Ejemplo n.º 1
0
    int FunctionSpaceTools_Test03(const bool verbose) {

      Teuchos::RCP<std::ostream> outStream;
      Teuchos::oblackholestream bhs; // outputs nothing

      if (verbose)
        outStream = Teuchos::rcp(&std::cout, false);
      else
        outStream = Teuchos::rcp(&bhs, false);

      Teuchos::oblackholestream oldFormatState;
      oldFormatState.copyfmt(std::cout);

      typedef typename
        Kokkos::Impl::is_space<DeviceSpaceType>::host_mirror_space::execution_space HostSpaceType ;

      *outStream << "DeviceSpace::  "; DeviceSpaceType::print_configuration(*outStream, false);
      *outStream << "HostSpace::    ";   HostSpaceType::print_configuration(*outStream, false);
      
      *outStream
        << "===============================================================================\n"
        << "|                                                                             |\n"
        << "|                      Unit Test (FunctionSpaceTools)                         |\n"
        << "|                                                                             |\n"
        << "|     1) Basic operator transformations and integration in HDIV:              |\n"
        << "|                                                                             |\n"
        << "|  Questions? Contact  Pavel Bochev ([email protected]) or                   |\n"
        << "|                      Denis Ridzal ([email protected]) or                   |\n"
        << "|                      Kyungjoo Kim ([email protected]).                      |\n"
        << "|                                                                             |\n"
        << "|  Intrepid's website: http://trilinos.sandia.gov/packages/intrepid           |\n"
        << "|  Trilinos website:   http://trilinos.sandia.gov                             |\n"
        << "|                                                                             |\n"
        << "===============================================================================\n";

      typedef CellTools<DeviceSpaceType> ct;      
      typedef FunctionSpaceTools<DeviceSpaceType> fst;      
      typedef Kokkos::DynRankView<ValueType,DeviceSpaceType> DynRankView;

      int errorFlag = 0;

      *outStream
        << "\n"
        << "===============================================================================\n"
        << "| TEST 1: correctness of math operations                                      |\n"
        << "===============================================================================\n";
      
      outStream->precision(20);
      
      try {
        DefaultCubatureFactory cub_factory;                            

        shards::CellTopology cell_topo = shards::getCellTopologyData< shards::Hexahedron<8> >();    

        const auto cub_degree = 20;                                                               
        auto cub = cub_factory.create<DeviceSpaceType,ValueType,ValueType>(cell_topo, cub_degree); 

        const auto space_dim = cub->getDimension();                                              
        const auto num_cub_points = cub->getNumPoints();                                          

        Basis_HDIV_HEX_I1_FEM<DeviceSpaceType> basis;                        
        const auto num_fields = basis.getCardinality();                                       
        
        /* Cell geometries and orientations. */
        const auto num_cells = 4;
        const auto num_nodes = 8;
        
        const ValueType hexnodes[] = {
          // hex 0  -- affine
          -1.0, -1.0, -1.0,
          1.0, -1.0, -1.0,
          1.0, 1.0, -1.0,
          -1.0, 1.0, -1.0,
          -1.0, -1.0, 1.0,
          1.0, -1.0, 1.0,
          1.0, 1.0, 1.0,
          -1.0, 1.0, 1.0,
          // hex 1  -- affine
          -3.0, -3.0, 1.0,
          6.0, 3.0, 1.0,
          7.0, 8.0, 0.0,
          -2.0, 2.0, 0.0,
          -3.0, -3.0, 4.0,
          6.0, 3.0, 4.0,
          7.0, 8.0, 3.0,
          -2.0, 2.0, 3.0,
          // hex 2  -- affine
          -3.0, -3.0, 0.0,
          9.0, 3.0, 0.0,
          15.0, 6.1, 0.0,
          3.0, 0.1, 0.0,
          9.0, 3.0, 0.1,
          21.0, 9.0, 0.1,
          27.0, 12.1, 0.1,
          15.0, 6.1, 0.1,
          // hex 3  -- nonaffine
          -2.0, -2.0, 0.0,
          2.0, -1.0, 0.0,
          1.0, 6.0, 0.0,
          -1.0, 1.0, 0.0,
          0.0, 0.0, 1.0,
          1.0, 0.0, 1.0,
          1.0, 1.0, 1.0,
          0.0, 1.0, 1.0
        };
        
        const ValueType facesigns[] = {
          1, 1, 1, 1, 1, 1,
          1, -1, 1, -1, 1, -1,
          -1, -1, 1, 1, -1, 1,
          -1, -1, 1, 1, -1, -1
        };
        
