double dbinom_raw(double x, double n, double p, double q, int give_log) { double lf, lc; if (p == 0) return((x == 0) ? R_D__1 : R_D__0); if (q == 0) return((x == n) ? R_D__1 : R_D__0); if (x == 0) { if(n == 0) return R_D__1; lc = (p < 0.1) ? -bd0(n,n*q) - n*p : n*log(q); return( R_D_exp(lc) ); } if (x == n) { lc = (q < 0.1) ? -bd0(n,n*p) - n*q : n*log(p); return( R_D_exp(lc) ); } if (x < 0 || x > n) return( R_D__0 ); /* n*p or n*q can underflow to zero if n and p or q are small. This used to occur in dbeta, and gives NaN as from R 2.3.0. */ lc = stirlerr(n) - stirlerr(x) - stirlerr(n-x) - bd0(x,n*p) - bd0(n-x,n*q); /* f = (M_2PI*x*(n-x))/n; could overflow or underflow */ /* Upto R 2.7.1: * lf = log(M_2PI) + log(x) + log(n-x) - log(n); * -- following is much better for x << n : */ lf = M_LN_2PI + log(x) + log1p(- x/n); return R_D_exp(lc - 0.5*lf); }
double dbinom(int x, int n, double p) { assert((p>=0) && (p<=1)); assert(n>=0); assert((x>=0) && (x<=n)); if (p==0.0) return x==0 ? 1.0 : 0.0; if (p==1.0) return x==n ? 1.0 : 0.0; if (x==0) return exp(n*log(1-p)); if (x==n) return exp(n*log(p)); double lc = stirlerr(n) - stirlerr(x) - stirlerr(n-x) - bd0(x, n*p) - bd0(n-x, n*(1-p)); return exp(lc)*sqrt(n/(PI2*x*(n-x))); }
static lua_Number dbinom_raw (lua_Number x, lua_Number n, lua_Number p, lua_Number q) { lua_Number f, lc; if (p == 0) return (x == 0) ? 1 : 0; if (q == 0) return (x == n) ? 1 : 0; if (x == 0) return exp((p < 0.1) ? -bd0(n, n * q) - n * p : n * log(q)); if (x == n) return exp((q < 0.1) ? -bd0(n, n * p) - n * q : n * log(p)); if ((x < 0) || (x > n)) return 0; lc = stirlerr(n) - stirlerr(x) - stirlerr(n - x) - bd0(x, n * p) - bd0(n - x, n * q); f = (2 * M_PI * x * (n - x)) / n; return exp(lc) / sqrt(f); }
double dt(double x, double n, int give_log) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(n)) return x + n; #endif if (n <= 0) ML_ERR_return_NAN; if(!R_FINITE(x)) return R_D__0; if(!R_FINITE(n)) return dnorm(x, 0., 1., give_log); double u, ax, t = -bd0(n/2.,(n+1)/2.) + stirlerr((n+1)/2.) - stirlerr(n/2.), x2n = x*x/n, // in [0, Inf] l_x2n; // := log(sqrt(1 + x2n)) = log(1 + x2n)/2 Rboolean lrg_x2n = (x2n > 1./DBL_EPSILON); if (lrg_x2n) { // large x^2/n : ax = fabs(x); l_x2n = log(ax) - log(n)/2.; // = log(x2n)/2 = 1/2 * log(x^2 / n) u = // log(1 + x2n) * n/2 = n * log(1 + x2n)/2 = n * l_x2n; } else if (x2n > 0.2) { l_x2n = log(1 + x2n)/2.; u = n * l_x2n; } else { l_x2n = log1p(x2n)/2.; u = -bd0(n/2.,(n+x*x)/2.) + x*x/2.; } //old: return R_D_fexp(M_2PI*(1+x2n), t-u); // R_D_fexp(f,x) := (give_log ? -0.5*log(f)+(x) : exp(x)/sqrt(f)) // f = 2pi*(1+x2n) // ==> 0.5*log(f) = log(2pi)/2 + log(1+x2n)/2 = log(2pi)/2 + l_x2n // 1/sqrt(f) = 1/sqrt(2pi * (1+ x^2 / n)) // = 1/sqrt(2pi)/(|x|/sqrt(n)*sqrt(1+1/x2n)) // = M_1_SQRT_2PI * sqrt(n)/ (|x|*sqrt(1+1/x2n)) if(give_log) return t-u - (M_LN_SQRT_2PI + l_x2n); // else : if(lrg_x2n) : sqrt(1 + 1/x2n) ='= sqrt(1) = 1 double I_sqrt_ = (lrg_x2n ? sqrt(n)/ax : exp(-l_x2n)); return exp(t-u) * M_1_SQRT_2PI * I_sqrt_; }
double dpois_raw(NMATH_STATE *state, double x, double lambda, int give_log) { /* x >= 0 ; integer for dpois(), but not e.g. for pgamma()! lambda >= 0 */ if (lambda == 0) return( (x == 0) ? R_D__1 : R_D__0 ); if (!isfinite(lambda)) return R_D__0; if (x < 0) return( R_D__0 ); if (x <= lambda * DBL_MIN) return(R_D_exp(-lambda) ); if (lambda < x * DBL_MIN) return(R_D_exp(-lambda + x*log(lambda) -lgammafn(state, x+1))); return(R_D_fexp( M_PI*2.0*x, -stirlerr(state,x)-bd0(x,lambda) )); }
