Ejemplo n.º 1
0
Archivo: erl_nif.c Proyecto: a5an0/otp
int enif_get_int(ErlNifEnv* env, Eterm term, int* ip)
{
#if SIZEOF_INT ==  ERTS_SIZEOF_ETERM
    return term_to_Sint(term, (Sint*)ip);
#elif SIZEOF_LONG ==  ERTS_SIZEOF_ETERM
    Sint i;
    if (!term_to_Sint(term, &i) || i < INT_MIN || i > INT_MAX) {
	return 0;
    }
    *ip = (int) i;
    return 1;
#else
#  error Unknown word size 
#endif     
}
Ejemplo n.º 2
0
Archivo: erl_nif.c Proyecto: a5an0/otp
int enif_get_long(ErlNifEnv* env, Eterm term, long* ip)
{
#if SIZEOF_LONG == ERTS_SIZEOF_ETERM
    return term_to_Sint(term, ip);
#elif SIZEOF_LONG == 8
    return term_to_Sint64(term, ip);
#else
#  error Unknown long word size 
#endif     
}
Ejemplo n.º 3
0
int enif_get_long(ErlNifEnv* env, Eterm term, long* ip)
{
#if SIZEOF_LONG == ERTS_SIZEOF_ETERM
    return term_to_Sint(term, ip);
#elif SIZEOF_LONG == 8
    return term_to_Sint64(term, ip);
#elif SIZEOF_LONG == SIZEOF_INT
    int tmp,ret;
    ret = enif_get_int(env,term,&tmp);
    if (ret) {
      *ip = (long) tmp;
    }
    return ret;
#else
#  error Unknown long word size 
#endif     
}
Ejemplo n.º 4
0
static BIF_RETTYPE
dirty_test(Process *c_p, Eterm type, Eterm arg1, Eterm arg2, UWord *I)
{
    BIF_RETTYPE ret;
    if (am_scheduler == arg1) {
	ErtsSchedulerData *esdp;
	if (arg2 != am_type) 
	    goto badarg;
	esdp = erts_proc_sched_data(c_p);
	if (!esdp)
            goto scheduler_type_error;
      
        switch (esdp->type) {
        case ERTS_SCHED_NORMAL:
	    ERTS_BIF_PREP_RET(ret, am_normal);
            break;
        case ERTS_SCHED_DIRTY_CPU:
	    ERTS_BIF_PREP_RET(ret, am_dirty_cpu);
            break;
        case ERTS_SCHED_DIRTY_IO:
	    ERTS_BIF_PREP_RET(ret, am_dirty_io);
            break;
        default:
        scheduler_type_error:
	    ERTS_BIF_PREP_RET(ret, am_error);
            break;
        }
    }
    else if (am_error == arg1) {
	switch (arg2) {
	case am_notsup:
	    ERTS_BIF_PREP_ERROR(ret, c_p, EXC_NOTSUP);
	    break;
	case am_undef:
	    ERTS_BIF_PREP_ERROR(ret, c_p, EXC_UNDEF);
	    break;
	case am_badarith:
	    ERTS_BIF_PREP_ERROR(ret, c_p, EXC_BADARITH);
	    break;
	case am_noproc:
	    ERTS_BIF_PREP_ERROR(ret, c_p, EXC_NOPROC);
	    break;
	case am_system_limit:
	    ERTS_BIF_PREP_ERROR(ret, c_p, SYSTEM_LIMIT);
	    break;
	case am_badarg:
	default:
	    goto badarg;
	}
    }
    else if (am_copy == arg1) {
	int i;
	Eterm res;

	for (res = NIL, i = 0; i < 1000; i++) {
	    Eterm *hp, sz;
	    Eterm cpy;
	    /* We do not want this to be optimized,
	       but rather the oposite... */
	    sz = size_object(arg2);
	    hp = HAlloc(c_p, sz);
	    cpy = copy_struct(arg2, sz, &hp, &c_p->off_heap);
	    hp = HAlloc(c_p, 2);
	    res = CONS(hp, cpy, res);
	}

