Ejemplo n.º 1
0
void torture_setup ( void ) {
  rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_TIM3EN);

  timer_reset(TIM3);
  // 24Mhz / 10khz -1.
  timer_set_prescaler(TIM3, 20000); // 24Mhz/10000hz - 1
  // 10khz for 10 ticks = 1 khz overflow = 1ms overflow interrupts
  timer_set_period(TIM3, 1);


  /* Set timer start value. */
  TIM_CNT(TIM3) = 1;

  /* Set timer prescaler. */
  TIM_PSC(TIM3) = 100; // 100 .. so about 840000 ticks per second

  /* End timer value. If this is reached an interrupt is generated. */
  TIM_ARR(TIM3) = 60; // 840000/14 -> 60,000/sec



  nvic_enable_irq(NVIC_TIM3_IRQ);
  timer_enable_update_event(TIM3); // default at reset!
  timer_enable_irq(TIM3, TIM_DIER_UIE);
  timer_enable_counter(TIM3);

}
Ejemplo n.º 2
0
/**
 * Setup stepper motors' timer Tim
 * N == 0 for TIM3, == 1 for TIM4
 */
static void setup_timer(uint8_t N){
	uint32_t Tim;
	switch (N){
		case 0:
			Tim = TIM3;
			nvic_enable_irq(NVIC_TIM3_IRQ);
		break;
		case 1:
			Tim = TIM4;
			nvic_enable_irq(NVIC_TIM4_IRQ);
		break;
		default:
		return;
	}
	timer_reset(Tim);
	// timers have frequency of 2MHz, 2 pulse == 1 microstep
	// 36MHz of APB1
	timer_set_mode(Tim, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
	// 72MHz div 36 = 2MHz
	timer_set_prescaler(Tim, 35); // prescaler is (div - 1), 2pulse == 1 step
	timer_continuous_mode(Tim); // automatically reload
	timer_disable_preload(Tim); // force changing period
	timer_set_period(Tim, Motor_period[N] - 1);
	timer_enable_update_event(Tim);
	timer_enable_irq(Tim, TIM_DIER_UIE); // update IRQ enable
	timer_enable_counter(Tim);
	timers_activated[N] = 1;
#ifdef EBUG
	if(mode == BYTE_MODE){
		lastsendfun('3' + N);
		P(" timer\n", lastsendfun);
	}
#endif
}
Ejemplo n.º 3
0
/*
 * Another ms timer, this one used to generate an overflow interrupt at 1ms
 * It is used to toggle leds and write tick counts
 */
static void setup_tim6(void)
{
	timer_reset(TIM6);
	/* 24Mhz / 10khz -1. */
	timer_set_prescaler(TIM6, 2399); /* 24Mhz/10000hz - 1 */
	/* 10khz for 10 ticks = 1 khz overflow = 1ms overflow interrupts */
	timer_set_period(TIM6, 10);

	nvic_enable_irq(NVIC_TIM6_IRQ);
	timer_enable_update_event(TIM6); /* default at reset! */
	timer_enable_irq(TIM6, TIM_DIER_UIE);
	timer_enable_counter(TIM6);
}
Ejemplo n.º 4
0
void PID_tim_init(void)
{
	/* Enable TIM1 clock. and Port E clock (for outputs) */
	rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_TIM1EN);
	rcc_peripheral_enable_clock(&RCC_AHB1ENR, RCC_AHB1ENR_IOPEEN);

	//Set TIM1 channel (and complementary) output to alternate function push-pull'.
	//f4 TIM1=> GIO9: CH1, GPIO11: CH2, GPIO13: CH3
	//f4 TIM1=> GIO8: CH1N, GPIO10: CH2N, GPIO12: CH3N
	gpio_mode_setup(GPIOE, GPIO_MODE_AF,GPIO_PUPD_NONE,GPIO9 | GPIO11 | GPIO13);
	gpio_set_af(GPIOE, GPIO_AF1, GPIO9 | GPIO11 | GPIO13);
	gpio_mode_setup(GPIOE, GPIO_MODE_AF,GPIO_PUPD_NONE,GPIO8 | GPIO10 | GPIO12);
	gpio_set_af(GPIOE, GPIO_AF1, GPIO8 | GPIO10 | GPIO12);

	/* Enable TIM1 commutation interrupt. */
	//nvic_enable_irq(NVIC_TIM1_TRG_COM_TIM11_IRQ);	//f4

	/* Reset TIM1 peripheral. */
	timer_reset(TIM1);

	/* Timer global mode:
	 * - No divider
	 * - Alignment edge
	 * - Direction up
	 */
	timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT, //For dead time and filter sampling, not important for now.
		       TIM_CR1_CMS_CENTER_3,	//TIM_CR1_CMS_EDGE
						//TIM_CR1_CMS_CENTER_1
						//TIM_CR1_CMS_CENTER_2
						//TIM_CR1_CMS_CENTER_3 la frequencia del pwm se divide a la mitad. (frecuencia senoidal)
			 TIM_CR1_DIR_UP);

	timer_set_prescaler(TIM1, PRESCALE); //1 = disabled (max speed)
	timer_set_repetition_counter(TIM1, 0); //disabled
	timer_enable_preload(TIM1);
	timer_continuous_mode(TIM1);

