static void exec_setregs_funcdesc(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *tf; register_t entry_desc[3]; tf = trapframe(td); exec_setregs(td, imgp, stack); /* * For 64-bit ELFv1, we need to disentangle the function * descriptor * * 0. entry point * 1. TOC value (r2) * 2. Environment pointer (r11) */ (void)copyin((void *)imgp->entry_addr, entry_desc, sizeof(entry_desc)); tf->srr0 = entry_desc[0] + imgp->reloc_base; tf->fixreg[2] = entry_desc[1] + imgp->reloc_base; tf->fixreg[11] = entry_desc[2] + imgp->reloc_base; }
void enable_vec(struct thread *td) { int msr; struct pcb *pcb; struct trapframe *tf; pcb = td->td_pcb; tf = trapframe(td); /* * Save the thread's Altivec CPU number, and set the CPU's current * vector thread */ td->td_pcb->pcb_veccpu = PCPU_GET(cpuid); PCPU_SET(vecthread, td); /* * Enable the vector unit for when the thread returns from the * exception. If this is the first time the unit has been used by * the thread, initialise the vector registers and VSCR to 0, and * set the flag to indicate that the vector unit is in use. */ tf->srr1 |= PSL_VEC; if (!(pcb->pcb_flags & PCB_VEC)) { memset(&pcb->pcb_vec, 0, sizeof pcb->pcb_vec); pcb->pcb_flags |= PCB_VEC; } /* * Temporarily enable the vector unit so the registers * can be restored. */ msr = mfmsr(); mtmsr(msr | PSL_VEC); isync(); /* * Restore VSCR by first loading it into a vector and then into VSCR. * (this needs to done before loading the user's vector registers * since we need to use a scratch vector register) */ __asm __volatile("vxor 0,0,0; lvewx 0,0,%0; mtvscr 0" \ :: "b"(&pcb->pcb_vec.vscr)); #define LVX(n) __asm ("lvx " #n ",0,%0" \ :: "b"(&pcb->pcb_vec.vr[n])); LVX(0); LVX(1); LVX(2); LVX(3); LVX(4); LVX(5); LVX(6); LVX(7); LVX(8); LVX(9); LVX(10); LVX(11); LVX(12); LVX(13); LVX(14); LVX(15); LVX(16); LVX(17); LVX(18); LVX(19); LVX(20); LVX(21); LVX(22); LVX(23); LVX(24); LVX(25); LVX(26); LVX(27); LVX(28); LVX(29); LVX(30); LVX(31); #undef LVX isync(); mtmsr(msr); }
/* * Set the process's program counter. */ int process_set_pc(struct lwp *l, void *addr) { struct trapframe * const tf = trapframe(l); tf->srr0 = (register_t)addr; return 0; }
int process_sstep(struct lwp *l, int sstep) { struct trapframe *tf = trapframe(l); if (sstep) tf->srr1 |= PSL_SE; else tf->srr1 &= ~PSL_SE; return 0; }
int process_write_regs(struct lwp *l, const struct reg *regs) { struct trapframe * const tf = trapframe(l); memcpy(tf->fixreg, regs->fixreg, sizeof(regs->fixreg)); tf->lr = regs->lr; tf->cr = regs->cr; tf->xer = regs->xer; tf->ctr = regs->ctr; tf->srr0 = regs->pc; return 0; }
int process_read_regs(struct lwp *l, struct reg *regs) { struct trapframe * const tf = trapframe(l); memcpy(regs->fixreg, tf->fixreg, sizeof(regs->fixreg)); regs->lr = tf->lr; regs->cr = tf->cr; regs->xer = tf->xer; regs->ctr = tf->ctr; regs->pc = tf->srr0; return 0; }