double attribute_hidden dpois_raw(double x, double lambda, int give_log) { /* x >= 0 ; integer for dpois(), but not e.g. for pgamma()! lambda >= 0 */ if (lambda == 0) return( (x == 0) ? R_D__1 : R_D__0 ); if (!R_FINITE(lambda)) return R_D__0; if (x < 0) return( R_D__0 ); if (x <= lambda * DBL_MIN) return(R_D_exp(-lambda) ); if (lambda < x * DBL_MIN) return(R_D_exp(-lambda + x*log(lambda) -lgammafn(x+1))); return(R_D_fexp( M_2PI*x, -stirlerr(x)-bd0(x,lambda) )); }
double gammafn(double x) { const static double gamcs[42] = { +.8571195590989331421920062399942e-2, +.4415381324841006757191315771652e-2, +.5685043681599363378632664588789e-1, -.4219835396418560501012500186624e-2, +.1326808181212460220584006796352e-2, -.1893024529798880432523947023886e-3, +.3606925327441245256578082217225e-4, -.6056761904460864218485548290365e-5, +.1055829546302283344731823509093e-5, -.1811967365542384048291855891166e-6, +.3117724964715322277790254593169e-7, -.5354219639019687140874081024347e-8, +.9193275519859588946887786825940e-9, -.1577941280288339761767423273953e-9, +.2707980622934954543266540433089e-10, -.4646818653825730144081661058933e-11, +.7973350192007419656460767175359e-12, -.1368078209830916025799499172309e-12, +.2347319486563800657233471771688e-13, -.4027432614949066932766570534699e-14, +.6910051747372100912138336975257e-15, -.1185584500221992907052387126192e-15, +.2034148542496373955201026051932e-16, -.3490054341717405849274012949108e-17, +.5987993856485305567135051066026e-18, -.1027378057872228074490069778431e-18, +.1762702816060529824942759660748e-19, -.3024320653735306260958772112042e-20, +.5188914660218397839717833550506e-21, -.8902770842456576692449251601066e-22, +.1527474068493342602274596891306e-22, -.2620731256187362900257328332799e-23, +.4496464047830538670331046570666e-24, -.7714712731336877911703901525333e-25, +.1323635453126044036486572714666e-25, -.2270999412942928816702313813333e-26, +.3896418998003991449320816639999e-27, -.6685198115125953327792127999999e-28, +.1146998663140024384347613866666e-28, -.1967938586345134677295103999999e-29, +.3376448816585338090334890666666e-30, -.5793070335782135784625493333333e-31 }; int i, n; double y; double sinpiy, value; #ifdef NOMORE_FOR_THREADS static int ngam = 0; static double xmin = 0, xmax = 0., xsml = 0., dxrel = 0.; /* Initialize machine dependent constants, the first time gamma() is called. FIXME for threads ! */ if (ngam == 0) { ngam = chebyshev_init(gamcs, 42, DBL_EPSILON/20);/*was .1*d1mach(3)*/ gammalims(&xmin, &xmax);/*-> ./gammalims.c */ xsml = exp(fmax2(log(DBL_MIN), -log(DBL_MAX)) + 0.01); /* = exp(.01)*DBL_MIN = 2.247e-308 for IEEE */ dxrel = sqrt(DBL_EPSILON);/*was sqrt(d1mach(4)) */ } #else /* For IEEE double precision DBL_EPSILON = 2^-52 = 2.220446049250313e-16 : * (xmin, xmax) are non-trivial, see ./gammalims.c * xsml = exp(.01)*DBL_MIN * dxrel = sqrt(DBL_EPSILON) = 2 ^ -26 */ # define ngam 22 # define xmin -170.5674972726612 # define xmax 171.61447887182298 # define xsml 2.2474362225598545e-308 # define dxrel 1.490116119384765696e-8 #endif if(ISNAN(x)) return x; /* If the argument is exactly zero or a negative integer * then return NaN. */ if (x == 0 || (x < 0 && x == (long)x)) { ML_ERROR(ME_DOMAIN, "gammafn"); return ML_NAN; } y = fabs(x); if (y <= 10) { /* Compute gamma(x) for -10 <= x <= 10 * Reduce the interval and find gamma(1 + y) for 0 <= y < 1 * first of all. */ n = (int) x; if(x < 0) --n; y = x - n;/* n = floor(x) ==> y in [ 0, 1 ) */ --n; value = chebyshev_eval(y * 2 - 1, gamcs, ngam) + .9375; if (n == 0) return value;/* x = 1.dddd = 1+y */ if (n < 