Ejemplo n.º 1
0
/* Main entry point. */
void smf_calcmodel_smo( ThrWorkForce *wf, smfDIMMData *dat, int chunk,
                        AstKeyMap *keymap, smfArray **allmodel,
                        int flags __attribute__((unused)),
                        int *status) {

  /* Local Variables */
  size_t bstride;               /* bolo stride */
  dim_t boxcar = 0;             /* size of boxcar smooth window */
  smf_filt_t filter_type;       /* The type of smoothing to perform */
  size_t i;                     /* Loop counter */
  dim_t idx=0;                  /* Index within subgroup */
  int iworker;                  /* Owkrer index */
  smfCalcmodelSmoJobData *job_data=NULL; /* Pointer to all job data structures */
  AstKeyMap *kmap=NULL;         /* Pointer to PLN-specific keys */
  smfArray *model=NULL;         /* Pointer to model at chunk */
  double *model_data=NULL;      /* Pointer to DATA component of model */
  double *model_data_copy=NULL; /* Copy of model_data for one bolo */
  dim_t nbolo=0;                /* Number of bolometers */
  dim_t ndata=0;                /* Total number of data points */
  int notfirst=0;               /* flag for delaying until after 1st iter */
  dim_t ntslice=0;              /* Number of time slices */
  int nworker;                  /* No. of worker threads in supplied Workforce */
  smfCalcmodelSmoJobData *pdata=NULL; /* Pointer to current data structure */
  smfArray *qua=NULL;           /* Pointer to QUA at chunk */
  smf_qual_t *qua_data=NULL; /* Pointer to quality data */
  smfArray *res=NULL;           /* Pointer to RES at chunk */
  double *res_data=NULL;        /* Pointer to DATA component of res */
  int step;                     /* Number of bolometers per thread */
  size_t tstride;               /* Time slice stride in data array */
  const char * typestr = NULL;  /* smo.type value */

  /* Main routine */
  if (*status != SAI__OK) return;

  /* Obtain pointers to relevant smfArrays for this chunk */
  res = dat->res[chunk];
  qua = dat->qua[chunk];

  /* Obtain pointer to sub-keymap containing PLN parameters. Something will
     always be available.*/
  astMapGet0A( keymap, "SMO", &kmap );

  /* Are we skipping the first iteration? */
  astMapGet0I(kmap, "NOTFIRST", &notfirst);

  if( notfirst && (flags & SMF__DIMM_FIRSTITER) ) {
    msgOutif( MSG__VERB, "", FUNC_NAME
              ": skipping SMO this iteration", status );
    return;
  }

  /* Get the boxcar size */
  if( kmap ) smf_get_nsamp( kmap, "BOXCAR", res->sdata[0], &boxcar, status );

  /* Get the type of smoothing filter to use. Anthing that is not "MEDIAN" is mean */
  filter_type = SMF__FILT_MEAN;
  if (astMapGet0C( kmap, "TYPE", &typestr ) ) {
    if (strncasecmp( typestr, "MED", 3 ) == 0 ) {
      filter_type = SMF__FILT_MEDIAN;
    }
  }

  /* Assert bolo-ordered data */
  smf_model_dataOrder( wf, dat, allmodel, chunk, SMF__RES|SMF__QUA,
                       0, status );

  smf_get_dims( res->sdata[0],  NULL, NULL, NULL, &ntslice,
                &ndata, NULL, NULL, status);

  model = allmodel[chunk];

  msgOutiff(MSG__VERB, "",
            "    Calculating smoothed model using boxcar of width %" DIM_T_FMT " time slices",
            status, boxcar);

  /* Create structures used to pass information to the worker threads. */
  nworker = wf ? wf->nworker : 1;
  job_data = astMalloc( nworker*sizeof( *job_data ) );

  /* Loop over index in subgrp (subarray) and put the previous iteration
     of the filtered component back into the residual before calculating
     and removing the new filtered component */
  for( idx=0; (*status==SAI__OK)&&(idx<res->ndat); idx++ ) {
    /* Obtain dimensions of the data */

    smf_get_dims( res->sdata[idx],  NULL, NULL, &nbolo, &ntslice,
                  &ndata, &bstride, &tstride, status);

