Ejemplo n.º 1
0
/* Subroutine */ int sdrvpt_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, real *a, real *d__, 
	real *e, real *b, real *x, real *xact, real *work, real *rwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
	    ", test \002,i2,\002, ratio = \002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio = \002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3;

    /* Local variables */
    integer i__, j, k, n;
    real z__[3];
    integer k1, ia, in, kl, ku, ix, nt, lda;
    char fact[1];
    real cond;
    integer mode;
    real dmax__;
    integer imat, info;
    char path[3], dist[1], type__[1];
    integer nrun, ifact, nfail, iseed[4];
    real rcond;
    integer nimat;
    real anorm;
    integer izero, nerrs;
    logical zerot;
    real rcondc;
    real ainvnm;
    real result[6];

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVPT tests SPTSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (NMAX*2) */

/*  D       (workspace) REAL array, dimension (NMAX*2) */

/*  E       (workspace) REAL array, dimension (NMAX*2) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NRHS)) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --e;
    --d__;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (n > 0 && ! dotype[imat]) {
		goto L110;
	    }

/*           Set up parameters with SLATB4. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Type 1-6:  generate a symmetric tridiagonal matrix of */
/*              known condition number in lower triangular band storage. */

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info);

/*              Check the error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L110;
		}
		izero = 0;

/*              Copy the matrix to D and E. */

		ia = 1;
		i__3 = n - 1;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    d__[i__] = a[ia];
		    e[i__] = a[ia + 1];
		    ia += 2;
/* L20: */
		}
		if (n > 0) {
		    d__[n] = a[ia];
		}
	    } else {

/*              Type 7-12:  generate a diagonally dominant matrix with */
/*              unknown condition number in the vectors D and E. */

		if (! zerot || ! dotype[7]) {

/*                 Let D and E have values from [-1,1]. */

		    slarnv_(&c__2, iseed, &n, &d__[1]);
		    i__3 = n - 1;
		    slarnv_(&c__2, iseed, &i__3, &e[1]);

/*                 Make the tridiagonal matrix diagonally dominant. */

		    if (n == 1) {
			d__[1] = dabs(d__[1]);
		    } else {
			d__[1] = dabs(d__[1]) + dabs(e[1]);
			d__[n] = (r__1 = d__[n], dabs(r__1)) + (r__2 = e[n - 
				1], dabs(r__2));
			i__3 = n - 1;
			for (i__ = 2; i__ <= i__3; ++i__) {
			    d__[i__] = (r__1 = d__[i__], dabs(r__1)) + (r__2 =
				     e[i__], dabs(r__2)) + (r__3 = e[i__ - 1],
				     dabs(r__3));
/* L30: */
			}
		    }

/*                 Scale D and E so the maximum element is ANORM. */

		    ix = isamax_(&n, &d__[1], &c__1);
		    dmax__ = d__[ix];
		    r__1 = anorm / dmax__;
		    sscal_(&n, &r__1, &d__[1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			r__1 = anorm / dmax__;
			sscal_(&i__3, &r__1, &e[1], &c__1);
		    }

		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			d__[1] = z__[1];
			if (n > 1) {
			    e[1] = z__[2];
			}
		    } else if (izero == n) {
			e[n - 1] = z__[0];
			d__[n] = z__[1];
		    } else {
			e[izero - 1] = z__[0];
			d__[izero] = z__[1];
			e[izero] = z__[2];
		    }
		}

/*              For types 8-10, set one row and column of the matrix to */
/*              zero. */

		izero = 0;
		if (imat == 8) {
		    izero = 1;
		    z__[1] = d__[1];
		    d__[1] = 0.f;
		    if (n > 1) {
			z__[2] = e[1];
			e[1] = 0.f;
		    }
		} else if (imat == 9) {
		    izero = n;
		    if (n > 1) {
			z__[0] = e[n - 1];
			e[n - 1] = 0.f;
		    }
		    z__[1] = d__[n];
		    d__[n] = 0.f;
		} else if (imat == 10) {
		    izero = (n + 1) / 2;
		    if (izero > 1) {
			z__[0] = e[izero - 1];
			z__[2] = e[izero];
			e[izero - 1] = 0.f;
			e[izero] = 0.f;
		    }
		    z__[1] = d__[izero];
		    d__[izero] = 0.f;
		}
	    }

/*           Generate NRHS random solution vectors. */

	    ix = 1;
	    i__3 = *nrhs;
	    for (j = 1; j <= i__3; ++j) {
		slarnv_(&c__2, iseed, &n, &xact[ix]);
		ix += lda;
/* L40: */
	    }