0) { /* compute gamma(x) for -10 <= x < 1 */ /* exact 0 or "-n" checked already above */ /* The answer is less than half precision */ /* because x too near a negative integer. */ if (x < -0.5 && fabs(x - (int)(x - 0.5) / x) < dxrel) { ML_ERROR(ME_PRECISION, "gammafn"); } /* The argument is so close to 0 that the result would overflow. */ if (y < xsml) { ML_ERROR(ME_RANGE, "gammafn"); if(x > 0) return ML_POSINF; else return ML_NEGINF; } n = -n; for (i = 0; i < n; i++) { value /= (x + i); } return value; } else { /* gamma(x) for 2 <= x <= 10 */ for (i = 1; i <= n; i++) { value *= (y + i); } return value; } } else { /* gamma(x) for y = |x| > 10. */ if (x > xmax) { /* Overflow */ ML_ERROR(ME_RANGE, "gammafn"); return ML_POSINF; } if (x < xmin) { /* Underflow */ ML_ERROR(ME_UNDERFLOW, "gammafn"); return 0.; } if(y <= 50 && y == (int)y) { /* compute (n - 1)! */ value = 1.; for (i = 2; i < y; i++) value *= i; } else { /* normal case */ value = exp((y - 0.5) * log(y) - y + M_LN_SQRT_2PI + ((2*y == (int)2*y)? stirlerr(y) : lgammacor(y))); } if (x > 0) return value; if (fabs((x - (int)(x - 0.5))/x) < dxrel){ /* The answer is less than half precision because */ /* the argument is too near a negative integer. */ ML_ERROR(ME_PRECISION, "gammafn"); } sinpiy = sin(M_PI * y); if (sinpiy == 0) { /* Negative integer arg - overflow */ ML_ERROR(ME_RANGE, "gammafn"); return ML_POSINF; } return -M_PI / (y * sinpiy * value); } }
double dpois(int x, double lb) { if (lb==0.0) return x==0 ? 1.0 : 0.0; if (x==0) return exp(-lb); return exp(-stirlerr(x)-bd0(x,lb))/sqrt(PI2*x); }
gnm_float pst (gnm_float x, gnm_float n, gnm_float shape, gboolean lower_tail, gboolean log_p) { gnm_float p; if (n <= 0 || gnm_isnan (x) || gnm_isnan (n) || gnm_isnan (shape)) return gnm_nan; if (shape == 0.) return pt (x, n, lower_tail, log_p); if (n > 100) { /* Approximation */ return psnorm (x, shape, 0.0, 1.0, lower_tail, log_p); } /* Flip to a lower-tail problem. */ if (!lower_tail) { x = -x; shape = -shape; lower_tail = !lower_tail; } /* Generic fallback. */ if (log_p) gnm_log (pst (x, n, shape, TRUE, FALSE)); if (n != gnm_floor (n)) { /* We would need numerical integration for this. */ return gnm_nan; } /* * Use recurrence formula from "Recurrent relations for * distributions of a skew-t and a linear combination of order * statistics form a bivariate-t", Computational Statistics * and Data Analysis volume 52, 2009 by Jamallizadeh, * Khosravi, Balakrishnan. * * This brings us down to n==1 or n==2 for which explicit formulas * are available. */ p = 0; while (n > 2) { double a, lb, c, d, pv, v = n - 1; d = v == 2 ? M_LN2gnum - gnm_log (M_PIgnum) + gnm_log (3) / 2 : (0.5 + M_LN2gnum / 2 - gnm_log (M_PIgnum) / 2 + v / 2 * (gnm_log1p (-1 / (v - 1)) + gnm_log (v + 1)) - 0.5 * (gnm_log (v - 2) + gnm_log (v + 1)) + stirlerr (v / 2 - 1) - stirlerr ((v - 1) / 2)); a = v + 1 + x * x; lb = (d - gnm_log (a) * v / 2); c = pt (gnm_sqrt (v) * shape * x / gnm_sqrt (a), v, TRUE, FALSE); pv = x * gnm_exp (lb) * c; p += pv; n -= 2; x *= gnm_sqrt ((v - 1) / (v + 1)); } g_return_val_if_fail (n == 1 || n == 2, gnm_nan); if (n == 1) { gnm_float p1; p1 = (gnm_atan (x) + gnm_acos (shape / gnm_sqrt ((1 + shape * shape) * (1 + x * x)))) / M_PIgnum; p += p1; } else if (n == 2) { gnm_float p2, f; f = x / gnm_sqrt (2 + x * x); p2 = (gnm_atan_mpihalf (shape) + f * gnm_atan_mpihalf (-shape * f)) / -M_PIgnum; p += p2; } else { return gnm_nan; } /* * Negatives can occur due to rounding errors and hopefully for no * other reason. */ p = CLAMP (p, 0.0, 1.0); return p; }