Ejemplo n.º 1
0
TEST_P(Test_Darknet_nets, YOLOv3)
{
    // batchId, classId, confidence, left, top, right, bottom
    Mat ref = (Mat_<float>(9, 7) << 0, 7,  0.952983f, 0.614622f, 0.150257f, 0.901369f, 0.289251f,  // a truck
                                    0, 1,  0.987908f, 0.150913f, 0.221933f, 0.742255f, 0.74626f,   // a bicycle
                                    0, 16, 0.998836f, 0.160024f, 0.389964f, 0.417885f, 0.943716f,  // a dog (COCO)
                                    1, 9,  0.384801f, 0.659824f, 0.372389f, 0.673926f, 0.429412f,  // a traffic light
                                    1, 9,  0.733283f, 0.376029f, 0.315694f, 0.401776f, 0.395165f,  // a traffic light
                                    1, 9,  0.785352f, 0.665503f, 0.373543f, 0.688893f, 0.439245f,  // a traffic light
                                    1, 0,  0.980052f, 0.195856f, 0.378454f, 0.258626f, 0.629258f,  // a person
                                    1, 2,  0.989633f, 0.450719f, 0.463353f, 0.496305f, 0.522258f,  // a car
                                    1, 2,  0.997412f, 0.647584f, 0.459939f, 0.821038f, 0.663947f); // a car

    double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0047 : 8e-5;
    double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4;

    std::string config_file = "yolov3.cfg";
    std::string weights_file = "yolov3.weights";

    // batch size 1
    testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff);

    if ((backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_MYRIAD) &&
        (backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_OPENCL))
    {
        // batch size 2
        testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
    }
}
Ejemplo n.º 2
0
TEST_P(Test_Darknet_nets, TinyYoloVoc)
{
#if defined(INF_ENGINE_RELEASE)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        throw SkipTestException("Test is disabled for MyriadX (need to update check function)");
#endif
    // batchId, classId, confidence, left, top, right, bottom
    Mat ref = (Mat_<float>(4, 7) << 0, 6,  0.761967f, 0.579042f, 0.159161f, 0.894482f, 0.31994f,   // a car
                                    0, 11, 0.780595f, 0.129696f, 0.386467f, 0.445275f, 0.920994f,  // a dog
                                    1, 6,  0.651450f, 0.460526f, 0.458019f, 0.522527f, 0.5341f,    // a car
                                    1, 6,  0.928758f, 0.651024f, 0.463539f, 0.823784f, 0.654998f); // a car

    double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 8e-3 : 8e-5;
    double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4;

    std::string config_file = "tiny-yolo-voc.cfg";
    std::string weights_file = "tiny-yolo-voc.weights";

    {
    SCOPED_TRACE("batch size 1");
    testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), scoreDiff, iouDiff);
    }

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018040000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
        throw SkipTestException("Test with 'batch size 2' is disabled for Myriad target (fixed in 2018R5)");
#endif
    {
    SCOPED_TRACE("batch size 2");
    testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
    }
}
Ejemplo n.º 3
0
 void testDarknetModel(const std::string& cfg, const std::string& weights,
                       const cv::Mat& ref, double scoreDiff, double iouDiff,
                       float confThreshold = 0.24, float nmsThreshold = 0.4)
 {
     CV_Assert(ref.cols == 7);
     std::vector<std::vector<int> > refClassIds;
     std::vector<std::vector<float> > refScores;
     std::vector<std::vector<Rect2d> > refBoxes;
     for (int i = 0; i < ref.rows; ++i)
     {
         int batchId = static_cast<int>(ref.at<float>(i, 0));
         int classId = static_cast<int>(ref.at<float>(i, 1));
         float score = ref.at<float>(i, 2);
         float left  = ref.at<float>(i, 3);
         float top   = ref.at<float>(i, 4);
         float right  = ref.at<float>(i, 5);
         float bottom = ref.at<float>(i, 6);
         Rect2d box(left, top, right - left, bottom - top);
         if (batchId >= refClassIds.size())
         {
             refClassIds.resize(batchId + 1);
             refScores.resize(batchId + 1);
             refBoxes.resize(batchId + 1);
         }
         refClassIds[batchId].push_back(classId);
         refScores[batchId].push_back(score);
         refBoxes[batchId].push_back(box);
     }
     testDarknetModel(cfg, weights, refClassIds, refScores, refBoxes,
                      scoreDiff, iouDiff, confThreshold, nmsThreshold);
 }
Ejemplo n.º 4
0
 void testDarknetModel(const std::string& cfg, const std::string& weights,
                       const std::vector<int>& refClassIds,
                       const std::vector<float>& refConfidences,
                       const std::vector<Rect2d>& refBoxes,
                       double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4)
 {
     testDarknetModel(cfg, weights,
                      std::vector<std::vector<int> >(1, refClassIds),
                      std::vector<std::vector<float> >(1, refConfidences),
                      std::vector<std::vector<Rect2d> >(1, refBoxes),
                      scoreDiff, iouDiff, confThreshold, nmsThreshold);
 }
Ejemplo n.º 5
0
TEST_P(Test_Darknet_nets, YOLOv3)
{
#if defined(INF_ENGINE_RELEASE)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        throw SkipTestException("Test is disabled for MyriadX");
#endif

