Ejemplo n.º 1
0
static int CheckForRightSplice( TESStesselator *tess, ActiveRegion *regUp )
/*
* Check the upper and lower edge of "regUp", to make sure that the
* eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
* origin is leftmost).
*
* The main purpose is to splice right-going edges with the same
* dest vertex and nearly identical slopes (ie. we can't distinguish
* the slopes numerically).  However the splicing can also help us
* to recover from numerical errors.  For example, suppose at one
* point we checked eUp and eLo, and decided that eUp->Org is barely
* above eLo.  Then later, we split eLo into two edges (eg. from
* a splice operation like this one).  This can change the result of
* our test so that now eUp->Org is incident to eLo, or barely below it.
* We must correct this condition to maintain the dictionary invariants.
*
* One possibility is to check these edges for intersection again
* (ie. CheckForIntersect).  This is what we do if possible.  However
* CheckForIntersect requires that tess->event lies between eUp and eLo,
* so that it has something to fall back on when the intersection
* calculation gives us an unusable answer.  So, for those cases where
* we can't check for intersection, this routine fixes the problem
* by just splicing the offending vertex into the other edge.
* This is a guaranteed solution, no matter how degenerate things get.
* Basically this is a combinatorial solution to a numerical problem.
*/
{
	ActiveRegion *regLo = RegionBelow(regUp);
	TESShalfEdge *eUp = regUp->eUp;
	TESShalfEdge *eLo = regLo->eUp;

	if( VertLeq( eUp->Org, eLo->Org )) {
		if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;

		/* eUp->Org appears to be below eLo */
		if( ! VertEq( eUp->Org, eLo->Org )) {
			/* Splice eUp->Org into eLo */
			if ( tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1);
			if ( !tessMeshSplice( tess->mesh, eUp, eLo->Oprev ) ) longjmp(tess->env,1);
			regUp->dirty = regLo->dirty = TRUE;

		} else if( eUp->Org != eLo->Org ) {
			/* merge the two vertices, discarding eUp->Org */
			pqDelete( tess->pq, eUp->Org->pqHandle );
			SpliceMergeVertices( tess, eLo->Oprev, eUp );
		}
	} else {
		if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;

		/* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
		RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
		if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1);
		if ( !tessMeshSplice( tess->mesh, eLo->Oprev, eUp ) ) longjmp(tess->env,1);
	}
	return TRUE;
}
Ejemplo n.º 2
0
static int CheckForLeftSplice( TESStesselator *tess, ActiveRegion *regUp )
/*
* Check the upper and lower edge of "regUp", to make sure that the
* eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
* destination is rightmost).
*
* Theoretically, this should always be true.  However, splitting an edge
* into two pieces can change the results of previous tests.  For example,
* suppose at one point we checked eUp and eLo, and decided that eUp->Dst
* is barely above eLo.  Then later, we split eLo into two edges (eg. from
* a splice operation like this one).  This can change the result of
* the test so that now eUp->Dst is incident to eLo, or barely below it.
* We must correct this condition to maintain the dictionary invariants
* (otherwise new edges might get inserted in the wrong place in the
* dictionary, and bad stuff will happen).
*
* We fix the problem by just splicing the offending vertex into the
* other edge.
*/
{
	ActiveRegion *regLo = RegionBelow(regUp);
	TESShalfEdge *eUp = regUp->eUp;
	TESShalfEdge *eLo = regLo->eUp;
	TESShalfEdge *e;

	assert( ! VertEq( eUp->Dst, eLo->Dst ));

	if( VertLeq( eUp->Dst, eLo->Dst )) {
		if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;

		/* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
		RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
		e = tessMeshSplitEdge( tess->mesh, eUp );
		if (e == NULL) longjmp(tess->env,1);
		if ( !tessMeshSplice( tess->mesh, eLo->Sym, e ) ) longjmp(tess->env,1);
		e->Lface->inside = regUp->inside;
	} else {
		if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;

		/* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
		regUp->dirty = regLo->dirty = TRUE;
		e = tessMeshSplitEdge( tess->mesh, eLo );
		if (e == NULL) longjmp(tess->env,1);    
		if ( !tessMeshSplice( tess->mesh, eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
		e->Rface->inside = regUp->inside;
	}
	return TRUE;
}
Ejemplo n.º 3
0
static void ConnectLeftDegenerate( TESStesselator *tess,
								  ActiveRegion *regUp, TESSvertex *vEvent )
/*
* The event vertex lies exacty on an already-processed edge or vertex.
* Adding the new vertex involves splicing it into the already-processed
* part of the mesh.
*/
{
	TESShalfEdge *e, *eTopLeft, *eTopRight, *eLast;
	ActiveRegion *reg;

