Ejemplo n.º 1
0
int
tend_estimMain(int argc, char **argv, char *me, hestParm *hparm) {
  int pret;
  hestOpt *hopt = NULL;
  char *perr, *err;
  airArray *mop;

  Nrrd **nin, *nin4d, *nbmat, *nterr, *nB0, *nout;
  char *outS, *terrS, *bmatS, *eb0S;
  float soft, scale, sigma;
  int dwiax, EE, knownB0, oldstuff, estmeth, verbose, fixneg;
  unsigned int ninLen, axmap[4], wlsi, *skip, skipNum, skipIdx;
  double valueMin, thresh;

  Nrrd *ngradKVP=NULL, *nbmatKVP=NULL;
  double bKVP, bval;

  tenEstimateContext *tec;

  hestOptAdd(&hopt, "old", NULL, airTypeInt, 0, 0, &oldstuff, NULL,
             "instead of the new tenEstimateContext code, use "
             "the old tenEstimateLinear code");
  hestOptAdd(&hopt, "sigma", "sigma", airTypeFloat, 1, 1, &sigma, "nan",
             "Rician noise parameter");
  hestOptAdd(&hopt, "v", "verbose", airTypeInt, 1, 1, &verbose, "0",
             "verbosity level");
  hestOptAdd(&hopt, "est", "estimate method", airTypeEnum, 1, 1, &estmeth,
             "lls",
             "estimation method to use. \"lls\": linear-least squares",
             NULL, tenEstimate1Method);
  hestOptAdd(&hopt, "wlsi", "WLS iters", airTypeUInt, 1, 1, &wlsi, "1",
             "when using weighted-least-squares (\"-est wls\"), how "
             "many iterations to do after the initial weighted fit.");
  hestOptAdd(&hopt, "fixneg", NULL, airTypeInt, 0, 0, &fixneg, NULL,
             "after estimating the tensor, ensure that there are no negative "
             "eigenvalues by adding (to all eigenvalues) the amount by which "
             "the smallest is negative (corresponding to increasing the "
             "non-DWI image value).");
  hestOptAdd(&hopt, "ee", "filename", airTypeString, 1, 1, &terrS, "",
             "Giving a filename here allows you to save out the tensor "
             "estimation error: a value which measures how much error there "
             "is between the tensor model and the given diffusion weighted "
             "measurements for each sample.  By default, no such error "
             "calculation is saved.");
  hestOptAdd(&hopt, "eb", "filename", airTypeString, 1, 1, &eb0S, "",
             "In those cases where there is no B=0 reference image given "
             "(\"-knownB0 false\"), "
             "giving a filename here allows you to save out the B=0 image "
             "which is estimated from the data.  By default, this image value "
             "is estimated but not saved.");
  hestOptAdd(&hopt, "t", "thresh", airTypeDouble, 1, 1, &thresh, "nan",
             "value at which to threshold the mean DWI value per pixel "
             "in order to generate the \"confidence\" mask.  By default, "
             "the threshold value is calculated automatically, based on "
             "histogram analysis.");
  hestOptAdd(&hopt, "soft", "soft", airTypeFloat, 1, 1, &soft, "0",
             "how fuzzy the confidence boundary should be.  By default, "
             "confidence boundary is perfectly sharp");
  hestOptAdd(&hopt, "scale", "scale", airTypeFloat, 1, 1, &scale, "1",
             "After estimating the tensor, scale all of its elements "
             "(but not the confidence value) by this amount.  Can help with "
             "downstream numerical precision if values are very large "
             "or small.");
  hestOptAdd(&hopt, "mv", "min val", airTypeDouble, 1, 1, &valueMin, "1.0",
             "minimum plausible value (especially important for linear "
             "least squares estimation)");
  hestOptAdd(&hopt, "B", "B-list", airTypeString, 1, 1, &bmatS, NULL,
             "6-by-N list of B-matrices characterizing "
             "the diffusion weighting for each "
             "image.  \"tend bmat\" is one source for such a matrix; see "
             "its usage info for specifics on how the coefficients of "
             "the B-matrix are ordered. "
             "An unadorned plain text file is a great way to "
             "specify the B-matrix.\n  **OR**\n "
             "Can say just \"-B kvp\" to try to learn B matrices from "
             "key/value pair information in input images.");
  hestOptAdd(&hopt, "b", "b", airTypeDouble, 1, 1, &bval, "nan",
             "\"b\" diffusion-weighting factor (units of sec/mm^2)");
  hestOptAdd(&hopt, "knownB0", "bool", airTypeBool, 1, 1, &knownB0, NULL,
             "Determines of the B=0 non-diffusion-weighted reference image "
             "is known, or if it has to be estimated along with the tensor "
             "elements.\n "
             "\b\bo if \"true\": in the given list of diffusion gradients or "
             "B-matrices, there are one or more with zero norm, which are "
             "simply averaged to find the B=0 reference image value\n "
             "\b\bo if \"false\": there may or may not be diffusion-weighted "
             "images among the input; the B=0 image value is going to be "
             "estimated along with the diffusion model");
  hestOptAdd(&hopt, "i", "dwi0 dwi1", airTypeOther, 1, -1, &nin, "-",
             "all the diffusion-weighted images (DWIs), as seperate 3D nrrds, "
             "**OR**: One 4D nrrd of all DWIs stacked along axis 0",
             &ninLen, NULL, nrrdHestNrrd);
  hestOptAdd(&hopt, "o", "nout", airTypeString, 1, 1, &outS, "-",
             "output tensor volume");