    /* Get pointers to data/quality/model */
    res_data = (res->sdata[idx]->pntr)[0];
    qua_data = (qua->sdata[idx]->pntr)[0];
    model_data = (model->sdata[idx]->pntr)[0];

    if( (res_data == NULL) || (model_data == NULL) || (qua_data == NULL) ) {
      *status = SAI__ERROR;
      errRep( "", FUNC_NAME ": Null data in inputs", status);
    } else {

      /* Uncomment to aid debugging */
      /*
      smf_write_smfData( res->sdata[idx], NULL, qua_data, "res_in",
                         NULL, 0, 0, MSG__VERB, 0, status );
      */

      if( *status == SAI__OK ) {
        /* Place last iteration back into residual if this is a smoothable section of the time series */
        for (i=0; i< ndata; i++) {
          if ( !(qua_data[i]&SMF__Q_FIT)  && res_data[i] != VAL__BADD && model_data[i] != VAL__BADD ) {
            res_data[i] += model_data[i];
          }
        }
      }

      /* Uncomment to aid debugging */
      /*
      smf_write_smfData( model->sdata[idx], NULL, qua_data, "model_b4",
                         NULL, 0, 0, MSG__VERB, 0, status );

      smf_write_smfData( res->sdata[idx], NULL, qua_data, "res_b4",
                         NULL, 0, 0, MSG__VERB, 0, status );
      */

      /* Determine which bolometers are to be processed by which threads. */
      step = nbolo/nworker;
      if( step < 1 ) step = 1;

      for( iworker = 0; iworker < nworker; iworker++ ) {
        pdata = job_data + iworker;
        pdata->b1 = iworker*step;
        pdata->b2 = pdata->b1 + step - 1;
      }

      /* Ensure that the last thread picks up any left-over bolometers */
      pdata->b2 = nbolo - 1;

      /* Store all the other info needed by the worker threads, and submit the
         jobs to apply the smoothing. */
      for( iworker = 0; iworker < nworker; iworker++ ) {
         pdata = job_data + iworker;

         pdata->boxcar = boxcar;
         pdata->bstride = bstride;
         pdata->bstride = bstride;
         pdata->filter_type = filter_type;
         pdata->model_data = model_data;
         pdata->nbolo = nbolo;
         pdata->nbolo = nbolo;
         pdata->ntslice = ntslice;
         pdata->ntslice = ntslice;
         pdata->qua_data = qua_data;
         pdata->qua_data = qua_data;
         pdata->res_data = res_data;
         pdata->res_data = res_data;
         pdata->tstride = tstride;
         pdata->tstride = tstride;

         thrAddJob( wf, THR__REPORT_JOB, pdata, smf1_calcmodel_smo_job,
                      0, NULL, status );
      }
      thrWait( wf, status );

      /* Uncomment to aid debugging */
      /*
      smf_write_smfData( res->sdata[idx], NULL, qua_data, "res_af",
                         NULL, 0, 0, MSG__VERB, 0, status );
      smf_write_smfData( model->sdata[idx], NULL, qua_data, "model_af",
                         NULL, 0, 0, MSG__VERB, 0, status );
      */

    }
  }

  /* Free work space (astFree returns without action if a NULL pointer is
     supplied). */
  model_data_copy = astFree( model_data_copy );
  job_data = astFree( job_data );

  /* Annul AST Object pointers (astAnnul reports an error if a NULL pointer
     is supplied). */
  if( kmap ) kmap = astAnnul( kmap );
}
Ejemplo n.º 2
0
void smf_calcmodel_noi( ThrWorkForce *wf, smfDIMMData *dat, int chunk,
                        AstKeyMap *keymap, smfArray **allmodel, int flags,
                        int *status) {

