Ejemplo n.º 1
0
static int smm_load_handlers(void)
{
	/* All range registers are aligned to 4KiB */
	const uint32_t rmask = ~((1 << 12) - 1);
	const struct pattrs *pattrs = pattrs_get();
	void *smm_base;
	size_t smm_size;

	/* Initialize global tracking state. */
	smm_region(&smm_base, &smm_size);
	relo_attrs.smbase = (uint32_t)smm_base;
	relo_attrs.smrr_base = relo_attrs.smbase | MTRR_TYPE_WRBACK;
	relo_attrs.smrr_mask = ~(smm_size - 1) & rmask;
	relo_attrs.smrr_mask |= MTRR_PHYS_MASK_VALID;

	/* Install handlers. */
	if (install_relocation_handler(pattrs->num_cpus) < 0) {
		printk(BIOS_ERR, "Unable to install SMM relocation handler.\n");
		return -1;
	}

	if (install_permanent_handler(pattrs->num_cpus) < 0) {
		printk(BIOS_ERR, "Unable to install SMM permanent handler.\n");
		return -1;
	}

	/* Ensure the SMM handlers hit DRAM before performing first SMI. */
	wbinvd();

	return 0;
}
Ejemplo n.º 2
0
/*
 *        Subregions within SMM
 *     +-------------------------+ BUNIT_SMRRH
 *     |  External Stage Cache   | SMM_RESERVED_SIZE
 *     +-------------------------+
 *     |      code and data      |
 *     |         (TSEG)          |
 *     +-------------------------+ BUNIT_SMRRL
 */
int smm_subregion(int sub, void **start, size_t *size)
{
	uintptr_t sub_base;
	void *sub_ptr;
	size_t sub_size;
	const size_t cache_size = CONFIG_SMM_RESERVED_SIZE;

	smm_region(&sub_ptr, &sub_size);
	sub_base = (uintptr_t)sub_ptr;

	switch (sub) {
	case SMM_SUBREGION_HANDLER:
		/* Handler starts at the base of TSEG. */
		sub_size -= cache_size;
		break;
	case SMM_SUBREGION_CACHE:
		/* External cache is in the middle of TSEG. */
		sub_base += sub_size - cache_size;
		sub_size = cache_size;
		break;
	default:
		return -1;
	}

	*start = (void *)sub_base;
	*size = sub_size;

	return 0;
}
Ejemplo n.º 3
0
static int install_relocation_handler(int num_cpus)
{
	const int save_state_size = sizeof(em64t100_smm_state_save_area_t);

	struct smm_loader_params smm_params = {
		.per_cpu_stack_size = save_state_size,
		.num_concurrent_stacks = num_cpus,
		.per_cpu_save_state_size = save_state_size,
		.num_concurrent_save_states = 1,
		.handler = (smm_handler_t)&cpu_smm_do_relocation,
	};

	if (smm_setup_relocation_handler(&smm_params))
		return -1;

	adjust_apic_id_map(&smm_params);

	return 0;
}

static int install_permanent_handler(int num_cpus)
{
	/*
	 * There are num_cpus concurrent stacks and num_cpus concurrent save
	 * state areas. Lastly, set the stack size to the save state size.
	 */
	int save_state_size = sizeof(em64t100_smm_state_save_area_t);
	struct smm_loader_params smm_params = {
		.per_cpu_stack_size = save_state_size,
		.num_concurrent_stacks = num_cpus,
		.per_cpu_save_state_size = save_state_size,
		.num_concurrent_save_states = num_cpus,
	};
	void *smm_base;
	size_t smm_size;
	int tseg_size;

	printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n",
	       relo_attrs.smbase);

	smm_region(&smm_base, &smm_size);
	tseg_size = smm_size - CONFIG_SMM_RESERVED_SIZE;
	if (smm_load_module((void *)relo_attrs.smbase, tseg_size, &smm_params))
		return -1;

	adjust_apic_id_map(&smm_params);

	return 0;
}
Ejemplo n.º 4
0
/* Display SMM memory map */
static void smm_memory_map(void)
{
	void *base;
	size_t size;
	int i;

	printk(BIOS_SPEW, "SMM Memory Map\n");

	smm_region(&base, &size);
	printk(BIOS_SPEW, "SMRAM       : %p 0x%zx\n", base, size);

	for (i = 0; i < SMM_SUBREGION_NUM; i++) {
		if (smm_subregion(i, &base, &size))
			continue;
		printk(BIOS_SPEW, " Subregion %d: %p 0x%zx\n", i, base, size);
	}
}
Ejemplo n.º 5
0
static void get_smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
				size_t *smm_save_state_size)
{
	void *smm_base;
	size_t smm_size;