  mop = airMopNew();
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  USAGE(_tend_estimInfoL);
  JUSTPARSE();
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  nout = nrrdNew();
  airMopAdd(mop, nout, (airMopper)nrrdNuke, airMopAlways);
  nbmat = nrrdNew();
  airMopAdd(mop, nbmat, (airMopper)nrrdNuke, airMopAlways);

  /* figure out B-matrix */
  if (strcmp("kvp", airToLower(bmatS))) {
    /* its NOT coming from key/value pairs */
    if (!AIR_EXISTS(bval)) {
      fprintf(stderr, "%s: need to specify scalar b-value\n", me);
      airMopError(mop); return 1;
    }
    if (nrrdLoad(nbmat, bmatS, NULL)) {
      airMopAdd(mop, err=biffGetDone(NRRD), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble loading B-matrix:\n%s\n", me, err);
      airMopError(mop); return 1;
    }
    nin4d = nin[0];
    skip = NULL;
    skipNum = 0;
  } else {
    /* it IS coming from key/value pairs */
    if (1 != ninLen) {
      fprintf(stderr, "%s: require a single 4-D DWI volume for "
              "key/value pair based calculation of B-matrix\n", me);
      airMopError(mop); return 1;
    }
    if (oldstuff) {
      if (knownB0) {
        fprintf(stderr, "%s: sorry, key/value-based DWI info not compatible "
                "with older implementation of knownB0\n", me);
        airMopError(mop); return 1;
      }
    }
    if (tenDWMRIKeyValueParse(&ngradKVP, &nbmatKVP, &bKVP,
                              &skip, &skipNum, nin[0])) {
      airMopAdd(mop, err=biffGetDone(TEN), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble parsing DWI info:\n%s\n", me, err);
      airMopError(mop); return 1;
    }
    if (AIR_EXISTS(bval)) {
      fprintf(stderr, "%s: WARNING: key/value pair derived b-value %g "
              "over-riding %g from command-line", me, bKVP, bval);
    }
    bval = bKVP;
    if (ngradKVP) {
      airMopAdd(mop, ngradKVP, (airMopper)nrrdNuke, airMopAlways);
      if (tenBMatrixCalc(nbmat, ngradKVP)) {
        airMopAdd(mop, err=biffGetDone(TEN), airFree, airMopAlways);
        fprintf(stderr, "%s: trouble finding B-matrix:\n%s\n", me, err);
        airMopError(mop); return 1;
      }
    } else {
      airMopAdd(mop, nbmatKVP, (airMopper)nrrdNuke, airMopAlways);
      if (nrrdConvert(nbmat, nbmatKVP, nrrdTypeDouble)) {
        airMopAdd(mop, err=biffGetDone(NRRD), airFree, airMopAlways);
        fprintf(stderr, "%s: trouble converting B-matrix:\n%s\n", me, err);
        airMopError(mop); return 1;
      }
    }
    /* this will work because of the impositions of tenDWMRIKeyValueParse */
    dwiax = ((nrrdKindList == nin[0]->axis[0].kind ||
              nrrdKindVector == nin[0]->axis[0].kind)
             ? 0
             : ((nrrdKindList == nin[0]->axis[1].kind ||
                 nrrdKindVector == nin[0]->axis[1].kind)
                ? 1
                : ((nrrdKindList == nin[0]->axis[2].kind ||
                    nrrdKindVector == nin[0]->axis[2].kind)
                   ? 2
                   : 3)));
    if (0 == dwiax) {
      nin4d = nin[0];
    } else {
      axmap[0] = dwiax;
      axmap[1] = 1 > dwiax ? 1 : 0;
      axmap[2] = 2 > dwiax ? 2 : 1;
      axmap[3] = 3 > dwiax ? 3 : 2;
      nin4d = nrrdNew();
      airMopAdd(mop, nin4d, (airMopper)nrrdNuke, airMopAlways);
      if (nrrdAxesPermute(nin4d, nin[0], axmap)) {
        airMopAdd(mop, err=biffGetDone(NRRD), airFree, airMopAlways);
        fprintf(stderr, "%s: trouble creating DWI volume:\n%s\n", me, err);
        airMopError(mop); return 1;
      }
    }
  }