        /* Computational arrays. */
        DynRankView ConstructWithLabel( cub_points,  num_cub_points, space_dim);
        DynRankView ConstructWithLabel( cub_weights, num_cub_points);

        DynRankView ConstructWithLabel( cell_nodes,       num_cells, num_nodes, space_dim);
        DynRankView ConstructWithLabel( field_signs,      num_cells, num_fields);

        DynRankView ConstructWithLabel( jacobian,         num_cells, num_cub_points, space_dim, space_dim);
        DynRankView ConstructWithLabel( jacobian_det,     num_cells, num_cub_points);
        DynRankView ConstructWithLabel( weighted_measure, num_cells, num_cub_points);
        
        DynRankView ConstructWithLabel( div_of_basis_at_cub_points,                                 num_fields, num_cub_points);
        DynRankView ConstructWithLabel( transformed_div_of_basis_at_cub_points,          num_cells, num_fields, num_cub_points);
        DynRankView ConstructWithLabel( weighted_transformed_div_of_basis_at_cub_points, num_cells, num_fields, num_cub_points);
        DynRankView ConstructWithLabel( stiffness_matrices,                              num_cells, num_fields, num_fields);
        
        DynRankView ConstructWithLabel( value_of_basis_at_cub_points,                                 num_fields, num_cub_points, space_dim);
        DynRankView ConstructWithLabel( transformed_value_of_basis_at_cub_points,          num_cells, num_fields, num_cub_points, space_dim);
        DynRankView ConstructWithLabel( weighted_transformed_value_of_basis_at_cub_points, num_cells, num_fields, num_cub_points, space_dim);
        DynRankView ConstructWithLabel( mass_matrices,                                     num_cells, num_fields, num_fields);

        /******************* START COMPUTATION ***********************/

        // get cubature points and weights
        cub->getCubature(cub_points, cub_weights);

        const Kokkos::DynRankView<const ValueType,Kokkos::LayoutRight,Kokkos::HostSpace> cell_nodes_host (&hexnodes[0],  num_cells, num_nodes, space_dim); 
        const Kokkos::DynRankView<const ValueType,Kokkos::LayoutRight,Kokkos::HostSpace> field_signs_host(&facesigns[0], num_cells, num_fields); 
        
        Kokkos::deep_copy( cell_nodes,  cell_nodes_host  );
        Kokkos::deep_copy( field_signs, field_signs_host );
        
        // compute geometric cell information
        ct::setJacobian(jacobian, cub_points, cell_nodes, cell_topo);
        ct::setJacobianDet(jacobian_det, jacobian);

        // compute weighted measure
        fst::computeCellMeasure(weighted_measure, jacobian_det, cub_weights);

        // **Computing stiffness matrices:
        basis.getValues(div_of_basis_at_cub_points, cub_points, OPERATOR_DIV);
        
        // transform divergences of basis functions
        fst::HDIVtransformDIV(transformed_div_of_basis_at_cub_points,
                              jacobian_det,
                              div_of_basis_at_cub_points);
        
        // multiply with weighted measure
        fst::multiplyMeasure(weighted_transformed_div_of_basis_at_cub_points,
                             weighted_measure,
                             transformed_div_of_basis_at_cub_points);
        
        // we can apply the field signs to the basis function arrays, or after the fact, see below
        fst::applyFieldSigns(transformed_div_of_basis_at_cub_points, field_signs);
        fst::applyFieldSigns(weighted_transformed_div_of_basis_at_cub_points, field_signs);
        
        // compute stiffness matrices
        fst::integrate(stiffness_matrices,
                       transformed_div_of_basis_at_cub_points,
                       weighted_transformed_div_of_basis_at_cub_points);
        

        // **Computing mass matrices:
        basis.getValues(value_of_basis_at_cub_points, cub_points, OPERATOR_VALUE);

            
        
        // transform values of basis functions
        fst::HDIVtransformVALUE(transformed_value_of_basis_at_cub_points,
                                jacobian,
                                jacobian_det,
                                value_of_basis_at_cub_points);

