/* Subroutine */ int stzrzf_(integer *m, integer *n, real *a, integer *lda, real *tau, real *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= STZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations. The upper trapezoidal matrix A is factored as A = ( R 0 ) * Z, where Z is an N-by-N orthogonal matrix and R is an M-by-M upper triangular matrix. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements M+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) REAL array, dimension (M) The scalar factors of the elementary reflectors. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Further Details =============== Based on contributions by A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an ( n - m ) element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of X. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A, such that the elements of z( k ) are in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; /* Local variables */ static integer i__, nbmin, m1, ib, nb, ki, kk, mu, nx; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int slarzb_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer *); static integer ldwork; extern /* Subroutine */ int slarzt_(char *, char *, integer *, integer *, real *, integer *, real *, real *, integer *); static integer lwkopt; static logical lquery; extern /* Subroutine */ int slatrz_(integer *, integer *, integer *, real *, integer *, real *, real *); static integer iws; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } else if (*lwork < max(1,*m) && ! lquery) { *info = -7; } if (*info == 0) { /* Determine the block size. */ nb = ilaenv_(&c__1, "SGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); lwkopt = *m * nb; work[1] = (real) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("STZRZF", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0) { work[1] = 1.f; return 0; } else if (*m == *n) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tau[i__] = 0.f; /* L10: */ } work[1] = 1.f; return 0; } nbmin = 2; nx = 1; iws = *m; if (nb > 1 && nb < *m) { /* Determine when to cross over from blocked to unblocked code. Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "SGERQF", " ", m, n, &c_n1, &c_n1, ( ftnlen)6, (ftnlen)1); nx = max(i__1,i__2); if (nx < *m) { /* Determine if workspace is large enough for blocked code. */ ldwork = *m; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "SGERQF", " ", m, n, &c_n1, & c_n1, (ftnlen)6, (ftnlen)1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < *m && nx < *m) { /* Use blocked code initially. The last kk rows are handled by the block method. Computing MIN */ i__1 = *m + 1; m1 = min(i__1,*n); ki = (*m - nx - 1) / nb * nb; /* Computing MIN */ i__1 = *m, i__2 = ki + nb; kk = min(i__1,i__2); i__1 = *m - kk + 1; i__2 = -nb; for (i__ = *m - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = *m - i__ + 1; ib = min(i__3,nb); /* Compute the TZ factorization of the current block A(i:i+ib-1,i:n) */ i__3 = *n - i__ + 1; i__4 = *n - *m; slatrz_(&ib, &i__3, &i__4, &a_ref(i__, i__), lda, &tau[i__], & work[1]); if (i__ > 1) { /* Form the triangular factor of the block reflector H = H(i+ib-1) . . . H(i+1) H(i) */ i__3 = *n - *m; slarzt_("Backward", "Rowwise", &i__3, &ib, &a_ref(i__, m1), lda, &tau[i__], &work[1], &ldwork); /* Apply H to A(1:i-1,i:n) from the right */ i__3 = i__ - 1; i__4 = *n - i__ + 1; i__5 = *n - *m; slarzb_("Right", "No transpose", "Backward", "Rowwise", &i__3, &i__4, &ib, &i__5, &a_ref(i__, m1), lda, &work[1], & ldwork, &a_ref(1, i__), lda, &work[ib + 1], &ldwork); } /* L20: */ } mu = i__ + nb - 1; } else { mu = *m; } /* Use unblocked code to factor the last or only block */ if (mu > 0) { i__2 = *n - *m; slatrz_(&mu, n, &i__2, &a[a_offset], lda, &tau[1], &work[1]); } work[1] = (real) lwkopt; return 0; /* End of STZRZF */ } /* stzrzf_ */
int stzrzf_(int *m, int *n, float *a, int *lda, float *tau, float *work, int *lwork, int *info) { /* System generated locals */ int a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; /* Local variables */ int i__, m1, ib, nb, ki, kk, mu, nx, iws, nbmin; extern int xerbla_(char *, int *); extern int ilaenv_(int *, char *, char *, int *, int *, int *, int *); extern int slarzb_(char *, char *, char *, char *, int *, int *, int *, int *, float *, int *, float *, int *, float *, int *, float *, int *); int ldwork; extern int slarzt_(char *, char *, int *, int *, float *, int *, float *, float *, int *); int lwkopt; int lquery; extern int slatrz_(int *, int *, int *, float *, int *, float *, float *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* STZRZF reduces the M-by-N ( M<=N ) float upper trapezoidal matrix A */ /* to upper triangular form by means of orthogonal transformations. */ /* The upper trapezoidal matrix A is factored as */ /* A = ( R 0 ) * Z, */ /* where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */ /* triangular matrix. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= M. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the leading M-by-N upper trapezoidal part of the */ /* array A must contain the matrix to be factorized. */ /* On exit, the leading M-by-M upper triangular part of A */ /* contains the upper triangular matrix R, and elements M+1 to */ /* N of the first M rows of A, with the array TAU, represent the */ /* orthogonal matrix Z as a product of M elementary reflectors. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= MAX(1,M). */ /* TAU (output) REAL array, dimension (M) */ /* The scalar factors of the elementary reflectors. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= MAX(1,M). */ /* For optimum performance LWORK >= M*NB, where NB is */ /* the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ /* The factorization is obtained by Householder's method. The kth */ /* transformation matrix, Z( k ), which is used to introduce zeros into */ /* the ( m - k + 1 )th row of A, is given in the form */ /* Z( k ) = ( I 0 ), */ /* ( 0 T( k ) ) */ /* where */ /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ /* ( 0 ) */ /* ( z( k ) ) */ /* tau is a scalar and z( k ) is an ( n - m ) element vector. */ /* tau and z( k ) are chosen to annihilate the elements of the kth row */ /* of X. */ /* The scalar tau is returned in the kth element of TAU and the vector */ /* u( k ) in the kth row of A, such that the elements of z( k ) are */ /* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */ /* the upper triangular part of A. */ /* Z is given by */ /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*lda < MAX(1,*m)) { *info = -4; } if (*info == 0) { if (*m == 0 || *m == *n) { lwkopt = 1; } else { /* Determine the block size. */ nb = ilaenv_(&c__1, "SGERQF", " ", m, n, &c_n1, &c_n1); lwkopt = *m * nb; } work[1] = (float) lwkopt; if (*lwork < MAX(1,*m) && ! lquery) { *info = -7; } } if (*info != 0) { i__1 = -(*info); xerbla_("STZRZF", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0) { return 0; } else if (*m == *n) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tau[i__] = 0.f; /* L10: */ } return 0; } nbmin = 2; nx = 1; iws = *m; if (nb > 1 && nb < *m) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "SGERQF", " ", m, n, &c_n1, &c_n1); nx = MAX(i__1,i__2); if (nx < *m) { /* Determine if workspace is large enough for blocked code. */ ldwork = *m; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and */ /* determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "SGERQF", " ", m, n, &c_n1, & c_n1); nbmin = MAX(i__1,i__2); } } } if (nb >= nbmin && nb < *m && nx < *m) { /* Use blocked code initially. */ /* The last kk rows are handled by the block method. */ /* Computing MIN */ i__1 = *m + 1; m1 = MIN(i__1,*n); ki = (*m - nx - 1) / nb * nb; /* Computing MIN */ i__1 = *m, i__2 = ki + nb; kk = MIN(i__1,i__2); i__1 = *m - kk + 1; i__2 = -nb; for (i__ = *m - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = *m - i__ + 1; ib = MIN(i__3,nb); /* Compute the TZ factorization of the current block */ /* A(i:i+ib-1,i:n) */ i__3 = *n - i__ + 1; i__4 = *n - *m; slatrz_(&ib, &i__3, &i__4, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]); if (i__ > 1) { /* Form the triangular factor of the block reflector */ /* H = H(i+ib-1) . . . H(i+1) H(i) */ i__3 = *n - *m; slarzt_("Backward", "Rowwise", &i__3, &ib, &a[i__ + m1 * a_dim1], lda, &tau[i__], &work[1], &ldwork); /* Apply H to A(1:i-1,i:n) from the right */ i__3 = i__ - 1; i__4 = *n - i__ + 1; i__5 = *n - *m; slarzb_("Right", "No transpose", "Backward", "Rowwise", &i__3, &i__4, &ib, &i__5, &a[i__ + m1 * a_dim1], lda, &work[ 1], &ldwork, &a[i__ * a_dim1 + 1], lda, &work[ib + 1], &ldwork) ; } /* L20: */ } mu = i__ + nb - 1; } else { mu = *m; } /* Use unblocked code to factor the last or only block */ if (mu > 0) { i__2 = *n - *m; slatrz_(&mu, n, &i__2, &a[a_offset], lda, &tau[1], &work[1]); } work[1] = (float) lwkopt; return 0; /* End of STZRZF */ } /* stzrzf_ */
int sormrz_(char *side, char *trans, int *m, int *n, int *k, int *l, float *a, int *lda, float *tau, float *c__, int *ldc, float *work, int *lwork, int *info) { /* System generated locals */ address a__1[2]; int a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, i__5; char ch__1[2]; /* Builtin functions */ int s_cat(char *, char **, int *, int *, unsigned long); /* Local variables */ int i__; float t[4160] /* was [65][64] */; int i1, i2, i3, ib, ic, ja, jc, nb, mi, ni, nq, nw, iws; int left; extern int lsame_(char *, char *); int nbmin, iinfo; extern int sormr3_(char *, char *, int *, int *, int *, int *, float *, int *, float *, float *, int * , float *, int *), xerbla_(char *, int *); extern int ilaenv_(int *, char *, char *, int *, int *, int *, int *); extern int slarzb_(char *, char *, char *, char *, int *, int *, int *, int *, float *, int *, float *, int *, float *, int *, float *, int *); int notran; int ldwork; char transt[1]; extern int slarzt_(char *, char *, int *, int *, float *, int *, float *, float *, int *); int lwkopt; int lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* January 2007 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SORMRZ overwrites the general float M-by-N matrix C with */ /* SIDE = 'L' SIDE = 'R' */ /* TRANS = 'N': Q * C C * Q */ /* TRANS = 'T': Q**T * C C * Q**T */ /* where Q is a float orthogonal matrix defined as the product of k */ /* elementary reflectors */ /* Q = H(1) H(2) . . . H(k) */ /* as returned by STZRZF. Q is of order M if SIDE = 'L' and of order N */ /* if SIDE = 'R'. */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'L': apply Q or Q**T from the Left; */ /* = 'R': apply Q or Q**T from the Right. */ /* TRANS (input) CHARACTER*1 */ /* = 'N': No transpose, apply Q; */ /* = 'T': Transpose, apply Q**T. */ /* M (input) INTEGER */ /* The number of rows of the matrix C. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. N >= 0. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines */ /* the matrix Q. */ /* If SIDE = 'L', M >= K >= 0; */ /* if SIDE = 'R', N >= K >= 0. */ /* L (input) INTEGER */ /* The number of columns of the matrix A containing */ /* the meaningful part of the Householder reflectors. */ /* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */ /* A (input) REAL array, dimension */ /* (LDA,M) if SIDE = 'L', */ /* (LDA,N) if SIDE = 'R' */ /* The i-th row must contain the vector which defines the */ /* elementary reflector H(i), for i = 1,2,...,k, as returned by */ /* STZRZF in the last k rows of its array argument A. */ /* A is modified by the routine but restored on exit. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= MAX(1,K). */ /* TAU (input) REAL array, dimension (K) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by STZRZF. */ /* C (input/output) REAL array, dimension (LDC,N) */ /* On entry, the M-by-N matrix C. */ /* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */ /* LDC (input) INTEGER */ /* The leading dimension of the array C. LDC >= MAX(1,M). */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If SIDE = 'L', LWORK >= MAX(1,N); */ /* if SIDE = 'R', LWORK >= MAX(1,M). */ /* For optimum performance LWORK >= N*NB if SIDE = 'L', and */ /* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */ /* blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; left = lsame_(side, "L"); notran = lsame_(trans, "N"); lquery = *lwork == -1; /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = *m; nw = MAX(1,*n); } else { nq = *n; nw = MAX(1,*m); } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! notran && ! lsame_(trans, "T")) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*k < 0 || *k > nq) { *info = -5; } else if (*l < 0 || left && *l > *m || ! left && *l > *n) { *info = -6; } else if (*lda < MAX(1,*k)) { *info = -8; } else if (*ldc < MAX(1,*m)) { *info = -11; } if (*info == 0) { if (*m == 0 || *n == 0) { lwkopt = 1; } else { /* Determine the block size. NB may be at most NBMAX, where */ /* NBMAX is used to define the local array T. */ /* Computing MIN */ /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (unsigned long)2); i__1 = 64, i__2 = ilaenv_(&c__1, "SORMRQ", ch__1, m, n, k, &c_n1); nb = MIN(i__1,i__2); lwkopt = nw * nb; } work[1] = (float) lwkopt; if (*lwork < MAX(1,nw) && ! lquery) { *info = -13; } } if (*info != 0) { i__1 = -(*info); xerbla_("SORMRZ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } nbmin = 2; ldwork = nw; if (nb > 1 && nb < *k) { iws = nw * nb; if (*lwork < iws) { nb = *lwork / ldwork; /* Computing MAX */ /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (unsigned long)2); i__1 = 2, i__2 = ilaenv_(&c__2, "SORMRQ", ch__1, m, n, k, &c_n1); nbmin = MAX(i__1,i__2); } } else { iws = nw; } if (nb < nbmin || nb >= *k) { /* Use unblocked code */ sormr3_(side, trans, m, n, k, l, &a[a_offset], lda, &tau[1], &c__[ c_offset], ldc, &work[1], &iinfo); } else { /* Use blocked code */ if (left && ! notran || ! left && notran) { i1 = 1; i2 = *k; i3 = nb; } else { i1 = (*k - 1) / nb * nb + 1; i2 = 1; i3 = -nb; } if (left) { ni = *n; jc = 1; ja = *m - *l + 1; } else { mi = *m; ic = 1; ja = *n - *l + 1; } if (notran) { *(unsigned char *)transt = 'T'; } else { *(unsigned char *)transt = 'N'; } i__1 = i2; i__2 = i3; for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__4 = nb, i__5 = *k - i__ + 1; ib = MIN(i__4,i__5); /* Form the triangular factor of the block reflector */ /* H = H(i+ib-1) . . . H(i+1) H(i) */ slarzt_("Backward", "Rowwise", l, &ib, &a[i__ + ja * a_dim1], lda, &tau[i__], t, &c__65); if (left) { /* H or H' is applied to C(i:m,1:n) */ mi = *m - i__ + 1; ic = i__; } else { /* H or H' is applied to C(1:m,i:n) */ ni = *n - i__ + 1; jc = i__; } /* Apply H or H' */ slarzb_(side, transt, "Backward", "Rowwise", &mi, &ni, &ib, l, &a[ i__ + ja * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1] , ldc, &work[1], &ldwork); /* L10: */ } } work[1] = (float) lwkopt; return 0; /* End of SORMRZ */ } /* sormrz_ */