	/* All range registers are aligned to 4KiB */
	const uint32_t rmask = ~((1 << 12) - 1);

	/* Initialize global tracking state. */
	smm_region(&smm_base, &smm_size);
	relo_attrs.smbase = (uint32_t)smm_base;
	relo_attrs.smrr_base = relo_attrs.smbase | MTRR_TYPE_WRBACK;
	relo_attrs.smrr_mask = ~(smm_size - 1) & rmask;
	relo_attrs.smrr_mask |= MTRR_PHYS_MASK_VALID;

	*perm_smbase = relo_attrs.smbase;
	*perm_smsize = smm_size - CONFIG_SMM_RESERVED_SIZE;
	*smm_save_state_size = sizeof(em64t100_smm_state_save_area_t);
}
Ejemplo n.º 6
0
void *cbmem_top(void)
{
	char *smm_base;
	size_t smm_size;

	/*
	 *     +-------------------------+  Top of RAM (aligned)
	 *     | System Management Mode  |
	 *     |      code and data      |  Length: CONFIG_TSEG_SIZE
	 *     |         (TSEG)          |
	 *     +-------------------------+  SMM base (aligned)
	 *     |                         |
	 *     | Chipset Reserved Memory |  Length: Multiple of CONFIG_TSEG_SIZE
	 *     |                         |
	 *     +-------------------------+  top_of_ram (aligned)
	 *     |                         |
	 *     |       CBMEM Root        |
	 *     |                         |
	 *     +-------------------------+
	 *     |                         |
	 *     |   FSP Reserved Memory   |
	 *     |                         |
	 *     +-------------------------+
	 *     |                         |
	 *     |  Various CBMEM Entries  |
	 *     |                         |
	 *     +-------------------------+  top_of_stack (8 byte aligned)
	 *     |                         |
	 *     |   stack (CBMEM Entry)   |
	 *     |                         |
	 *     +-------------------------+
	*/

	smm_region((void **)&smm_base, &smm_size);
	return (void *)smm_base;
}
Ejemplo n.º 7
0
void raminit(struct romstage_params *params)
{
	const EFI_GUID bootldr_tolum_guid = FSP_BOOTLOADER_TOLUM_HOB_GUID;
	EFI_HOB_RESOURCE_DESCRIPTOR *cbmem_root;
	FSP_INFO_HEADER *fsp_header;
	EFI_HOB_RESOURCE_DESCRIPTOR *fsp_memory;
	FSP_MEMORY_INIT fsp_memory_init;
	FSP_MEMORY_INIT_PARAMS fsp_memory_init_params;
	const EFI_GUID fsp_reserved_guid =
		FSP_RESERVED_MEMORY_RESOURCE_HOB_GUID;
	void *fsp_reserved_memory_area;
	FSP_INIT_RT_COMMON_BUFFER fsp_rt_common_buffer;
	void *hob_list_ptr;
	FSP_SMBIOS_MEMORY_INFO *memory_info_hob;
	const EFI_GUID memory_info_hob_guid = FSP_SMBIOS_MEMORY_INFO_GUID;
	MEMORY_INIT_UPD memory_init_params;
	const EFI_GUID mrc_guid = FSP_NON_VOLATILE_STORAGE_HOB_GUID;
	u32 *mrc_hob;
	u32 fsp_reserved_bytes;
	MEMORY_INIT_UPD *original_params;
	struct pei_data *pei_ptr;
	EFI_STATUS status;
	VPD_DATA_REGION *vpd_ptr;
	UPD_DATA_REGION *upd_ptr;
	int fsp_verification_failure = 0;
#if IS_ENABLED(CONFIG_DISPLAY_HOBS)
	unsigned long int data;
	EFI_PEI_HOB_POINTERS hob_ptr;
#endif

	/*
	 * Find and copy the UPD region to the stack so the platform can modify
	 * the settings if needed.  Modifications to the UPD buffer are done in
	 * the platform callback code.  The platform callback code is also
	 * responsible for assigning the UpdDataRngPtr to this buffer if any
	 * updates are made.  The default state is to leave the UpdDataRngPtr
	 * set to NULL.  This indicates that the FSP code will use the UPD
	 * region in the FSP binary.
	 */
	post_code(0x34);
	fsp_header = params->chipset_context;
	vpd_ptr = (VPD_DATA_REGION *)(fsp_header->CfgRegionOffset +
					fsp_header->ImageBase);
	printk(BIOS_DEBUG, "VPD Data: 0x%p\n", vpd_ptr);
	upd_ptr = (UPD_DATA_REGION *)(vpd_ptr->PcdUpdRegionOffset +
					fsp_header->ImageBase);
	printk(BIOS_DEBUG, "UPD Data: 0x%p\n", upd_ptr);
	original_params = (void *)((u8 *)upd_ptr +
		upd_ptr->MemoryInitUpdOffset);
	memcpy(&memory_init_params, original_params,
		sizeof(memory_init_params));