	ERTS_BIF_PREP_RET(ret, res);
    }
    else if (am_send == arg1) {
	dirty_send_message(c_p, arg2, am_ok);
	ERTS_BIF_PREP_RET(ret, am_ok);
    }
    else if (ERTS_IS_ATOM_STR("wait", arg1)) {
	if (!ms_wait(c_p, arg2, type == am_dirty_cpu))
	    goto badarg;
	ERTS_BIF_PREP_RET(ret, am_ok);
    }
    else if (ERTS_IS_ATOM_STR("reschedule", arg1)) {
	/*
	 * Reschedule operation after decrement of two until we reach
	 * zero. Switch between dirty scheduler types when 'n' is
	 * evenly divided by 4. If the initial value wasn't evenly
	 * dividable by 2, throw badarg exception.
	 */
	Eterm next_type;
	Sint n;
	if (!term_to_Sint(arg2, &n) || n < 0)
	    goto badarg;
	if (n == 0)
	    ERTS_BIF_PREP_RET(ret, am_ok);
	else {
	    Eterm argv[3];
	    Eterm eint = erts_make_integer((Uint) (n - 2), c_p);
	    if (n % 4 != 0)
		next_type = type;
	    else {
		switch (type) {
		case am_dirty_cpu: next_type = am_dirty_io; break;
		case am_dirty_io: next_type = am_normal; break;
		case am_normal: next_type = am_dirty_cpu; break;
		default: goto badarg;
		}
	    }
	    switch (next_type) {
	    case am_dirty_io:
		argv[0] = arg1;
		argv[1] = eint;
		ret = erts_schedule_bif(c_p,
					argv,
					I,
					erts_debug_dirty_io_2,
					ERTS_SCHED_DIRTY_IO,
					am_erts_debug,
					am_dirty_io,
					2);
		break;
	    case am_dirty_cpu:
		argv[0] = arg1;
		argv[1] = eint;
		ret = erts_schedule_bif(c_p,
					argv,
					I,
					erts_debug_dirty_cpu_2,
					ERTS_SCHED_DIRTY_CPU,
					am_erts_debug,
					am_dirty_cpu,
					2);
		break;
	    case am_normal:
		argv[0] = am_normal;
		argv[1] = arg1;
		argv[2] = eint;
		ret = erts_schedule_bif(c_p,
					argv,
					I,
					erts_debug_dirty_3,
					ERTS_SCHED_NORMAL,
					am_erts_debug,
					am_dirty,
					3);
		break;
	    default:
		goto badarg;
	    }
	}
    }
    else if (ERTS_IS_ATOM_STR("ready_wait6_done", arg1)) {
	ERTS_DECL_AM(ready);
	ERTS_DECL_AM(done);
	dirty_send_message(c_p, arg2, AM_ready);
	ms_wait(c_p, make_small(6000), 0);
	dirty_send_message(c_p, arg2, AM_done);
	ERTS_BIF_PREP_RET(ret, am_ok);
    }
    else if (ERTS_IS_ATOM_STR("alive_waitexiting", arg1)) {
	Process *real_c_p = erts_proc_shadow2real(c_p);
	Eterm *hp, *hp2;
	Uint sz;
	int i;
	ErtsSchedulerData *esdp = erts_proc_sched_data(c_p);
        int dirty_io = esdp->type == ERTS_SCHED_DIRTY_IO;

	if (ERTS_PROC_IS_EXITING(real_c_p))
	    goto badarg;
	dirty_send_message(c_p, arg2, am_alive);

	/* Wait until dead */
	while (!ERTS_PROC_IS_EXITING(real_c_p)) {
            if (dirty_io)
                ms_wait(c_p, make_small(100), 0);
            else
                erts_thr_yield();
        }

	ms_wait(c_p, make_small(1000), 0);

	/* Should still be able to allocate memory */
	hp = HAlloc(c_p, 3); /* Likely on heap */
	sz = 10000;
	hp2 = HAlloc(c_p, sz); /* Likely in heap fragment */
	*hp2 = make_pos_bignum_header(sz);
	for (i = 1; i < sz; i++)
	    hp2[i] = (Eterm) 4711;
	ERTS_BIF_PREP_RET(ret, TUPLE2(hp, am_ok, make_big(hp2)));
    }
    else {
    badarg:
	ERTS_BIF_PREP_ERROR(ret, c_p, BADARG);
    }
    return ret;
}