  nterr = NULL;
  nB0 = NULL;
  if (!oldstuff) {
    if (1 != ninLen) {
      fprintf(stderr, "%s: sorry, currently need single 4D volume "
              "for new implementation\n", me);
      airMopError(mop); return 1;
    }
    if (!AIR_EXISTS(thresh)) {
      if (tend_estimThresholdFind(&thresh, nbmat, nin4d)) {
        airMopAdd(mop, err=biffGetDone(TEN), airFree, airMopAlways);
        fprintf(stderr, "%s: trouble finding threshold:\n%s\n", me, err);
        airMopError(mop); return 1;
      }
      /* HACK to lower threshold a titch */
      thresh *= 0.93;
      fprintf(stderr, "%s: using mean DWI threshold %g\n", me, thresh);
    }
    tec = tenEstimateContextNew();
    tec->progress = AIR_TRUE;
    airMopAdd(mop, tec, (airMopper)tenEstimateContextNix, airMopAlways);
    EE = 0;
    if (!EE) tenEstimateVerboseSet(tec, verbose);
    if (!EE) tenEstimateNegEvalShiftSet(tec, fixneg);
    if (!EE) EE |= tenEstimateMethodSet(tec, estmeth);
    if (!EE) EE |= tenEstimateBMatricesSet(tec, nbmat, bval, !knownB0);
    if (!EE) EE |= tenEstimateValueMinSet(tec, valueMin);
    for (skipIdx=0; skipIdx<skipNum; skipIdx++) {
      /* fprintf(stderr, "%s: skipping %u\n", me, skip[skipIdx]); */
      if (!EE) EE |= tenEstimateSkipSet(tec, skip[skipIdx], AIR_TRUE);
    }
    switch(estmeth) {
    case tenEstimate1MethodLLS:
      if (airStrlen(terrS)) {
        tec->recordErrorLogDwi = AIR_TRUE;
        /* tec->recordErrorDwi = AIR_TRUE; */
      }
      break;
    case tenEstimate1MethodNLS:
      if (airStrlen(terrS)) {
        tec->recordErrorDwi = AIR_TRUE;
      }
      break;
    case tenEstimate1MethodWLS:
      if (!EE) tec->WLSIterNum = wlsi;
      if (airStrlen(terrS)) {
        tec->recordErrorDwi = AIR_TRUE;
      }
      break;
    case tenEstimate1MethodMLE:
      if (!(AIR_EXISTS(sigma) && sigma > 0.0)) {
        fprintf(stderr, "%s: can't do %s w/out sigma > 0 (not %g)\n",
                me, airEnumStr(tenEstimate1Method, tenEstimate1MethodMLE),
                sigma);
        airMopError(mop); return 1;
      }
      if (!EE) EE |= tenEstimateSigmaSet(tec, sigma);
      if (airStrlen(terrS)) {
        tec->recordLikelihoodDwi = AIR_TRUE;
      }
      break;
    }
    if (!EE) EE |= tenEstimateThresholdSet(tec, thresh, soft);
    if (!EE) EE |= tenEstimateUpdate(tec);
    if (EE) {
      airMopAdd(mop, err=biffGetDone(TEN), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble setting up estimation:\n%s\n", me, err);
      airMopError(mop); return 1;
    }
    if (tenEstimate1TensorVolume4D(tec, nout, &nB0,
                                   airStrlen(terrS) 
                                   ? &nterr 
                                   : NULL, 
                                   nin4d, nrrdTypeFloat)) {
      airMopAdd(mop, err=biffGetDone(TEN), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble doing estimation:\n%s\n", me, err);
      airMopError(mop); return 1;
    }
    if (airStrlen(terrS)) {
      airMopAdd(mop, nterr, (airMopper)nrrdNuke, airMopAlways);
    }
  } else {
    EE = 0;
    if (1 == ninLen) {
      EE = tenEstimateLinear4D(nout, airStrlen(terrS) ? &nterr : NULL, &nB0,
                               nin4d, nbmat, knownB0, thresh, soft, bval);
    } else {
      EE = tenEstimateLinear3D(nout, airStrlen(terrS) ? &nterr : NULL, &nB0,
                               (const Nrrd**)nin, ninLen, nbmat,
                               knownB0, thresh, soft, bval);
    }
    if (EE) {
      airMopAdd(mop, err=biffGetDone(TEN), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble making tensor volume:\n%s\n", me, err);
      airMopError(mop); return 1;
    }
  }
  if (nterr) {
    /* it was allocated by tenEstimate*, we have to clean it up */
    airMopAdd(mop, nterr, (airMopper)nrrdNuke, airMopAlways);
  }
  if (nB0) {
    /* it was allocated by tenEstimate*, we have to clean it up */
    airMopAdd(mop, nB0, (airMopper)nrrdNuke, airMopAlways);
  }
  if (1 != scale) {
    if (tenSizeScale(nout, nout, scale)) {
      airMopAdd(mop, err=biffGetDone(TEN), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble doing scaling:\n%s\n", me, err);
      airMopError(mop); return 1;
    }
  }
  if (nterr) {
    if (nrrdSave(terrS, nterr, NULL)) {
      airMopAdd(mop, err=biffGetDone(NRRD), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble writing error image:\n%s\n", me, err);
      airMopError(mop); return 1;
    }
  }
  if (!knownB0 && airStrlen(eb0S)) {
    if (nrrdSave(eb0S, nB0, NULL)) {
      airMopAdd(mop, err=biffGetDone(NRRD), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble writing estimated B=0 image:\n%s\n",
              me, err);
      airMopError(mop); return 1;
    }
  }