	/* Zero fill RT Buffer data and start populating fields. */
	memset(&fsp_rt_common_buffer, 0, sizeof(fsp_rt_common_buffer));
	pei_ptr = params->pei_data;
	if (pei_ptr->boot_mode == SLEEP_STATE_S3) {
		fsp_rt_common_buffer.BootMode = BOOT_ON_S3_RESUME;
	} else if (pei_ptr->saved_data != NULL) {
		fsp_rt_common_buffer.BootMode =
			BOOT_ASSUMING_NO_CONFIGURATION_CHANGES;
	} else {
		fsp_rt_common_buffer.BootMode = BOOT_WITH_FULL_CONFIGURATION;
	}
	fsp_rt_common_buffer.UpdDataRgnPtr = &memory_init_params;
	fsp_rt_common_buffer.BootLoaderTolumSize = cbmem_overhead_size();

	/* Get any board specific changes */
	fsp_memory_init_params.NvsBufferPtr = (void *)pei_ptr->saved_data;
	fsp_memory_init_params.RtBufferPtr = &fsp_rt_common_buffer;
	fsp_memory_init_params.HobListPtr = &hob_list_ptr;

	/* Update the UPD data */
	soc_memory_init_params(params, &memory_init_params);
	mainboard_memory_init_params(params, &memory_init_params);

	if (IS_ENABLED(CONFIG_MMA))
		setup_mma(&memory_init_params);

	post_code(0x36);

	/* Display the UPD data */
	if (IS_ENABLED(CONFIG_DISPLAY_UPD_DATA))
		soc_display_memory_init_params(original_params,
			&memory_init_params);

	/* Call FspMemoryInit to initialize RAM */
	fsp_memory_init = (FSP_MEMORY_INIT)(fsp_header->ImageBase
		+ fsp_header->FspMemoryInitEntryOffset);
	printk(BIOS_DEBUG, "Calling FspMemoryInit: 0x%p\n", fsp_memory_init);
	printk(BIOS_SPEW, "    0x%p: NvsBufferPtr\n",
		fsp_memory_init_params.NvsBufferPtr);
	printk(BIOS_SPEW, "    0x%p: RtBufferPtr\n",
		fsp_memory_init_params.RtBufferPtr);
	printk(BIOS_SPEW, "    0x%p: HobListPtr\n",
		fsp_memory_init_params.HobListPtr);

	timestamp_add_now(TS_FSP_MEMORY_INIT_START);
	post_code(POST_FSP_MEMORY_INIT);
	status = fsp_memory_init(&fsp_memory_init_params);
	post_code(0x37);
	timestamp_add_now(TS_FSP_MEMORY_INIT_END);

	printk(BIOS_DEBUG, "FspMemoryInit returned 0x%08x\n", status);
	if (status != EFI_SUCCESS)
		die("ERROR - FspMemoryInit failed to initialize memory!\n");

	/* Locate the FSP reserved memory area */
	fsp_reserved_bytes = 0;
	fsp_memory = get_next_resource_hob(&fsp_reserved_guid, hob_list_ptr);
	if (fsp_memory == NULL) {
		fsp_verification_failure = 1;
		printk(BIOS_DEBUG,
			"7.2: FSP_RESERVED_MEMORY_RESOURCE_HOB missing!\n");
	} else {
		fsp_reserved_bytes = fsp_memory->ResourceLength;
		printk(BIOS_DEBUG, "Reserving 0x%016lx bytes for FSP\n",
			(unsigned long int)fsp_reserved_bytes);
	}

	/* Display SMM area */
#if IS_ENABLED(CONFIG_HAVE_SMI_HANDLER)
	char *smm_base;
	size_t smm_size;

	smm_region((void **)&smm_base, &smm_size);
	printk(BIOS_DEBUG, "0x%08x: smm_size\n", (unsigned int)smm_size);
	printk(BIOS_DEBUG, "0x%p: smm_base\n", smm_base);
#endif