  /* Local Variables */
  dim_t bolostep;               /* Number of bolos per thread */
  dim_t boxsize;                /* No. of time slices in each noise box */
  smfData *box = NULL;          /* SmfData holding one box of input data */
  size_t bstride;               /* bolometer stride */
  int calcfirst=0;              /* Were bolo noises already measured? */
  int dclimcorr;                /* Min number of correlated steps */
  int dcmaxsteps;               /* Maximum allowed number of dc jumps */
  dim_t dcfitbox;               /* Width of box for DC step detection */
  double dcthresh;              /* Threshold for DC step detection */
  dim_t dcsmooth;               /* Width of median filter in DC step detection*/
  double *din;                  /* Pointer to next input value */
  double *dout;                 /* Pointer to next output value */
  int fillgaps;                 /* If set perform gap filling */
  dim_t i;                      /* Loop counter */
  dim_t ibolo;                  /* Bolometer index */
  int ibox;                     /* Index of current noise box */
  dim_t itime;                  /* Time slice index */
  dim_t idx=0;                  /* Index within subgroup */
  JCMTState *instate=NULL;      /* Pointer to input JCMTState */
  int iw;                       /* Thread index */
  dim_t j;                      /* Loop counter */
  AstKeyMap *kmap=NULL;         /* Local keymap */
  size_t mbstride;              /* model bolometer stride */
  dim_t mntslice;               /* Number of model time slices */
  size_t mtstride;              /* model time slice stride */
  smfArray *model=NULL;         /* Pointer to model at chunk */
  double *model_data=NULL;      /* Pointer to DATA component of model */
  dim_t nbolo;                  /* Number of bolometers */
  int nbox = 0;                 /* Number of noise boxes */
  size_t nchisq;                /* Number of data points in chisq calc */
  dim_t nelbox;                 /* Number of data points in a noise box */
  dim_t ndata;                  /* Total number of data points */
  size_t nflag;                 /* Number of new flags */
  int nleft;                    /* Number of samples not in a noise box */
  dim_t ntslice;                /* Number of time slices */
  int nw;                       /* Number of worker threads */
  size_t pend;                  /* Last non-PAD sample */
  size_t pstart;                /* First non-PAD sample */
  smf_qual_t *qin;              /* Pointer to next input quality value */
  smf_qual_t *qout;             /* Pointer to next output quality value */
  smfArray *qua=NULL;           /* Pointer to RES at chunk */
  smf_qual_t *qua_data=NULL; /* Pointer to RES at chunk */
  smfArray *res=NULL;           /* Pointer to RES at chunk */
  double *res_data=NULL;        /* Pointer to DATA component of res */
  dim_t spikebox=0;             /* Box size for spike detection */
  double spikethresh=0;         /* Threshold for spike detection */
  size_t tend;                  /* Last input sample to copy */
  size_t tstart;                /* First input sample to copy */
  size_t tstride;               /* time slice stride */
  double *var=NULL;             /* Sample variance */
  size_t xbstride;              /* Box bolometer stride */
  int zeropad;                  /* Pad with zeros? */

  /* Main routine */
  if (*status != SAI__OK) return;

  /* Obtain pointer to sub-keymap containing NOI parameters */
  astMapGet0A( keymap, "NOI", &kmap );

  /* Assert bolo-ordered data */
  smf_model_dataOrder( dat, allmodel, chunk, SMF__RES|SMF__QUA, 0, status );

  /* Obtain pointers to relevant smfArrays for this chunk */
  res = dat->res[chunk];
  qua = dat->qua[chunk];
  model = allmodel[chunk];

  /* Obtain parameters for NOI */

  /* Data-cleaning parameters  */
  smf_get_cleanpar( kmap, res->sdata[0], NULL, &dcfitbox, &dcmaxsteps, &dcthresh,
                    &dcsmooth, &dclimcorr, NULL, &fillgaps, &zeropad, NULL,
                    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                    &spikethresh, &spikebox, NULL, NULL, NULL, NULL, NULL, NULL,
                    NULL, NULL, NULL, NULL, status );

  /* Did we already calculate the noise on each detector? */
  astMapGet0I( kmap, "CALCFIRST", &calcfirst );

  /* Initialize chisquared */
  dat->chisquared[chunk] = 0;
  nchisq = 0;

  /* Loop over index in subgrp (subarray) */
  for( idx=0; idx<res->ndat; idx++ ) {

    /* Get pointers to DATA components */
    res_data = (res->sdata[idx]->pntr)[0];
    model_data = (model->sdata[idx]->pntr)[0];
    qua_data = (qua->sdata[idx]->pntr)[0];

    if( (res_data == NULL) || (model_data == NULL) || (qua_data == NULL) ) {
      *status = SAI__ERROR;
      errRep( "", FUNC_NAME ": Null data in inputs", status);
    } else {

      /* Get the raw data dimensions */
      smf_get_dims( res->sdata[idx], NULL, NULL, &nbolo, &ntslice, &ndata,
                    &bstride, &tstride, status );

      /* NOI model dimensions */
      smf_get_dims( model->sdata[idx], NULL, NULL, NULL, &mntslice, NULL,
                    &mbstride, &mtstride, status );