    // batchId, classId, confidence, left, top, right, bottom
    Mat ref = (Mat_<float>(9, 7) << 0, 7,  0.952983f, 0.614622f, 0.150257f, 0.901369f, 0.289251f,  // a truck
                                    0, 1,  0.987908f, 0.150913f, 0.221933f, 0.742255f, 0.74626f,   // a bicycle
                                    0, 16, 0.998836f, 0.160024f, 0.389964f, 0.417885f, 0.943716f,  // a dog (COCO)
                                    1, 9,  0.384801f, 0.659824f, 0.372389f, 0.673926f, 0.429412f,  // a traffic light
                                    1, 9,  0.733283f, 0.376029f, 0.315694f, 0.401776f, 0.395165f,  // a traffic light
                                    1, 9,  0.785352f, 0.665503f, 0.373543f, 0.688893f, 0.439245f,  // a traffic light
                                    1, 0,  0.980052f, 0.195856f, 0.378454f, 0.258626f, 0.629258f,  // a person
                                    1, 2,  0.989633f, 0.450719f, 0.463353f, 0.496305f, 0.522258f,  // a car
                                    1, 2,  0.997412f, 0.647584f, 0.459939f, 0.821038f, 0.663947f); // a car

    double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0047 : 8e-5;
    double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4;

    std::string config_file = "yolov3.cfg";
    std::string weights_file = "yolov3.weights";

    {
    SCOPED_TRACE("batch size 1");
    testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff);
    }

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL)
        throw SkipTestException("Test with 'batch size 2' is disabled for DLIE/OpenCL target");
#endif

    {
        SCOPED_TRACE("batch size 2");
        testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
    }
}
Ejemplo n.º 6
0
TEST_P(Test_Darknet_nets, TinyYoloVoc)
{
    // batchId, classId, confidence, left, top, right, bottom
    Mat ref = (Mat_<float>(4, 7) << 0, 6,  0.761967f, 0.579042f, 0.159161f, 0.894482f, 0.31994f,   // a car
                                    0, 11, 0.780595f, 0.129696f, 0.386467f, 0.445275f, 0.920994f,  // a dog
                                    1, 6,  0.651450f, 0.460526f, 0.458019f, 0.522527f, 0.5341f,    // a car
                                    1, 6,  0.928758f, 0.651024f, 0.463539f, 0.823784f, 0.654998f); // a car

    double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 8e-3 : 8e-5;
    double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4;

    std::string config_file = "tiny-yolo-voc.cfg";
    std::string weights_file = "tiny-yolo-voc.weights";

    // batch size 1
    testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), scoreDiff, iouDiff);

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE == 2018040000
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_MYRIAD)
#endif
    // batch size 2
    testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
}
Ejemplo n.º 7
0
TEST_P(Test_Darknet_nets, YoloVoc)
{
    // batchId, classId, confidence, left, top, right, bottom
    Mat ref = (Mat_<float>(6, 7) << 0, 6,  0.750469f, 0.577374f, 0.127391f, 0.902949f, 0.300809f,  // a car
                                    0, 1,  0.780879f, 0.270762f, 0.264102f, 0.732475f, 0.745412f,  // a bicycle
                                    0, 11, 0.901615f, 0.1386f,   0.338509f, 0.421337f, 0.938789f,  // a dog
                                    1, 14, 0.623813f, 0.183179f, 0.381921f, 0.247726f, 0.625847f,  // a person
                                    1, 6,  0.667770f, 0.446555f, 0.453578f, 0.499986f, 0.519167f,  // a car
                                    1, 6,  0.844947f, 0.637058f, 0.460398f, 0.828508f, 0.66427f);  // a car

    double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-2 : 8e-5;
    double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4;
    double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4;

    std::string config_file = "yolo-voc.cfg";
    std::string weights_file = "yolo-voc.weights";

    // batch size 1
    testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff);

    // batch size 2
    testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, 0.24, nmsThreshold);
}
Ejemplo n.º 8
0
TEST_P(Test_Darknet_nets, YoloVoc)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
        throw SkipTestException("Test is disabled");
#endif
#if defined(INF_ENGINE_RELEASE)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        throw SkipTestException("Test is disabled for MyriadX (need to update check function)");
#endif

    // batchId, classId, confidence, left, top, right, bottom
    Mat ref = (Mat_<float>(6, 7) << 0, 6,  0.750469f, 0.577374f, 0.127391f, 0.902949f, 0.300809f,  // a car
                                    0, 1,  0.780879f, 0.270762f, 0.264102f, 0.732475f, 0.745412f,  // a bicycle
                                    0, 11, 0.901615f, 0.1386f,   0.338509f, 0.421337f, 0.938789f,  // a dog
                                    1, 14, 0.623813f, 0.183179f, 0.381921f, 0.247726f, 0.625847f,  // a person
                                    1, 6,  0.667770f, 0.446555f, 0.453578f, 0.499986f, 0.519167f,  // a car
                                    1, 6,  0.844947f, 0.637058f, 0.460398f, 0.828508f, 0.66427f);  // a car

    double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-2 : 8e-5;
    double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4;
    double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4;

    std::string config_file = "yolo-voc.cfg";
    std::string weights_file = "yolo-voc.weights";

    {
    SCOPED_TRACE("batch size 1");
    testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff);
    }

    {
    SCOPED_TRACE("batch size 2");
    testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, 0.24, nmsThreshold);
    }
}