	/* Migrate CAR data */
	printk(BIOS_DEBUG, "0x%p: cbmem_top\n", cbmem_top());
	if (pei_ptr->boot_mode != SLEEP_STATE_S3) {
		cbmem_initialize_empty_id_size(CBMEM_ID_FSP_RESERVED_MEMORY,
			fsp_reserved_bytes);
	} else if (cbmem_initialize_id_size(CBMEM_ID_FSP_RESERVED_MEMORY,
		fsp_reserved_bytes)) {
#if IS_ENABLED(CONFIG_HAVE_ACPI_RESUME)
		printk(BIOS_DEBUG, "Failed to recover CBMEM in S3 resume.\n");
		/* Failed S3 resume, reset to come up cleanly */
		hard_reset();
#endif
	}

	/* Save the FSP runtime parameters. */
	fsp_set_runtime(fsp_header, hob_list_ptr);

	/* Lookup the FSP_BOOTLOADER_TOLUM_HOB */
	cbmem_root = get_next_resource_hob(&bootldr_tolum_guid, hob_list_ptr);
	if (cbmem_root == NULL) {
		fsp_verification_failure = 1;
		printk(BIOS_ERR, "7.4: FSP_BOOTLOADER_TOLUM_HOB missing!\n");
		printk(BIOS_ERR, "BootLoaderTolumSize: 0x%08x bytes\n",
			fsp_rt_common_buffer.BootLoaderTolumSize);
	}

	/* Locate the FSP_SMBIOS_MEMORY_INFO HOB */
	memory_info_hob = get_next_guid_hob(&memory_info_hob_guid,
		hob_list_ptr);
	if (NULL == memory_info_hob) {
		printk(BIOS_ERR, "FSP_SMBIOS_MEMORY_INFO HOB missing!\n");
		fsp_verification_failure = 1;
	} else {
		printk(BIOS_DEBUG,
			"FSP_SMBIOS_MEMORY_INFO HOB: 0x%p\n",
			memory_info_hob);
	}

#if IS_ENABLED(CONFIG_DISPLAY_HOBS)
	if (hob_list_ptr == NULL)
		die("ERROR - HOB pointer is NULL!\n");

	/*
	 * Verify that FSP is generating the required HOBs:
	 *	7.1: FSP_BOOTLOADER_TEMP_MEMORY_HOB only produced for FSP 1.0
	 *	7.2: FSP_RESERVED_MEMORY_RESOURCE_HOB verified above
	 *	7.3: FSP_NON_VOLATILE_STORAGE_HOB verified below
	 *	7.4: FSP_BOOTLOADER_TOLUM_HOB verified above
	 *	7.5: EFI_PEI_GRAPHICS_INFO_HOB produced by SiliconInit
	 *	FSP_SMBIOS_MEMORY_INFO HOB verified above
	 */
	if (NULL != cbmem_root) {
		printk(BIOS_DEBUG,
			"7.4: FSP_BOOTLOADER_TOLUM_HOB: 0x%p\n",
			cbmem_root);
		data = cbmem_root->PhysicalStart;
		printk(BIOS_DEBUG, "    0x%016lx: PhysicalStart\n", data);
		data = cbmem_root->ResourceLength;
		printk(BIOS_DEBUG, "    0x%016lx: ResourceLength\n", data);
	}
	hob_ptr.Raw = get_next_guid_hob(&mrc_guid, hob_list_ptr);
	if (NULL == hob_ptr.Raw) {
		printk(BIOS_ERR, "7.3: FSP_NON_VOLATILE_STORAGE_HOB missing!\n");
		fsp_verification_failure =
			(params->pei_data->saved_data == NULL) ? 1 : 0;
	} else {
		printk(BIOS_DEBUG,
			"7.3: FSP_NON_VOLATILE_STORAGE_HOB: 0x%p\n",
			hob_ptr.Raw);
	}
	if (fsp_memory != NULL) {
		printk(BIOS_DEBUG,
			"7.2: FSP_RESERVED_MEMORY_RESOURCE_HOB: 0x%p\n",
			fsp_memory);
		data = fsp_memory->PhysicalStart;
		printk(BIOS_DEBUG, "    0x%016lx: PhysicalStart\n", data);
		data = fsp_memory->ResourceLength;
		printk(BIOS_DEBUG, "    0x%016lx: ResourceLength\n", data);
	}

	/* Verify all the HOBs are present */
	if (fsp_verification_failure)
		printk(BIOS_DEBUG,
			"ERROR - Missing one or more required FSP HOBs!\n");

	/* Display the HOBs */
	print_hob_type_structure(0, hob_list_ptr);
#endif

	/* Get the address of the CBMEM region for the FSP reserved memory */
	fsp_reserved_memory_area = cbmem_find(CBMEM_ID_FSP_RESERVED_MEMORY);
	printk(BIOS_DEBUG, "0x%p: fsp_reserved_memory_area\n",
		fsp_reserved_memory_area);