/*           Set the right hand side. */

	    slaptm_(&n, nrhs, &c_b23, &d__[1], &e[1], &xact[1], &lda, &c_b24, 
		    &b[1], &lda);

	    for (ifact = 1; ifact <= 2; ++ifact) {
		if (ifact == 1) {
		    *(unsigned char *)fact = 'F';
		} else {
		    *(unsigned char *)fact = 'N';
		}

/*              Compute the condition number for comparison with */
/*              the value returned by SPTSVX. */

		if (zerot) {
		    if (ifact == 1) {
			goto L100;
		    }
		    rcondc = 0.f;

		} else if (ifact == 1) {

/*                 Compute the 1-norm of A. */

		    anorm = slanst_("1", &n, &d__[1], &e[1]);

		    scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }

/*                 Factor the matrix A. */

		    spttrf_(&n, &d__[n + 1], &e[n + 1], &info);

/*                 Use SPTTRS to solve for one column at a time of */
/*                 inv(A), computing the maximum column sum as we go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L50: */
			}
			x[i__] = 1.f;
			spttrs_(&n, &c__1, &d__[n + 1], &e[n + 1], &x[1], &
				lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L60: */
		    }

/*                 Compute the 1-norm condition number of A. */

		    if (anorm <= 0.f || ainvnm <= 0.f) {
			rcondc = 1.f;
		    } else {
			rcondc = 1.f / anorm / ainvnm;
		    }
		}

		if (ifact == 2) {

/*                 --- Test SPTSV -- */

		    scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }
		    slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                 Factor A as L*D*L' and solve the system A*X = B. */

		    s_copy(srnamc_1.srnamt, "SPTSV ", (ftnlen)32, (ftnlen)6);
		    sptsv_(&n, nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, &
			    info);

/*                 Check error code from SPTSV . */

		    if (info != izero) {
			alaerh_(path, "SPTSV ", &info, &izero, " ", &n, &n, &
				c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }
		    nt = 0;
		    if (izero == 0) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);

/*                    Compute the residual in the solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			sptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[
				1], &lda, &result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;
		    }

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    i__3 = nt;
		    for (k = 1; k <= i__3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___35.ciunit = *nout;
			    s_wsfe(&io___35);
			    do_fio(&c__1, "SPTSV ", (ftnlen)6);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += nt;
		}

/*              --- Test SPTSVX --- */

		if (ifact > 1) {

/*                 Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero. */

		    i__3 = n - 1;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			d__[n + i__] = 0.f;
			e[n + i__] = 0.f;
/* L80: */
		    }
		    if (n > 0) {
			d__[n + n] = 0.f;
		    }
		}

		slaset_("Full", &n, nrhs, &c_b24, &c_b24, &x[1], &lda);

/*              Solve the system and compute the condition number and */
/*              error bounds using SPTSVX. */

		s_copy(srnamc_1.srnamt, "SPTSVX", (ftnlen)32, (ftnlen)6);
		sptsvx_(fact, &n, nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1]
, &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[
			*nrhs + 1], &work[1], &info);

/*              Check the error code from SPTSVX. */

		if (info != izero) {
		    alaerh_(path, "SPTSVX", &info, &izero, fact, &n, &n, &
			    c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout);
		}
		if (izero == 0) {
		    if (ifact == 2) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			k1 = 1;
			sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);
		    } else {
			k1 = 2;
		    }

/*                 Compute the residual in the solution. */

		    slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
		    sptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[1], &
			    lda, &result[1]);

/*                 Check solution from generated exact solution. */

		    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[2]);

/*                 Check error bounds from iterative refinement. */

		    sptt05_(&n, nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], &
			    lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], 
			     &result[3]);
		} else {
		    k1 = 6;
		}

/*              Check the reciprocal of the condition number. */

		result[5] = sget06_(&rcond, &rcondc);

/*              Print information about the tests that did not pass */
/*              the threshold. */

		for (k = k1; k <= 6; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    aladhd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, "SPTSVX", (ftnlen)6);
			do_fio(&c__1, fact, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				real));
			e_wsfe();
			++nfail;
		    }
/* L90: */
		}
		nrun = nrun + 7 - k1;
L100:
		;
	    }
L110:
	    ;
	}
/* L120: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVPT */

} /* sdrvpt_ */
Ejemplo n.º 2
0
/* Subroutine */ int stimpt_(char *line, integer *nm, integer *mval, integer *
	nns, integer *nsval, integer *nlda, integer *ldaval, real *timmin, 
	real *a, real *b, real *reslts, integer *ldr1, integer *ldr2, integer 
	*ldr3, integer *nout, ftnlen line_len)
{
    /* Initialized data */

    static char subnam[6*4] = "SPTTRF" "SPTTRS" "SPTSV " "SPTSL ";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "***\002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3, i__4;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda, info;
    static char path[3];
    static real time;
    static integer isub, nrhs, i__, m, n;
    static char cname[6];
    static integer laval[1];
    extern doublereal sopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    static real s1, s2;
    extern /* Subroutine */ int sptsl_(integer *, real *, real *, real *), 
	    sptsv_(integer *, integer *, real *, real *, real *, integer *, 
	    integer *);
    static integer ic, im;
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen);
    extern doublereal second_(void);
    extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, 
	    logical *, integer *, integer *, ftnlen, ftnlen, ftnlen);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real 
	    *, integer *, integer *, integer *);
    static logical timsub[4];
    extern /* Subroutine */ int sprtbl_(char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, real *, integer *, integer *, 
	    integer *, ftnlen, ftnlen), spttrf_(integer *, real *, real *, 
	    integer *), spttrs_(integer *, integer *, real *, real *, real *, 
	    integer *, integer *);
    static integer ldb, icl;
    static real ops;

    /* Fortran I/O blocks */
    static cilist io___7 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___22 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___23 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___24 = { 0, 0, 0, 0, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    STIMPT times SPTTRF, -TRS, -SV, and -SL.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix size M.   

    NNS     (input) INTEGER   
            The number of values of NRHS contained in the vector NSVAL.   

    NSVAL   (input) INTEGER array, dimension (NNS)   
            The values of the number of right hand sides NRHS.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) REAL   
            The minimum time a subroutine will be timed.   

    A       (workspace) REAL array, dimension (NMAX*2)   
            where NMAX is the maximum value permitted for N.   

    B       (workspace) REAL array, dimension (LDAMAX*NMAX)   

    RESLTS  (output) REAL array, dimension   
                     (LDR1,LDR2,LDR3,NSUBS)   
            The timing results for each subroutine over the relevant   
            values of N.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= 1.   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NM).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --mval;
    --nsval;
    --ldaval;
    --a;
    --b;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__4, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L170;
    }

/*     Check that N <= LDA for the input values. */

    for (isub = 2; isub <= 4; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L10;
	}
	s_copy(cname, subnam_ref(0, isub), (ftnlen)6, (ftnlen)6);
	atimck_(&c__2, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, (
		ftnlen)6);
	if (info > 0) {
	    io___7.ciunit = *nout;
	    s_wsfe(&io___7);
	    do_fio(&c__1, cname, (ftnlen)6);
	    e_wsfe();
	    timsub[isub - 1] = FALSE_;
	}
L10:
	;
    }

/*     Do for each value of M: */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

	m = mval[im];
	n = max(m,1);

/*        Time SPTTRF */

	if (timsub[0]) {
	    i__2 = n << 1;
	    stimmg_(&c__13, &m, &m, &a[1], &i__2, &c__0, &c__0);
	    ic = 0;
	    s1 = second_();
L20:
	    spttrf_(&m, &a[1], &a[n + 1], &info);
	    s2 = second_();
	    time = s2 - s1;
	    ++ic;
	    if (time < *timmin) {
		i__2 = n << 1;
		stimmg_(&c__13, &m, &m, &a[1], &i__2, &c__0, &c__0);
		goto L20;
	    }

/*           Subtract the time used in STIMMG. */

	    icl = 1;
	    s1 = second_();
L30:
	    s2 = second_();
	    untime = s2 - s1;
	    ++icl;
	    if (icl <= ic) {
		i__2 = n << 1;
		stimmg_(&c__13, &m, &m, &a[1], &i__2, &c__0, &c__0);
		goto L30;
	    }

	    time = (time - untime) / (real) ic;
	    ops = sopla_("SPTTRF", &m, &c__0, &c__0, &c__0, &c__0);
	    reslts_ref(1, im, 1, 1) = smflop_(&ops, &time, &info);

	} else {
	    ic = 0;
	    i__2 = n << 1;
	    stimmg_(&c__13, &m, &m, &a[1], &i__2, &c__0, &c__0);
	}

/*        Generate another matrix and factor it using SPTTRF so   
          that the factored form can be used in timing the other   
          routines. */

	if (ic != 1) {
	    spttrf_(&m, &a[1], &a[n + 1], &info);
	}

/*        Time SPTTRS */

	if (timsub[1]) {
	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		ldb = ldaval[ilda];
		i__3 = *nns;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    nrhs = nsval[i__];
		    stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
		    ic = 0;
		    s1 = second_();
L40:
		    spttrs_(&m, &nrhs, &a[1], &a[n + 1], &b[1], &ldb, &info);
		    s2 = second_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
			goto L40;
		    }