      /* Only estimate the white noise level once at the beginning - the
         reason for this is to make measurements of the convergence
         easier. We either do it prior to the start of iterations (in which
         case the relative weights will be influeced by low-frequency noise,
         this is initialized in smf_model_create), or else we calculate
         the noise after the first iteration. */

      if( (flags & SMF__DIMM_FIRSTITER) && (!calcfirst) ) {

        /* There are two forms for the NOI model: one constant noise value
           for each bolometer, or "ntslice" noise values for each bolometer.
           Handle the first case now. */
        if( mntslice == 1 ) {

          var = astMalloc( nbolo*sizeof(*var) );

          if (var) {

            /* Measure the noise from power spectra */
            smf_bolonoise( wf, res->sdata[idx], 0, 0.5, SMF__F_WHITELO,
                           SMF__F_WHITEHI, 0, zeropad ? SMF__MAXAPLEN : SMF__BADSZT,
                           var, NULL, NULL, status );

            for( i=0; i<nbolo; i++ ) if( !(qua_data[i*bstride]&SMF__Q_BADB) ) {
                /* Loop over time and store the variance for each sample */
                for( j=0; j<mntslice; j++ ) {
                  model_data[i*mbstride+(j%mntslice)*mtstride] = var[i];
                }
              }

            var = astFree( var );
          }


        /* If the NOI model is of the second form, the noise is estimated
           in boxes of samples lasting "NOI.BOX_SIZE" seconds, and then the
           noise level in the box is assigned to all samples in the box. */
        } else if( mntslice == ntslice ) {

          /* If not already done, get NOI.BOX_SIZE and convert from seconds to
             samples. */
          if( idx == 0 ) {
            boxsize = 0;
            smf_get_nsamp( kmap, "BOX_SIZE", res->sdata[0], &boxsize, status );

            msgOutf( "", FUNC_NAME ": Calculating a NOI variance for each "
                     "box of %d samples.", status, (int) boxsize );

            /* Find the indices of the first and last non-PAD sample. */
            smf_get_goodrange( qua_data, ntslice, tstride, SMF__Q_PAD,
                               &pstart, &pend, status );

            /* How many whole boxes fit into this range? */
            nbox = ( pend - pstart + 1 ) / boxsize;
            if( nbox == 0 ) nbox = 1;

            /* How many samples would be left over at the end if we used this
               many boxes? */
            nleft = ( pend - pstart + 1 ) - nbox*boxsize;

            /* Increase "boxsize" to reduce this number as far as possible.
               Any samples that are left over after this increase of boxsize
               will not be used when calculating the noise levels in each
               bolometer. */
            boxsize += nleft/nbox;

            /* Create a smfData to hold one box-worth of input data. We
               do not need to copy jcmtstate information. */
            if( res->sdata[idx]->hdr ) {
               instate = res->sdata[idx]->hdr->allState;
               res->sdata[idx]->hdr->allState = NULL;
            }
            box = smf_deepcopy_smfData( res->sdata[idx], 0,
                                        SMF__NOCREATE_DATA |
                                        SMF__NOCREATE_VARIANCE |
                                        SMF__NOCREATE_QUALITY,
                                        0, 0, status );
            if( instate ) res->sdata[idx]->hdr->allState = instate;

            /* Set the length of the time axis to the box size plus padding,
               and create empty data and quality arrays for it. */
            if( *status == SAI__OK ) {
               box->dims[  box->isTordered?2:0 ] = boxsize + pstart + (ntslice - pend - 1);
               smf_get_dims( box, NULL, NULL, NULL, NULL, &nelbox,
                             &xbstride, NULL, status );
               box->pntr[0] = astMalloc( sizeof( double )*nelbox );
               box->qual = astMalloc( sizeof( smf_qual_t )*nelbox );

               /* For every bolometer, flag the start and end of the quality
                  array as padding, and store zeros in the data array. */
               for( ibolo = 0; ibolo < nbolo; ibolo++ ) {
                  dout = ((double *) box->pntr[0]) + xbstride*ibolo;
                  qout = box->qual + xbstride*ibolo;
                  for( itime = 0; itime < pstart; itime++ ) {
                     *(qout++) = SMF__Q_PAD;
                     *(dout++) = 0.0;
                  }

                  dout = ((double *) box->pntr[0]) + xbstride*ibolo + pstart + boxsize;;
                  qout = box->qual + xbstride*ibolo + pstart + boxsize;
                  for( itime = pend + 1; itime < ntslice; itime++ ) {
                     *(qout++) = SMF__Q_PAD;
                     *(dout++) = 0.0;
                  }
               }
            }
          }