	/* Verify the order of CBMEM root and FSP memory */
	if ((fsp_memory != NULL) && (cbmem_root != NULL) &&
		(cbmem_root->PhysicalStart <= fsp_memory->PhysicalStart)) {
		fsp_verification_failure = 1;
		printk(BIOS_DEBUG,
			"ERROR - FSP reserved memory above CBMEM root!\n");
	}

	/* Verify that the FSP memory was properly reserved */
	if ((fsp_memory != NULL) && ((fsp_reserved_memory_area == NULL) ||
		(fsp_memory->PhysicalStart !=
			(unsigned int)fsp_reserved_memory_area))) {
		fsp_verification_failure = 1;
		printk(BIOS_DEBUG, "ERROR - Reserving FSP memory area!\n");
#if IS_ENABLED(CONFIG_HAVE_SMI_HANDLER)
		if (cbmem_root != NULL) {
			size_t delta_bytes = (unsigned int)smm_base
				- cbmem_root->PhysicalStart
				- cbmem_root->ResourceLength;
			printk(BIOS_DEBUG,
				"0x%08x: Chipset reserved bytes reported by FSP\n",
				(unsigned int)delta_bytes);
			die("Please verify the chipset reserved size\n");
		}
#endif
	}

	/* Verify the FSP 1.1 HOB interface */
	if (fsp_verification_failure)
		die("ERROR - Coreboot's requirements not met by FSP binary!\n");

	/* Display the memory configuration */
	report_memory_config();

	/* Locate the memory configuration data to speed up the next reboot */
	mrc_hob = get_next_guid_hob(&mrc_guid, hob_list_ptr);
	if (mrc_hob == NULL)
		printk(BIOS_DEBUG,
			"Memory Configuration Data Hob not present\n");
	else {
		pei_ptr->data_to_save = GET_GUID_HOB_DATA(mrc_hob);
		pei_ptr->data_to_save_size = ALIGN(
			((u32)GET_HOB_LENGTH(mrc_hob)), 16);
	}
}
Ejemplo n.º 8
0
asmlinkage void car_stage_entry(void)
{
	struct postcar_frame pcf;
	uintptr_t top_of_ram;
	bool s3wake;
	struct chipset_power_state *ps = car_get_var_ptr(&power_state);
	void *smm_base;
	size_t smm_size, var_size;
	const void *new_var_data;
	uintptr_t tseg_base;

	timestamp_add_now(TS_START_ROMSTAGE);

	soc_early_romstage_init();
	disable_watchdog();

	console_init();

	s3wake = fill_power_state(ps) == ACPI_S3;
	fsp_memory_init(s3wake);

	if (punit_init())
		set_max_freq();
	else
		printk(BIOS_DEBUG, "Punit failed to initialize properly\n");

	/* Stash variable MRC data and let cache system update it later */
	new_var_data = fsp_find_extension_hob_by_guid(hob_variable_guid,
							&var_size);
	if (new_var_data)
		mrc_cache_stash_vardata(new_var_data, var_size,
					car_get_var(fsp_version));
	else
		printk(BIOS_ERR, "Failed to determine variable data\n");

	if (postcar_frame_init(&pcf, 1*KiB))
		die("Unable to initialize postcar frame.\n");

	mainboard_save_dimm_info();

	/*
	 * We need to make sure ramstage will be run cached. At this point exact
	 * location of ramstage in cbmem is not known. Instruct postcar to cache
	 * 16 megs under cbmem top which is a safe bet to cover ramstage.
	 */
	top_of_ram = (uintptr_t) cbmem_top();
	/* cbmem_top() needs to be at least 16 MiB aligned */
	assert(ALIGN_DOWN(top_of_ram, 16*MiB) == top_of_ram);
	postcar_frame_add_mtrr(&pcf, top_of_ram - 16*MiB, 16*MiB, MTRR_TYPE_WRBACK);

	/* Cache the memory-mapped boot media. */
	if (IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED))
		postcar_frame_add_mtrr(&pcf, -CONFIG_ROM_SIZE, CONFIG_ROM_SIZE,
					MTRR_TYPE_WRPROT);

	/*
	* Cache the TSEG region at the top of ram. This region is
	* not restricted to SMM mode until SMM has been relocated.
	* By setting the region to cacheable it provides faster access
	* when relocating the SMM handler as well as using the TSEG
	* region for other purposes.
	*/
	smm_region(&smm_base, &smm_size);
	tseg_base = (uintptr_t)smm_base;
	postcar_frame_add_mtrr(&pcf, tseg_base, smm_size, MTRR_TYPE_WRBACK);

	run_postcar_phase(&pcf);
}