        // multiply with weighted measure
        fst::multiplyMeasure(weighted_transformed_value_of_basis_at_cub_points,
                             weighted_measure,
                             transformed_value_of_basis_at_cub_points);
        
        // compute mass matrices
        fst::integrate(mass_matrices,
                       transformed_value_of_basis_at_cub_points,
                       weighted_transformed_value_of_basis_at_cub_points);
        
        // apply field signs
        fst::applyLeftFieldSigns(mass_matrices, field_signs);
        fst::applyRightFieldSigns(mass_matrices, field_signs);
        
        /*******************  STOP COMPUTATION ***********************/
        
        
        /******************* START COMPARISON ***********************/
        std::string basedir = "../testdata";
        for (auto cid=0;cid<num_cells-1;++cid) {
          std::stringstream namestream;
          std::string filename;
          namestream <<  basedir << "/mass_HDIV_HEX_I1_FEM" << "_" << "0" << cid+1 << ".dat";
          namestream >> filename;

          *outStream << "\nCell ID : " << cid << "  mass matrix comparing with " << filename << "\n\n";
          
          std::ifstream massfile(&filename[0]);
          if (massfile.is_open()) {
            const auto mass_matrix_cell = Kokkos::subdynrankview(mass_matrices, cid, Kokkos::ALL(), Kokkos::ALL());
            errorFlag += compareToAnalytic(massfile, 
                                           mass_matrix_cell, 
                                           1e-10,
                                           verbose);
            massfile.close();
          } else {
            errorFlag = -1;
            INTREPID2_TEST_FOR_EXCEPTION( true, std::runtime_error,
                                          "Failed to open a file" );
          }
          
          namestream.clear();
          namestream << basedir << "/stiff_HDIV_HEX_I1_FEM" << "_" << "0" << cid+1 << ".dat";
          namestream >> filename;

          *outStream << "\nCell ID : " << cid << "  stiffness matrix comparing with " << filename << "\n\n";
          
          std::ifstream stifffile(&filename[0]);
          if (stifffile.is_open()) {
            const auto stiffness_matrix_cell = Kokkos::subdynrankview(stiffness_matrices, cid, Kokkos::ALL(), Kokkos::ALL());
            errorFlag += compareToAnalytic(stifffile,
                                           stiffness_matrix_cell,
                                           1e-10,
                                           verbose);
            stifffile.close();
          } else {
            errorFlag = -1;
            INTREPID2_TEST_FOR_EXCEPTION( true, std::runtime_error,
                                          "Failed to open a file" );
          }
        }

        for (auto cid=3;cid<num_cells;++cid) {
          std::stringstream namestream;
          std::string filename;
          namestream <<  basedir << "/mass_fp_HDIV_HEX_I1_FEM" << "_" << "0" << cid+1 << ".dat";
          namestream >> filename;

          *outStream << "\nCell ID : " << cid << "  mass matrix comparing with " << filename << "\n\n";
          
          std::ifstream massfile(&filename[0]);
          if (massfile.is_open()) {
            const auto mass_matrix_cell = Kokkos::subdynrankview(mass_matrices, cid, Kokkos::ALL(), Kokkos::ALL());
            errorFlag += compareToAnalytic(massfile, 
                                           mass_matrix_cell, 
                                           1e-4, 
                                           verbose,
                                           INTREPID2_UTILS_SCALAR);
            massfile.close();
          } else {
            errorFlag = -1;
            INTREPID2_TEST_FOR_EXCEPTION( true, std::runtime_error,
                                          "Failed to open a file" );
          }
          
          namestream.clear();
          namestream << basedir << "/stiff_fp_HDIV_HEX_I1_FEM" << "_" << "0" << cid+1 << ".dat";
          namestream >> filename;
          
          *outStream << "\nCell ID : " << cid << "  stiffness matrix comparing with " << filename << "\n\n";

          std::ifstream stifffile(&filename[0]);
          if (stifffile.is_open()) {
            const auto stiffness_matrix_cell = Kokkos::subdynrankview(stiffness_matrices, cid, Kokkos::ALL(), Kokkos::ALL());
            errorFlag += compareToAnalytic(stifffile,
                                           stiffness_matrix_cell,
                                           1e-4, 
                                           verbose,
                                           INTREPID2_UTILS_SCALAR);
            stifffile.close();
          } else {
            errorFlag = -1;
            INTREPID2_TEST_FOR_EXCEPTION( true, std::runtime_error,
                                          "Failed to open a file" );
          }
        }
        /******************* STOP COMPARISON ***********************/