  if (nrrdSave(outS, nout, NULL)) {
    airMopAdd(mop, err=biffGetDone(NRRD), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble writing:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  airMopOkay(mop);
  return 0;
}
Ejemplo n.º 2
0
int
tend_simMain(int argc, char **argv, char *me, hestParm *hparm) {
  int pret;
  hestOpt *hopt = NULL;
  char *perr, *err;
  tenEstimateContext *tec;
  airArray *mop;

  int E, oldstuff, seed;
  Nrrd *nin, *nT2, *nbmat, *nout;
  char *outS;
  float b, sigma;

  hestOptAdd(&hopt, "old", NULL, airTypeInt, 0, 0, &oldstuff, NULL,
             "don't use the new tenEstimateContext functionality");
  hestOptAdd(&hopt, "sigma", "sigma", airTypeFloat, 1, 1, &sigma, "0.0",
             "Rician noise parameter");
  hestOptAdd(&hopt, "seed", "seed", airTypeInt, 1, 1, &seed, "42",
             "seed value for RNG which creates noise");
  hestOptAdd(&hopt, "B", "B matrix", airTypeOther, 1, 1, &nbmat, NULL,
             "B matrix, one row per diffusion-weighted image", 
             NULL, NULL, nrrdHestNrrd);
  hestOptAdd(&hopt, "r", "reference field", airTypeOther, 1, 1, &nT2, "-",
             "reference anatomical scan, with no diffusion weighting",
             NULL, NULL, nrrdHestNrrd);
  hestOptAdd(&hopt, "i", "tensor field", airTypeOther, 1, 1, &nin, "-",
             "input diffusion tensor field", NULL, NULL, nrrdHestNrrd);
  hestOptAdd(&hopt, "b", "b", airTypeFloat, 1, 1, &b, "1",
             "b value for simulated scan");
  hestOptAdd(&hopt, "o", "nout", airTypeString, 1, 1, &outS, "-",
             "output image (floating point)");

  mop = airMopNew();
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  USAGE(_tend_simInfoL);
  PARSE();
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  nout = nrrdNew();
  airMopAdd(mop, nout, (airMopper)nrrdNuke, airMopAlways);
  
  if (!oldstuff) {
    airSrandMT(seed);
    tec = tenEstimateContextNew();
    airMopAdd(mop, tec, (airMopper)tenEstimateContextNix, airMopAlways);
    E = 0;
    if (!E) E |= tenEstimateMethodSet(tec, tenEstimateMethodLLS);
    if (!E) E |= tenEstimateValueMinSet(tec, 0.0001);
    if (!E) E |= tenEstimateBMatricesSet(tec, nbmat, b, AIR_TRUE);
    if (!E) E |= tenEstimateThresholdSet(tec, 0, 0);
    if (!E) E |= tenEstimateUpdate(tec);
    if (!E) E |= tenEstimate1TensorSimulateVolume(tec, 
                                                  nout, sigma, b, 
                                                  nT2, nin,
                                                  nrrdTypeFloat);
    if (E) {
      airMopAdd(mop, err=biffGetDone(TEN), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble making DWI volume (new):\n%s\n", me, err);
      airMopError(mop); return 1;
    }
  } else {
    if (tenSimulate(nout, nT2, nin, nbmat, b)) {
      airMopAdd(mop, err=biffGetDone(TEN), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble making DWI volume:\n%s\n", me, err);
      airMopError(mop); return 1;
    }
  }
  if (nrrdSave(outS, nout, NULL)) {
    airMopAdd(mop, err=biffGetDone(NRRD), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble writing:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  airMopOkay(mop);
  return 0;
}