	e = regUp->eUp;
	if( VertEq( e->Org, vEvent )) {
		/* e->Org is an unprocessed vertex - just combine them, and wait
		* for e->Org to be pulled from the queue
		*/
		assert( TOLERANCE_NONZERO );
		SpliceMergeVertices( tess, e, vEvent->anEdge );
		return;
	}

	if( ! VertEq( e->Dst, vEvent )) {
		/* General case -- splice vEvent into edge e which passes through it */
		if (tessMeshSplitEdge( tess->mesh, e->Sym ) == NULL) longjmp(tess->env,1);
		if( regUp->fixUpperEdge ) {
			/* This edge was fixable -- delete unused portion of original edge */
			if ( !tessMeshDelete( tess->mesh, e->Onext ) ) longjmp(tess->env,1);
			regUp->fixUpperEdge = FALSE;
		}
		if ( !tessMeshSplice( tess->mesh, vEvent->anEdge, e ) ) longjmp(tess->env,1);
		SweepEvent( tess, vEvent );	/* recurse */
		return;
	}

	/* vEvent coincides with e->Dst, which has already been processed.
	* Splice in the additional right-going edges.
	*/
	assert( TOLERANCE_NONZERO );
	regUp = TopRightRegion( regUp );
	reg = RegionBelow( regUp );
	eTopRight = reg->eUp->Sym;
	eTopLeft = eLast = eTopRight->Onext;
	if( reg->fixUpperEdge ) {
		/* Here e->Dst has only a single fixable edge going right.
		* We can delete it since now we have some real right-going edges.
		*/
		assert( eTopLeft != eTopRight );   /* there are some left edges too */
		DeleteRegion( tess, reg );
		if ( !tessMeshDelete( tess->mesh, eTopRight ) ) longjmp(tess->env,1);
		eTopRight = eTopLeft->Oprev;
	}
	if ( !tessMeshSplice( tess->mesh, vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
	if( ! EdgeGoesLeft( eTopLeft )) {
		/* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
		eTopLeft = NULL;
	}
	AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE );
}
Ejemplo n.º 4
0
void tessAddContour( TESStesselator *tess, int size, const void* vertices,
					int stride, int numVertices )
{
	const unsigned char *src = (const unsigned char*)vertices;
	TESShalfEdge *e;
	int i;

	if ( tess->mesh == NULL )
	  	tess->mesh = tessMeshNewMesh( &tess->alloc );
 	if ( tess->mesh == NULL ) {
		tess->outOfMemory = 1;
		return;
	}

	if ( size < 2 )
		size = 2;
	if ( size > 3 )
		size = 3;

	e = NULL;

	for( i = 0; i < numVertices; ++i )
	{
		const TESSreal* coords = (const TESSreal*)src;
		src += stride;

		if( e == NULL ) {
			/* Make a self-loop (one vertex, one edge). */
			e = tessMeshMakeEdge( tess->mesh );
			if ( e == NULL ) {
				tess->outOfMemory = 1;
				return;
			}
			if ( !tessMeshSplice( tess->mesh, e, e->Sym ) ) {
				tess->outOfMemory = 1;
				return;
			}
		} else {
			/* Create a new vertex and edge which immediately follow e
			* in the ordering around the left face.
			*/
			if ( tessMeshSplitEdge( tess->mesh, e ) == NULL ) {
				tess->outOfMemory = 1;
				return;
			}
			e = e->Lnext;
		}

		/* The new vertex is now e->Org. */
		e->Org->coords[0] = coords[0];
		e->Org->coords[1] = coords[1];
		if ( size > 2 )
			e->Org->coords[2] = coords[2];
		else
			e->Org->coords[2] = 0;
		/* Store the insertion number so that the vertex can be later recognized. */
		e->Org->idx = tess->vertexIndexCounter++;

		/* The winding of an edge says how the winding number changes as we
		* cross from the edge''s right face to its left face.  We add the
		* vertices in such an order that a CCW contour will add +1 to
		* the winding number of the region inside the contour.
		*/
		e->winding = 1;
		e->Sym->winding = -1;
	}
}
Ejemplo n.º 5
0
static int CheckForIntersect( TESStesselator *tess, ActiveRegion *regUp )
/*
* Check the upper and lower edges of the given region to see if
* they intersect.  If so, create the intersection and add it
* to the data structures.
*
* Returns TRUE if adding the new intersection resulted in a recursive
* call to AddRightEdges(); in this case all "dirty" regions have been
* checked for intersections, and possibly regUp has been deleted.
*/
{
	ActiveRegion *regLo = RegionBelow(regUp);
	TESShalfEdge *eUp = regUp->eUp;
	TESShalfEdge *eLo = regLo->eUp;
	TESSvertex *orgUp = eUp->Org;
	TESSvertex *orgLo = eLo->Org;
	TESSvertex *dstUp = eUp->Dst;
	TESSvertex *dstLo = eLo->Dst;
	TESSreal tMinUp, tMaxLo;
	TESSvertex isect, *orgMin;
	TESShalfEdge *e;

	assert( ! VertEq( dstLo, dstUp ));
	assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
	assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
	assert( orgUp != tess->event && orgLo != tess->event );
	assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );

	if( orgUp == orgLo ) return FALSE;	/* right endpoints are the same */

	tMinUp = MIN( orgUp->t, dstUp->t );
	tMaxLo = MAX( orgLo->t, dstLo->t );
	if( tMinUp > tMaxLo ) return FALSE;	/* t ranges do not overlap */

	if( VertLeq( orgUp, orgLo )) {
		if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
	} else {
		if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
	}