/*                 Subtract the time used in STIMMG. */

		    icl = 1;
		    s1 = second_();
L50:
		    s2 = second_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
			goto L50;
		    }

		    time = (time - untime) / (real) ic;
		    ops = sopla_("SPTTRS", &m, &nrhs, &c__0, &c__0, &c__0);
		    reslts_ref(i__, im, ilda, 2) = smflop_(&ops, &time, &info)
			    ;
/* L60: */
		}
/* L70: */
	    }
	}

	if (timsub[2]) {
	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		ldb = ldaval[ilda];
		i__3 = *nns;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    nrhs = nsval[i__];
		    i__4 = n << 1;
		    stimmg_(&c__13, &m, &m, &a[1], &i__4, &c__0, &c__0);
		    stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
		    ic = 0;
		    s1 = second_();
L80:
		    sptsv_(&m, &nrhs, &a[1], &a[n + 1], &b[1], &ldb, &info);
		    s2 = second_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			i__4 = n << 1;
			stimmg_(&c__13, &m, &m, &a[1], &i__4, &c__0, &c__0);
			stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
			goto L80;
		    }

/*                 Subtract the time used in STIMMG. */

		    icl = 1;
		    s1 = second_();
L90:
		    s2 = second_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			i__4 = n << 1;
			stimmg_(&c__13, &m, &m, &a[1], &i__4, &c__0, &c__0);
			stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0);
			goto L90;
		    }

		    time = (time - untime) / (real) ic;
		    ops = sopla_("SPTSV ", &m, &nrhs, &c__0, &c__0, &c__0);
		    reslts_ref(i__, im, ilda, 3) = smflop_(&ops, &time, &info)
			    ;
/* L100: */
		}
/* L110: */
	    }
	}

	if (timsub[3]) {
	    i__2 = n << 1;
	    stimmg_(&c__13, &m, &m, &a[1], &i__2, &c__0, &c__0);
	    stimmg_(&c__0, &m, &c__1, &b[1], &n, &c__0, &c__0);
	    ic = 0;
	    s1 = second_();
L120:
	    sptsl_(&m, &a[1], &a[n + 1], &b[1]);
	    s2 = second_();
	    time = s2 - s1;
	    ++ic;
	    if (time < *timmin) {
		i__2 = n << 1;
		stimmg_(&c__13, &m, &m, &a[1], &i__2, &c__0, &c__0);
		stimmg_(&c__0, &m, &c__1, &b[1], &n, &c__0, &c__0);
		goto L120;
	    }

/*           Subtract the time used in STIMMG. */

	    icl = 1;
	    s1 = second_();
L130:
	    s2 = second_();
	    untime = s2 - s1;
	    ++icl;
	    if (icl <= ic) {
		i__2 = n << 1;
		stimmg_(&c__13, &m, &m, &a[1], &i__2, &c__0, &c__0);
		stimmg_(&c__0, &m, &c__1, &b[1], &n, &c__0, &c__0);
		goto L130;
	    }

	    time = (time - untime) / (real) ic;
	    ops = sopla_("SPTSV ", &m, &c__1, &c__0, &c__0, &c__0);
	    reslts_ref(1, im, 1, 4) = smflop_(&ops, &time, &info);
	}
/* L140: */
    }

/*     Print a table of results for each timed routine. */

    for (isub = 1; isub <= 4; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L160;
	}
	io___22.ciunit = *nout;
	s_wsfe(&io___22);
	do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	e_wsfe();
	if (*nlda > 1 && (timsub[1] || timsub[2])) {
	    i__1 = *nlda;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		io___23.ciunit = *nout;
		s_wsfe(&io___23);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
		e_wsfe();
/* L150: */
	    }
	}
	io___24.ciunit = *nout;
	s_wsle(&io___24);
	e_wsle();
	if (isub == 1) {
	    sprtbl_(" ", "N", &c__1, laval, nm, &mval[1], &c__1, &reslts[
		    reslts_offset], ldr1, ldr2, nout, (ftnlen)1, (ftnlen)1);
	} else if (isub == 2) {
	    sprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, &
		    reslts_ref(1, 1, 1, 2), ldr1, ldr2, nout, (ftnlen)4, (
		    ftnlen)1);
	} else if (isub == 3) {
	    sprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, &
		    reslts_ref(1, 1, 1, 3), ldr1, ldr2, nout, (ftnlen)4, (
		    ftnlen)1);
	} else if (isub == 4) {
	    sprtbl_(" ", "N", &c__1, laval, nm, &mval[1], &c__1, &reslts_ref(
		    1, 1, 1, 4), ldr1, ldr2, nout, (ftnlen)1, (ftnlen)1);
	}
L160:
	;
    }

L170:
    return 0;

/*     End of STIMPT */

} /* stimpt_ */