          /* Work space to hold the variance for each bolometer in a box */
          var = astMalloc( nbolo*sizeof(*var) );
          if( *status == SAI__OK ) {

            /* Index of the first time slice within the input smfData
               that is included in the first box. */
            tstart = pstart;

            /* Loop round each noise box */
            for( ibox = 0; ibox < nbox; ibox++ ) {

               /* Copy the data and quality values for this box from the
                 input smfData into "box", leaving room for padding at
                 both ends of box. Note, data is bolo-ordered so we
                 can assume that "tstride" is 1. */
               din = ((double *)(res->sdata[idx]->pntr[0])) + tstart;
               dout = ((double *)(box->pntr[0])) + pstart;
               qin = qua_data + tstart;
               qout = box->qual + pstart;

               for( ibolo = 0; ibolo < nbolo; ibolo++ ) {
                  memcpy( dout, din, boxsize*sizeof( *din ) );
                  memcpy( qout, qin, boxsize*sizeof( *qin ) );
                  din += bstride;
                  dout += xbstride;
                  qin += bstride;
                  qout += xbstride;
               }

               /* Measure the noise from power spectra in the box. */
               smf_bolonoise( wf, box, 0, 0.5, SMF__F_WHITELO, SMF__F_WHITEHI,
                              0, zeropad ? SMF__MAXAPLEN : SMF__BADSZT, var,
                              NULL, NULL, status );

               /* Loop over time and store the variance for each sample in
                  the NOI model. On the last box, pick up any left over time
                  slices. */
               if( ibox < nbox - 1 ) {
                  tend = tstart + boxsize - 1;
               } else {
                  tend = pend;
               }

               for( ibolo = 0; ibolo < nbolo; ibolo++ ) {
                  if( !( qua_data[ ibolo*bstride ] & SMF__Q_BADB ) ) {
                     dout =  model_data + ibolo*bstride + tstart;
                     for( itime = tstart; itime <= tend; itime++ ) {
                        *(dout++) = var[ ibolo ];
                     }
                  }
               }

               /* Update the index of the first time slice within the input
                  smfData that is included in the next box. */
               tstart += boxsize;
            }

            var = astFree( var );
          }

        /* Report an error if the number of samples for each bolometer in
           the NOI model is not 1 or "ntslice". */
        } else if( *status == SAI__OK ) {
           *status = SAI__ERROR;
           errRepf( "", FUNC_NAME ": NOI model has %d samples - should be "
                    "%d or 1.", status, (int) mntslice, (int) ntslice);
        }
      }

      if( kmap ) {
        /* Flag spikes in the residual after first iteration */
        if( spikethresh && !(flags&SMF__DIMM_FIRSTITER) ) {
          /* Now re-flag */
          smf_flag_spikes( wf, res->sdata[idx], SMF__Q_MOD,
                           spikethresh, spikebox, &nflag, status );
          msgOutiff(MSG__VERB," ", "   flagged %zu new %lf-sig spikes",
                    status, nflag, spikethresh );
        }

        if( dcthresh && dcfitbox ) {
          smf_fix_steps( wf, res->sdata[idx], dcthresh, dcsmooth,
                         dcfitbox, dcmaxsteps, dclimcorr, 1, &nflag, NULL,
                         NULL, status );
          msgOutiff(MSG__VERB, "","   detected %zu bolos with DC steps\n",
                    status, nflag);
        }

      }

      /* Now calculate contribution to chi^2. This bit takes along time
         if there is a lot of data so share the work out amongst the available
         worker threads. How many threads do we get to play with */
      nw = wf ? wf->nworker : 1;

      /* Find how many bolometers to process in each worker thread. */
      bolostep = nbolo/nw;
      if( bolostep == 0 ) bolostep = 1;

      /* Allocate job data for threads, and store the range of bolos to be
         processed by each one. Ensure that the last thread picks up any
         left-over bolos. */
      SmfCalcModelNoiData *job_data = astCalloc( nw, sizeof(*job_data) );
      if( *status == SAI__OK ) {
        SmfCalcModelNoiData *pdata;

        for( iw = 0; iw < nw; iw++ ) {
           pdata = job_data + iw;
           pdata->b1 = iw*bolostep;
           if( iw < nw - 1 ) {
              pdata->b2 = pdata->b1 + bolostep - 1;
           } else {
              pdata->b2 = nbolo - 1 ;
           }