	/* At this point the edges intersect, at least marginally */
	DebugEvent( tess );

	tesedgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
	/* The following properties are guaranteed: */
	assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
	assert( isect.t <= MAX( orgLo->t, dstLo->t ));
	assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
	assert( isect.s <= MAX( orgLo->s, orgUp->s ));

	if( VertLeq( &isect, tess->event )) {
		/* The intersection point lies slightly to the left of the sweep line,
		* so move it until it''s slightly to the right of the sweep line.
		* (If we had perfect numerical precision, this would never happen
		* in the first place).  The easiest and safest thing to do is
		* replace the intersection by tess->event.
		*/
		isect.s = tess->event->s;
		isect.t = tess->event->t;
	}
	/* Similarly, if the computed intersection lies to the right of the
	* rightmost origin (which should rarely happen), it can cause
	* unbelievable inefficiency on sufficiently degenerate inputs.
	* (If you have the test program, try running test54.d with the
	* "X zoom" option turned on).
	*/
	orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
	if( VertLeq( orgMin, &isect )) {
		isect.s = orgMin->s;
		isect.t = orgMin->t;
	}

	if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
		/* Easy case -- intersection at one of the right endpoints */
		(void) CheckForRightSplice( tess, regUp );
		return FALSE;
	}

	if(    (! VertEq( dstUp, tess->event )
		&& EdgeSign( dstUp, tess->event, &isect ) >= 0)
		|| (! VertEq( dstLo, tess->event )
		&& EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
	{
		/* Very unusual -- the new upper or lower edge would pass on the
		* wrong side of the sweep event, or through it.  This can happen
		* due to very small numerical errors in the intersection calculation.
		*/
		if( dstLo == tess->event ) {
			/* Splice dstLo into eUp, and process the new region(s) */
			if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1);
			if ( !tessMeshSplice( tess->mesh, eLo->Sym, eUp ) ) longjmp(tess->env,1);
			regUp = TopLeftRegion( tess, regUp );
			if (regUp == NULL) longjmp(tess->env,1);
			eUp = RegionBelow(regUp)->eUp;
			FinishLeftRegions( tess, RegionBelow(regUp), regLo );
			AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
			return TRUE;
		}
		if( dstUp == tess->event ) {
			/* Splice dstUp into eLo, and process the new region(s) */
			if (tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1);
			if ( !tessMeshSplice( tess->mesh, eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1); 
			regLo = regUp;
			regUp = TopRightRegion( regUp );
			e = RegionBelow(regUp)->eUp->Rprev;
			regLo->eUp = eLo->Oprev;
			eLo = FinishLeftRegions( tess, regLo, NULL );
			AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE );
			return TRUE;
		}
		/* Special case: called from ConnectRightVertex.  If either
		* edge passes on the wrong side of tess->event, split it
		* (and wait for ConnectRightVertex to splice it appropriately).
		*/
		if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
			RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
			if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1);
			eUp->Org->s = tess->event->s;
			eUp->Org->t = tess->event->t;
		}
		if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
			regUp->dirty = regLo->dirty = TRUE;
			if (tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1);
			eLo->Org->s = tess->event->s;
			eLo->Org->t = tess->event->t;
		}
		/* leave the rest for ConnectRightVertex */
		return FALSE;
	}

	/* General case -- split both edges, splice into new vertex.
	* When we do the splice operation, the order of the arguments is
	* arbitrary as far as correctness goes.  However, when the operation
	* creates a new face, the work done is proportional to the size of
	* the new face.  We expect the faces in the processed part of
	* the mesh (ie. eUp->Lface) to be smaller than the faces in the
	* unprocessed original contours (which will be eLo->Oprev->Lface).
	*/
	if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1);
	if (tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1);
	if ( !tessMeshSplice( tess->mesh, eLo->Oprev, eUp ) ) longjmp(tess->env,1);
	eUp->Org->s = isect.s;
	eUp->Org->t = isect.t;
	eUp->Org->pqHandle = pqInsert( &tess->alloc, tess->pq, eUp->Org );
	if (eUp->Org->pqHandle == INV_HANDLE) {
		pqDeletePriorityQ( &tess->alloc, tess->pq );
		tess->pq = NULL;
		longjmp(tess->env,1);
	}
	GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
	RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE;
	return FALSE;
}