        *outStream << "\n";
      } catch (std::logic_error err) {
        *outStream << "UNEXPECTED ERROR !!! ----------------------------------------------------------\n";
        *outStream << err.what() << '\n';
        *outStream << "-------------------------------------------------------------------------------" << "\n\n";
        errorFlag = -1000;
      }

      if (errorFlag != 0)
        std::cout << "End Result: TEST FAILED\n";
      else
        std::cout << "End Result: TEST PASSED\n";
      
      // reset format state of std::cout
      std::cout.copyfmt(oldFormatState);

      return errorFlag;
    }
Ejemplo n.º 2
0
    int FunctionSpaceTools_Test02(const bool verbose) {
      typedef ValueType value_type;

      Teuchos::RCP<std::ostream> outStream;
      Teuchos::oblackholestream bhs; // outputs nothing

      if (verbose)
        outStream = Teuchos::rcp(&std::cout, false);
      else
        outStream = Teuchos::rcp(&bhs, false);

      Teuchos::oblackholestream oldFormatState;
      oldFormatState.copyfmt(std::cout);
      
      *outStream \
        << "===============================================================================\n" \
        << "|                                                                             |\n" \
        << "|                      Unit Test (FunctionSpaceTools)                         |\n" \
        << "|                                                                             |\n" \
        << "|     1) basic operator transformations and integration in HCURL              |\n" \
        << "|                                                                             |\n" \
        << "|  Questions? Contact  Pavel Bochev ([email protected]) or                   |\n" \
        << "|                      Denis Ridzal ([email protected]).                     |\n" \
        << "|                                                                             |\n" \
        << "|  Intrepid's website: http://trilinos.sandia.gov/packages/intrepid           |\n" \
        << "|  Trilinos website:   http://trilinos.sandia.gov                             |\n" \
        << "|                                                                             |\n" \
        << "===============================================================================\n";

      typedef FunctionSpaceTools<DeviceSpaceType> fst;
      typedef Kokkos::DynRankView<value_type,DeviceSpaceType> DynRankView;
#define ConstructWithLabel(obj, ...) obj(#obj, __VA_ARGS__)
      
      int errorFlag = 0;

      *outStream \
        << "\n"
        << "===============================================================================\n"\
        << "| TEST 1: correctness of math operations                                      |\n"\
        << "===============================================================================\n";

      outStream->precision(20);

      try {
        shards::CellTopology cellType = shards::getCellTopologyData< shards::Hexahedron<> >();    // cell type: hex

        /* Related to cubature. */
        DefaultCubatureFactory<double> cubFactory;                                                // create cubature factory
        int cubDegree = 20;                                                                       // cubature degree
        Teuchos::RCP<Cubature<double> > myCub = cubFactory.create(cellType, cubDegree);           // create default cubature
        int spaceDim = myCub->getDimension();                                                     // get spatial dimension 
        int numCubPoints = myCub->getNumPoints();                                                 // get number of cubature points
        /* Related to basis. */
        Basis_HCURL_HEX_I1_FEM<double, FieldContainer<double> > hexBasis;                         // create H-curl basis on a hex
        int numFields = hexBasis.getCardinality();                                                // get basis cardinality
 
        /* Cell geometries and orientations. */
        int numCells    = 4;
        int numNodes    = 8;
        int numCellData = numCells*numNodes*spaceDim;
        int numSignData = numCells*numFields;

        double hexnodes[] = {
          // hex 0  -- affine
          -1.0, -1.0, -1.0,
          1.0, -1.0, -1.0,
          1.0, 1.0, -1.0,
          -1.0, 1.0, -1.0,
          -1.0, -1.0, 1.0,
          1.0, -1.0, 1.0,
          1.0, 1.0, 1.0,
          -1.0, 1.0, 1.0,
          // hex 1  -- affine
          -3.0, -3.0, 1.0,
          6.0, 3.0, 1.0,
          7.0, 8.0, 0.0,
          -2.0, 2.0, 0.0,
          -3.0, -3.0, 4.0,
          6.0, 3.0, 4.0,
          7.0, 8.0, 3.0,
          -2.0, 2.0, 3.0,
          // hex 2  -- affine
          -3.0, -3.0, 0.0,
          9.0, 3.0, 0.0,
          15.0, 6.1, 0.0,
          3.0, 0.1, 0.0,
          9.0, 3.0, 0.1,
          21.0, 9.0, 0.1,
          27.0, 12.1, 0.1,
          15.0, 6.1, 0.1,
          // hex 3  -- nonaffine
          -2.0, -2.0, 0.0,
          2.0, -1.0, 0.0,
          1.0, 6.0, 0.0,
          -1.0, 1.0, 0.0,
          0.0, 0.0, 1.0,
          1.0, 0.0, 1.0,
          1.0, 1.0, 1.0,
          0.0, 1.0, 1.0
        };