           /* Store other values common to all jobs. */
           pdata->ntslice = ntslice;
           pdata->mntslice = mntslice;
           pdata->qua_data = qua_data;
           pdata->model_data = model_data;
           pdata->res_data = res_data;
           pdata->bstride = bstride;
           pdata->tstride = tstride;
           pdata->mbstride = mbstride;
           pdata->mtstride = mtstride;

           /* Submit the job to the workforce. */
           thrAddJob( wf, 0, pdata, smf1_calcmodel_noi, 0, NULL, status );
        }

        /* Wait for all jobs to complete. */
        thrWait( wf, status );

        /* Accumulate the results from all the worker threads. */
        for( iw = 0; iw < nw; iw++ ) {
           pdata = job_data + iw;
           dat->chisquared[chunk] += pdata->chisquared;
           nchisq += pdata->nchisq;
        }

/* Free the job data. */
        job_data = astFree( job_data );
      }
    }
  }

  /* Free resources */
  if( box ) {
     box->pntr[0] = astFree( box->pntr[0] );
     box->qual = astFree( box->qual );
     smf_close_file( &box, status );
  }

  /* Normalize chisquared for this chunk */
  if( (*status == SAI__OK) && (nchisq >0) ) {
    dat->chisquared[chunk] /= (double) nchisq;
  }

  /* Clean Up */
  if( kmap ) kmap = astAnnul( kmap );
}
Ejemplo n.º 3
0
void smf_calcmodel_gai( ThrWorkForce *wf, smfDIMMData *dat, int chunk,
                        AstKeyMap *keymap, smfArray **allmodel, int flags,
                        int *status) {

  /* Local Variables */
  size_t bstride;               /* bolometer stride */
  dim_t gain_box=0;             /* No. of time slices in a block */
  size_t gbstride;              /* GAIn bolo stride */
  size_t gcstride;              /* GAIn coeff stride */
  int gflat=0;                  /* correct flatfield using GAI */
  dim_t i;                      /* Loop counter */
  dim_t idx=0;                  /* Index within subgroup */
  dim_t j;                      /* Loop counter */
  AstKeyMap *kmap=NULL;         /* Local GAIn keymap */
  smfArray *model=NULL;         /* Pointer to model at chunk */
  double *model_data=NULL;      /* Pointer to DATA component of model */
  dim_t nblock;                 /* No. of time slice blocks */
  dim_t nbolo;                  /* Number of bolometers */
  dim_t ndata;                  /* Number of data points */
  smfArray *noi=NULL;           /* Pointer to NOI at chunk */
  double *noi_data=NULL;        /* Pointer to DATA component of model */
  size_t noibstride;            /* bolo stride for noise */
  dim_t nointslice;             /* number of time slices for noise */
  size_t noitstride;            /* Time stride for noise */
  dim_t npar;                   /* No. of parameters per bolometer */
  dim_t ntslice;                /* Number of time slices */
  int oldalg = 1;               /* Is the old COM algorithm being used? */
  smfArray *qua=NULL;           /* Pointer to QUA at chunk */
  smf_qual_t *qua_data=NULL; /* Pointer to quality data */
  smfArray *res=NULL;           /* Pointer to RES at chunk */
  double *res_data=NULL;        /* Pointer to DAT */
  double *scale;                /* Pointer to scale factor */
  size_t tstride;               /* time slice stride */
  double *wg;                   /* Workspace holding time slice gains */
  double *woff;                 /* Workspace holding time slice offsets */

  /* Main routine */
  if( *status != SAI__OK ) return;
  if( !(flags&SMF__DIMM_INVERT) ) return;

  /* See if the new sigma-clipping COM algorithm is being used. */
  astMapGet0A( keymap, "COM", &kmap );
  astMapGet0I( kmap, "OLDALG", &oldalg );
  kmap = astAnnul( kmap );

  /* Obtain pointer to sub-keymap containing GAI parameters */
  if( !astMapHasKey( keymap, "GAI" ) ) return;
  astMapGet0A( keymap, "GAI", &kmap );

  astMapGet0I( kmap, "FLATFIELD", &gflat );
  if( kmap ) kmap = astAnnul( kmap );