	/* Period (32kHz). */
	timer_set_period(TIM1, PWM_PERIOD_ARR); //ARR (value compared against main counter to reload counter aka: period of counter)

	/* Configure break and deadtime. */
	//timer_set_deadtime(TIM1, deadtime_percentage*pwm_period_ARR);
	timer_set_enabled_off_state_in_idle_mode(TIM1);
	timer_set_enabled_off_state_in_run_mode(TIM1);
	timer_disable_break(TIM1);
	timer_set_break_polarity_high(TIM1);
	timer_disable_break_automatic_output(TIM1);
	timer_set_break_lock(TIM1, TIM_BDTR_LOCK_OFF);

	/* Disable outputs. */
	timer_disable_oc_output(TIM1, TIM_OC1);
	timer_disable_oc_output(TIM1, TIM_OC1N);
	timer_disable_oc_output(TIM1, TIM_OC2);
	timer_disable_oc_output(TIM1, TIM_OC2N);
	timer_disable_oc_output(TIM1, TIM_OC3);
	timer_disable_oc_output(TIM1, TIM_OC3N);

	/* -- OC1 and OC1N configuration -- */
	/* Configure global mode of line 1. */
	timer_enable_oc_preload(TIM1, TIM_OC1);
	timer_set_oc_mode(TIM1, TIM_OC1, TIM_OCM_PWM1);
	/* Configure OC1. */
	timer_set_oc_polarity_high(TIM1, TIM_OC1);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC1); //When idle (braked) put 0 on output
	/* Configure OC1N. */
	timer_set_oc_polarity_high(TIM1, TIM_OC1N);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC1N);
	/* Set the capture compare value for OC1. */
	timer_set_oc_value(TIM1, TIM_OC1, INIT_DUTY*PWM_PERIOD_ARR);//initial_duty_cycle*pwm_period_ARR);

	/* -- OC2 and OC2N configuration -- */
	/* Configure global mode of line 2. */
	timer_enable_oc_preload(TIM1, TIM_OC2);
	timer_set_oc_mode(TIM1, TIM_OC2, TIM_OCM_PWM1);
	/* Configure OC2. */
	timer_set_oc_polarity_high(TIM1, TIM_OC2);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC2);
	/* Configure OC2N. */
	timer_set_oc_polarity_high(TIM1, TIM_OC2N);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC2N);
	/* Set the capture compare value for OC2. */
	timer_set_oc_value(TIM1, TIM_OC2, INIT_DUTY*PWM_PERIOD_ARR);//initial_duty_cycle*pwm_period_ARR);

	/* -- OC3 and OC3N configuration -- */
	/* Configure global mode of line 3. */
	timer_enable_oc_preload(TIM1, TIM_OC3);
	timer_set_oc_mode(TIM1, TIM_OC3, TIM_OCM_PWM1);
	/* Configure OC3. */
	timer_set_oc_polarity_high(TIM1, TIM_OC3);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC3);
	/* Configure OC3N. */
	timer_set_oc_polarity_high(TIM1, TIM_OC3N);
	timer_set_oc_idle_state_unset(TIM1, TIM_OC3N);
	/* Set the capture compare value for OC3. */
	timer_set_oc_value(TIM1, TIM_OC3, INIT_DUTY*PWM_PERIOD_ARR);//initial_duty_cycle*pwm_period_ARR);//100);

	/* Reenable outputs. */
	timer_enable_oc_output(TIM1, TIM_OC1);
	timer_enable_oc_output(TIM1, TIM_OC1N);
	timer_enable_oc_output(TIM1, TIM_OC2);
	timer_enable_oc_output(TIM1, TIM_OC2N);
	timer_enable_oc_output(TIM1, TIM_OC3);
	timer_enable_oc_output(TIM1, TIM_OC3N);

	/* ---- */

	/* ARR reload enable. */
	timer_enable_preload(TIM1);

	/*
	 * Enable preload of complementary channel configurations and
	 * update on COM event.
	 */
	//timer_enable_preload_complementry_enable_bits(TIM1);
	timer_disable_preload_complementry_enable_bits(TIM1);

	/* Enable outputs in the break subsystem. */
	timer_enable_break_main_output(TIM1);

	/* Generate update event to reload all registers before starting*/
	timer_generate_event(TIM1, TIM_EGR_UG);

	/* Counter enable. */
	timer_enable_counter(TIM1);

	/* Enable commutation interrupt. */
	//timer_enable_irq(TIM1, TIM_DIER_COMIE);

	/*********/
	/*Capture compare interrupt*/

	//enable capture compare interrupt
	timer_enable_update_event(TIM1);

	/* Enable commutation interrupt. */
	//timer_enable_irq(TIM1, TIM_DIER_CC1IE);	//Capture/compare 1 interrupt enable
	/* Enable commutation interrupt. */
	//timer_enable_irq(TIM1, TIM_DIER_CC1IE);
	timer_enable_irq(TIM1, TIM_DIER_UIE);
	nvic_enable_irq(NVIC_TIM1_UP_TIM10_IRQ);
}