        double edgesigns[] = {
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1,
          -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1,
          1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1
        };

        /* Computational arrays. */
        FieldContainer<double> cub_points(numCubPoints, spaceDim);
        FieldContainer<double> cub_weights(numCubPoints);
        FieldContainer<double> cell_nodes(numCells, numNodes, spaceDim);
        FieldContainer<double>  field_signs(numCells, numFields);
        FieldContainer<double> jacobian(numCells, numCubPoints, spaceDim, spaceDim);
        FieldContainer<double> jacobian_inv(numCells, numCubPoints, spaceDim, spaceDim);
        FieldContainer<double> jacobian_det(numCells, numCubPoints);
        FieldContainer<double> weighted_measure(numCells, numCubPoints);

        FieldContainer<double> curl_of_basis_at_cub_points(numFields, numCubPoints, spaceDim);
        FieldContainer<double> transformed_curl_of_basis_at_cub_points(numCells, numFields, numCubPoints, spaceDim);
        FieldContainer<double> weighted_transformed_curl_of_basis_at_cub_points(numCells, numFields, numCubPoints, spaceDim);
        FieldContainer<double> stiffness_matrices(numCells, numFields, numFields);

        FieldContainer<double> value_of_basis_at_cub_points(numFields, numCubPoints, spaceDim);
        FieldContainer<double> transformed_value_of_basis_at_cub_points(numCells, numFields, numCubPoints, spaceDim);
        FieldContainer<double> weighted_transformed_value_of_basis_at_cub_points(numCells, numFields, numCubPoints, spaceDim);
        FieldContainer<double> mass_matrices(numCells, numFields, numFields);

        /******************* START COMPUTATION ***********************/

        // get cubature points and weights
        myCub->getCubature(cub_points, cub_weights);

        // fill cell vertex array
        cell_nodes.setValues(hexnodes, numCellData);
        // set basis function signs, for each cell
        field_signs.setValues(edgesigns, numSignData);

        // compute geometric cell information
        CellTools<double>::setJacobian(jacobian, cub_points, cell_nodes, cellType);
        CellTools<double>::setJacobianInv(jacobian_inv, jacobian);
        CellTools<double>::setJacobianDet(jacobian_det, jacobian);
        // compute weighted measure
        fst::computeCellMeasure<double>(weighted_measure, jacobian_det, cub_weights);

        // Computing stiffness matrices:
        // tabulate curls of basis functions at (reference) cubature points
        hexBasis.getValues(curl_of_basis_at_cub_points, cub_points, OPERATOR_CURL);

        // transform curls of basis functions 
        fst::HCURLtransformCURL<double>(transformed_curl_of_basis_at_cub_points,
                                        jacobian,
                                        jacobian_det,
                                        curl_of_basis_at_cub_points);
        // multiply with weighted measure
        fst::multiplyMeasure<double>(weighted_transformed_curl_of_basis_at_cub_points,
                                     weighted_measure,
                                     transformed_curl_of_basis_at_cub_points);

        // we can apply the field signs to the basis function arrays, or after the fact, see below
        fst::applyFieldSigns<double>(transformed_curl_of_basis_at_cub_points, field_signs);
        fst::applyFieldSigns<double>(weighted_transformed_curl_of_basis_at_cub_points, field_signs);

        // compute stiffness matrices
        fst::integrate<double>(stiffness_matrices,
                               transformed_curl_of_basis_at_cub_points,
                               weighted_transformed_curl_of_basis_at_cub_points,
                               COMP_CPP);
        // Computing mass matrices:
        // tabulate values of basis functions at (reference) cubature points
        hexBasis.getValues(value_of_basis_at_cub_points, cub_points, OPERATOR_VALUE);