  /* Report an error if gai.flatfield is used with the new COM algorithm. */
  if( !oldalg && gflat && *status == SAI__OK ) {
     errRep( "", "Cannot use GAI.FLATFIELD with new COM algorithm.", status );
  }

  /* Only have to do something if gai.flatfield set */
  if( !gflat || *status != SAI__OK ) return;

  /* Obtain pointers to relevant smfArrays for this chunk */
  res = dat->res[chunk];
  qua = dat->qua[chunk];
  model = allmodel[chunk];
  if(dat->noi) noi = dat->noi[chunk];

  /* Get the number of blocks into which to split each time series. Each box
     (except possibly the last one contains "gain_box" time slices. */
  astMapGet0A( keymap, "COM", &kmap );
  smf_get_nsamp( kmap, "GAIN_BOX", res->sdata[0], &gain_box, status );
  if (kmap) kmap = astAnnul( kmap );
  if (*status != SAI__OK) return;

  /* Ensure everything is in bolo-order */
  smf_model_dataOrder( wf, dat, allmodel, chunk, SMF__RES|SMF__QUA|SMF__NOI, 0, status );

  /* Loop over index in subgrp (subarray) */
  for( idx=0; idx<res->ndat; idx++ ) {

    /* Get pointers to DATA components */
    res_data = (res->sdata[idx]->pntr)[0];
    qua_data = (qua->sdata[idx]->pntr)[0];
    model_data = (model->sdata[idx]->pntr)[0];
    if( noi ) {
      smf_get_dims( noi->sdata[idx],  NULL, NULL, NULL, &nointslice,
                    NULL, &noibstride, &noitstride, status);
      noi_data = (double *)(noi->sdata[idx]->pntr)[0];
    }

    if( (res_data == NULL) || (model_data == NULL) || (qua_data == NULL) ) {
      *status = SAI__ERROR;
      errRep("", FUNC_NAME ": Null data in inputs", status);
    } else {

      /* Get the raw data dimensions */
      smf_get_dims( res->sdata[idx],  NULL, NULL, &nbolo, &ntslice, &ndata,
                    &bstride, &tstride, status);

      smf_get_dims( model->sdata[idx],  NULL, NULL, NULL, &npar, NULL,
                    &gbstride, &gcstride, status);

      /* If com.gain_box is zero, use a value of ntslice, so that a single
         box will be used covering the whoel time stream. */
      if( gain_box == 0 ) gain_box = ntslice;

      /* Allocate work space for the gain and offset for each time slice. */
      woff = astMalloc( ntslice*sizeof( *woff ) );
      wg = astMalloc( ntslice*sizeof( *wg ) );

      /* Get the number of blocks into which the time stream is divided.
         Each block has a separate gain, offset and correlation factor
         for each bolometer. */
      nblock = npar/3;

      /* Undo the gain correction stored in GAI (the gain is applied to
         the signal and noise in smf_calcmodel_com) */
      for( i=0; i<nbolo; i++ ) {
        if( !(qua_data[i*bstride]&SMF__Q_BADB) ) {

          /* Get the gain and offset for each time slice of this bolometer. */
          smf_gandoff( i, 0, ntslice - 1, ntslice, gbstride, gcstride,
                       model_data, nblock, gain_box, wg, woff, NULL, status );

          /* First undo the flatfield correction to the signal */
          scale = wg;
          for( j=0; j<ntslice; j++,scale++ ) {
            if( !(qua_data[i*bstride + j*tstride]&SMF__Q_MOD) &&
                *scale != VAL__BADD && *scale > 0.0 ) {
              res_data[i*bstride + j*tstride] *= *scale;
            }
          }

          /* Then scale the noise. */
          if( noi ) {
            scale = wg;
            for( j=0; j<nointslice; j++,scale++ ) {
              if( noi_data[i*noibstride + j*noitstride] != VAL__BADD &&
                  *scale != VAL__BADD && *scale > 0.0 ) {
                noi_data[i*noibstride + j*noitstride] *= (*scale) * (*scale);
              }
            }
          }
        }
      }

      /* Free work space. */
      woff = astFree( woff );
      wg = astFree( wg );

    }
  }

}
Ejemplo n.º 4
0
void smf_calcmodel_pln( ThrWorkForce *wf, smfDIMMData *dat, int chunk,
                        AstKeyMap *keymap, smfArray **allmodel,
                        int flags __attribute__((unused)),
                        int *status) {

