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     ==== Decode and check the input parameters. ==== */

    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --wr;
    --wi;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantt = lsame_(job, "S");
    initz = lsame_(compz, "I");
    wantz = initz || lsame_(compz, "V");
    work[1] = (real) max(1,*n);
    lquery = *lwork == -1;

    *info = 0;
    if (! lsame_(job, "E") && ! wantt) {
	*info = -1;
    } else if (! lsame_(compz, "N") && ! wantz) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ilo < 1 || *ilo > max(1,*n)) {
	*info = -4;
    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
	*info = -5;
    } else if (*ldh < max(1,*n)) {
	*info = -7;
    } else if (*ldz < 1 || wantz && *ldz < max(1,*n)) {
	*info = -11;
    } else if (*lwork < max(1,*n) && ! lquery) {
	*info = -13;
    }

    if (*info != 0) {

/*        ==== Quick return in case of invalid argument. ==== */

	i__1 = -(*info);
	xerbla_("SHSEQR", &i__1);
	return 0;

    } else if (*n == 0) {

/*        ==== Quick return in case N = 0; nothing to do. ==== */

	return 0;

    } else if (lquery) {

/*        ==== Quick return in case of a workspace query ==== */

	slaqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &wi[
		1], ilo, ihi, &z__[z_offset], ldz, &work[1], lwork, info);
/*        ==== Ensure reported workspace size is backward-compatible with */
/*        .    previous LAPACK versions. ==== */
/* Computing MAX */
	r__1 = (real) max(1,*n);
	work[1] = dmax(r__1,work[1]);
	return 0;

    } else {

/*        ==== copy eigenvalues isolated by SGEBAL ==== */

	i__1 = *ilo - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    wr[i__] = h__[i__ + i__ * h_dim1];
	    wi[i__] = 0.f;
/* L10: */
	}
	i__1 = *n;
	for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
	    wr[i__] = h__[i__ + i__ * h_dim1];
	    wi[i__] = 0.f;
/* L20: */
	}

/*        ==== Initialize Z, if requested ==== */

	if (initz) {
	    slaset_("A", n, n, &c_b11, &c_b12, &z__[z_offset], ldz)
		    ;
	}

/*        ==== Quick return if possible ==== */

	if (*ilo == *ihi) {
	    wr[*ilo] = h__[*ilo + *ilo * h_dim1];
	    wi[*ilo] = 0.f;
	    return 0;
	}

/*        ==== SLAHQR/SLAQR0 crossover point ==== */

/* Writing concatenation */
	i__2[0] = 1, a__1[0] = job;
	i__2[1] = 1, a__1[1] = compz;
	s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
	nmin = ilaenv_(&c__12, "SHSEQR", ch__1, n, ilo, ihi, lwork);
	nmin = max(11,nmin);

/*        ==== SLAQR0 for big matrices; SLAHQR for small ones ==== */

	if (*n > nmin) {
	    slaqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], 
		    &wi[1], ilo, ihi, &z__[z_offset], ldz, &work[1], lwork, 
		    info);
	} else {

/*           ==== Small matrix ==== */

	    slahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], 
		    &wi[1], ilo, ihi, &z__[z_offset], ldz, info);

	    if (*info > 0) {

/*              ==== A rare SLAHQR failure!  SLAQR0 sometimes succeeds */
/*              .    when SLAHQR fails. ==== */

		kbot = *info;

		if (*n >= 49) {

/*                 ==== Larger matrices have enough subdiagonal scratch */
/*                 .    space to call SLAQR0 directly. ==== */

		    slaqr0_(&wantt, &wantz, n, ilo, &kbot, &h__[h_offset], 
			    ldh, &wr[1], &wi[1], ilo, ihi, &z__[z_offset], 
			    ldz, &work[1], lwork, info);

		} else {

/*                 ==== Tiny matrices don't have enough subdiagonal */
/*                 .    scratch space to benefit from SLAQR0.  Hence, */
/*                 .    tiny matrices must be copied into a larger */
/*                 .    array before calling SLAQR0. ==== */

		    slacpy_("A", n, n, &h__[h_offset], ldh, hl, &c__49);
		    hl[*n + 1 + *n * 49 - 50] = 0.f;
		    i__1 = 49 - *n;
		    slaset_("A", &c__49, &i__1, &c_b11, &c_b11, &hl[(*n + 1) *
			     49 - 49], &c__49);
		    slaqr0_(&wantt, &wantz, &c__49, ilo, &kbot, hl, &c__49, &
			    wr[1], &wi[1], ilo, ihi, &z__[z_offset], ldz, 
			    workl, &c__49, info);
		    if (wantt || *info != 0) {
			slacpy_("A", n, n, hl, &c__49, &h__[h_offset], ldh);
		    }
		}
	    }
	}

/*        ==== Clear out the trash, if necessary. ==== */

	if ((wantt || *info != 0) && *n > 2) {
	    i__1 = *n - 2;
	    i__3 = *n - 2;
	    slaset_("L", &i__1, &i__3, &c_b11, &c_b11, &h__[h_dim1 + 3], ldh);
	}

/*        ==== Ensure reported workspace size is backward-compatible with */
/*        .    previous LAPACK versions. ==== */

/* Computing MAX */
	r__1 = (real) max(1,*n);
	work[1] = dmax(r__1,work[1]);
    }

/*     ==== End of SHSEQR ==== */

    return 0;
} /* shseqr_ */