        // transform values of basis functions 
        fst::HCURLtransformVALUE<double>(transformed_value_of_basis_at_cub_points,
                                         jacobian_inv,
                                         value_of_basis_at_cub_points);

        // multiply with weighted measure
        fst::multiplyMeasure<double>(weighted_transformed_value_of_basis_at_cub_points,
                                     weighted_measure,
                                     transformed_value_of_basis_at_cub_points);

        // compute mass matrices
        fst::integrate<double>(mass_matrices,
                               transformed_value_of_basis_at_cub_points,
                               weighted_transformed_value_of_basis_at_cub_points,
                               COMP_CPP);

        // apply field signs (after the fact, as a post-processing step)
        fst::applyLeftFieldSigns<double>(mass_matrices, field_signs);
        fst::applyRightFieldSigns<double>(mass_matrices, field_signs);
        /*******************  STOP COMPUTATION ***********************/


        /******************* START COMPARISON ***********************/
        string basedir = "./testdata";
        for (int cell_id = 0; cell_id < numCells-1; cell_id++) {

          stringstream namestream;
          string filename;
          namestream <<  basedir << "/mass_HCURL_HEX_I1_FEM" << "_" << "0" << cell_id+1 << ".dat";
          namestream >> filename;

          ifstream massfile(&filename[0]);
          if (massfile.is_open()) {
            if (compareToAnalytic<double>(&mass_matrices(cell_id, 0, 0), massfile, 1e-10, iprint) > 0)
              errorFlag++;
            massfile.close();
          }
          else {
            errorFlag = -1;
            std::cout << "End Result: TEST FAILED\n";
            return errorFlag;
          }

          namestream.clear();
          namestream << basedir << "/stiff_HCURL_HEX_I1_FEM" << "_" << "0" << cell_id+1 << ".dat";
          namestream >> filename;

          ifstream stifffile(&filename[0]);
          if (stifffile.is_open())
            {
              if (compareToAnalytic<double>(&stiffness_matrices(cell_id, 0, 0), stifffile, 1e-10, iprint) > 0)
                errorFlag++;
              stifffile.close();
            }
          else {
            errorFlag = -1;
            std::cout << "End Result: TEST FAILED\n";
            return errorFlag;
          }

        }

        for (int cell_id = 3; cell_id < numCells; cell_id++) {

          stringstream namestream;
          string filename;
          namestream <<  basedir << "/mass_fp_HCURL_HEX_I1_FEM" << "_" << "0" << cell_id+1 << ".dat";
          namestream >> filename;

          ifstream massfile(&filename[0]);
          if (massfile.is_open()) {
            if (compareToAnalytic<double>(&mass_matrices(cell_id, 0, 0), massfile, 1e-4, iprint, INTREPID2_UTILS_SCALAR) > 0)
              errorFlag++;
            massfile.close();
          }
          else {
            errorFlag = -1;
            std::cout << "End Result: TEST FAILED\n";
            return errorFlag;
          }

          namestream.clear();
          namestream << basedir << "/stiff_fp_HCURL_HEX_I1_FEM" << "_" << "0" << cell_id+1 << ".dat";
          namestream >> filename;

          ifstream stifffile(&filename[0]);
          if (stifffile.is_open())
            {
              if (compareToAnalytic<double>(&stiffness_matrices(cell_id, 0, 0), stifffile, 1e-4, iprint, INTREPID2_UTILS_SCALAR) > 0)
                errorFlag++;
              stifffile.close();
            }
          else {
            errorFlag = -1;
            std::cout << "End Result: TEST FAILED\n";
            return errorFlag;
          }

        }

        /******************* STOP COMPARISON ***********************/

        *outStream << "\n";
      }
      catch (std::logic_error err) {
        *outStream << "UNEXPECTED ERROR !!! ----------------------------------------------------------\n";
        *outStream << err.what() << '\n';
        *outStream << "-------------------------------------------------------------------------------" << "\n\n";
        errorFlag = -1000;
      };

      if (errorFlag != 0)
        std::cout << "End Result: TEST FAILED\n";
      else
        std::cout << "End Result: TEST PASSED\n";

      // reset format state of std::cout
      std::cout.copyfmt(oldFormatState);
      Kokkos::finalize();
      return errorFlag;
    }