  /* Local Variables */
  size_t bstride;               /* bolo stride */
  size_t i;                     /* Loop counter */
  dim_t idx=0;                  /* Index within subgroup */
  AstKeyMap *kmap=NULL;         /* Pointer to PLN-specific keys */
  smfArray *model=NULL;         /* Pointer to model at chunk */
  double *model_data=NULL;      /* Pointer to DATA component of model */
  double *model_data_copy=NULL; /* Copy of model_data for one bolo */
  int *lut_data = NULL;         /* Lut data for one subarray */
  dim_t nbolo=0;                /* Number of bolometers */
  dim_t ndata=0;                /* Total number of data points */
  int notfirst=0;               /* flag for delaying until after 1st iter */
  dim_t ntslice=0;              /* Number of time slices */
  smfArray *qua=NULL;           /* Pointer to QUA at chunk */
  smf_qual_t *qua_data=NULL; /* Pointer to quality data */
  smfArray *res=NULL;           /* Pointer to RES at chunk */
  smfArray *lut=NULL;           /* Pointer to LUT at chunk */
  double *res_data=NULL;        /* Pointer to DATA component of res */
  size_t tstride;               /* Time slice stride in data array */

  /* Main routine */
  if (*status != SAI__OK) return;

  /* Obtain pointer to sub-keymap containing PLN parameters. Something will
     always be available.*/
  astMapGet0A( keymap, "PLN", &kmap );

  /* Are we skipping the first iteration? */
  astMapGet0I(kmap, "NOTFIRST", &notfirst);

  if( notfirst && (flags & SMF__DIMM_FIRSTITER) ) {
    msgOutif( MSG__VERB, "", FUNC_NAME
              ": skipping PLN this iteration", status );
    return;
  }

  /* Obtain pointers to relevant smfArrays for this chunk */
  res = dat->res[chunk];
  qua = dat->qua[chunk];
  lut = dat->lut[chunk];

  /* Assert ICD-ordered data */
  smf_model_dataOrder( wf, dat, allmodel, chunk, SMF__RES|SMF__QUA|SMF__LUT,
                       1, status );

  smf_get_dims( res->sdata[0],  NULL, NULL, NULL, NULL,
                &ndata, NULL, NULL, status);

  model = allmodel[chunk];

  /* Loop over index in subgrp (subarray) and put the previous iteration
     of the filtered component back into the residual before calculating
     and removing the new filtered component */
  for( idx=0; (*status==SAI__OK)&&(idx<res->ndat); idx++ ) {
    /* Obtain dimensions of the data */

    smf_get_dims( res->sdata[idx],  NULL, NULL, &nbolo, &ntslice,
                  &ndata, &bstride, &tstride, status);

    /* Get pointers to data/quality/model */
    res_data = (res->sdata[idx]->pntr)[0];
    qua_data = (qua->sdata[idx]->pntr)[0];
    model_data = (model->sdata[idx]->pntr)[0];
    lut_data = (lut->sdata[idx]->pntr)[0];

    if( (res_data == NULL) || (model_data == NULL) || (qua_data == NULL) ) {
      *status = SAI__ERROR;
      errRep( "", FUNC_NAME ": Null data in inputs", status);
    } else {

      if( *status == SAI__OK ) {
        /* Place last iteration of plane signal back into residual */
        for (i=0; i< nbolo*ntslice; i++) {
          if ( !(qua_data[i]&SMF__Q_MOD)  && res_data[i] != VAL__BADD && model_data[i] != VAL__BADD ) {
            res_data[i] += model_data[i];
          }
        }

        /* Copy the residual+old model into model_data where it will be
           fitted again in this iteration. */
        memcpy( model_data, res_data,
                ndata*smf_dtype_size(res->sdata[idx],status) );
      }

      /* Calculate the fit and subtract it*/
      smf_subtract_plane3( wf, res->sdata[idx], dat->mdims, lut_data, status );

      /* Store the difference between the plane-subtracted signal and the residual
         in the model container */
      if( *status == SAI__OK ) {
        for (i=0; i< nbolo*ntslice; i++) {
          if ( !(qua_data[i]&SMF__Q_MOD)  && res_data[i] != VAL__BADD && model_data[i] != VAL__BADD ) {
            model_data[i] -= res_data[i];
          } else {
            model_data[i] = VAL__BADD;
          }
        }
      }

    }
  }

  if( kmap ) kmap = astAnnul( kmap );
  model_data_copy = astFree( model_data_copy );
}