/* * The following needs code review for potential security issues */ int linux_sys_sigreturn(struct lwp *l, const struct linux_sys_sigreturn_args *uap, register_t *retval) { /* { syscallarg(struct linux_sigcontext *) scp; } */ struct proc *p = l->l_proc; struct linux_sigcontext *scp, context; struct linux_sigregs sregs; struct linux_pt_regs *lregs; struct trapframe *tf; sigset_t mask; int i; /* * The trampoline code hands us the context. * It is unsafe to keep track of it ourselves, in the event that a * program jumps out of a signal handler. */ scp = SCARG(uap, scp); /* * Get the context from user stack */ if (copyin(scp, &context, sizeof(*scp))) return (EFAULT); /* * Restore register context. */ if (copyin((void *)context.lregs, &sregs, sizeof(sregs))) return (EFAULT); lregs = (struct linux_pt_regs *)&sregs.lgp_regs; tf = trapframe(l); #ifdef DEBUG_LINUX printf("linux_sys_sigreturn: trapframe=0x%lx scp=0x%lx\n", (unsigned long)tf, (unsigned long)scp); #endif if (!PSL_USEROK_P(lregs->lmsr)) return (EINVAL); for (i = 0; i < 32; i++) tf->tf_fixreg[i] = lregs->lgpr[i]; tf->tf_lr = lregs->llink; tf->tf_cr = lregs->lccr; tf->tf_xer = lregs->lxer; tf->tf_ctr = lregs->lctr; tf->tf_srr0 = lregs->lnip; tf->tf_srr1 = lregs->lmsr; /* * Make sure the fpu state is discarded */ #ifdef PPC_HAVE_FPU fpu_discard(); #endif memcpy(curpcb->pcb_fpu.fpreg, (void *)&sregs.lfp_regs, sizeof(curpcb->pcb_fpu.fpreg)); fpu_mark_used(curlwp); mutex_enter(p->p_lock); /* * Restore signal stack. * * XXX cannot find the onstack information in Linux sig context. * Is signal stack really supported on Linux? */ #if 0 if (sc.sc_onstack & SS_ONSTACK) l->l_sigstk.ss_flags |= SS_ONSTACK; else #endif l->l_sigstk.ss_flags &= ~SS_ONSTACK; /* Restore signal mask. */ linux_old_extra_to_native_sigset(&mask, &context.lmask, &context._unused[3]); (void) sigprocmask1(l, SIG_SETMASK, &mask, 0); mutex_exit(p->p_lock); return (EJUSTRETURN); }
void linux_sendsig(const ksiginfo_t *ksi, const sigset_t *mask) { const int sig = ksi->ksi_signo; struct lwp *l = curlwp; struct proc *p = l->l_proc; struct trapframe *tf; sig_t catcher = SIGACTION(p, sig).sa_handler; struct linux_sigregs frame; struct linux_pt_regs linux_regs; struct linux_sigcontext sc; register_t fp; int onstack, error; int i; tf = trapframe(l); /* * Do we need to jump onto the signal stack? */ onstack = (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 && (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0; /* * Signal stack is broken (see at the end of linux_sigreturn), so we do * not use it yet. XXX fix this. */ onstack=0; /* * Allocate space for the signal handler context. */ if (onstack) { fp = (register_t) ((char *)l->l_sigstk.ss_sp + l->l_sigstk.ss_size); } else { fp = tf->tf_fixreg[1]; } #ifdef DEBUG_LINUX printf("fp at start of linux_sendsig = %x\n", fp); #endif fp -= sizeof(struct linux_sigregs); fp &= ~0xf; /* * Prepare a sigcontext for later. */ memset(&sc, 0, sizeof sc); sc.lsignal = (int)native_to_linux_signo[sig]; sc.lhandler = (unsigned long)catcher; native_to_linux_old_extra_sigset(&sc.lmask, &sc._unused[3], mask); sc.lregs = (struct linux_pt_regs*)fp; /* * Setup the signal stack frame as Linux does it in * arch/ppc/kernel/signal.c:setup_frame() * * Save register context. */ for (i = 0; i < 32; i++) linux_regs.lgpr[i] = tf->tf_fixreg[i]; linux_regs.lnip = tf->tf_srr0; linux_regs.lmsr = tf->tf_srr1 & PSL_USERSRR1; linux_regs.lorig_gpr3 = tf->tf_fixreg[3]; /* XXX Is that right? */ linux_regs.lctr = tf->tf_ctr; linux_regs.llink = tf->tf_lr; linux_regs.lxer = tf->tf_xer; linux_regs.lccr = tf->tf_cr; linux_regs.lmq = 0; /* Unused, 601 only */ linux_regs.ltrap = tf->tf_exc; linux_regs.ldar = tf->tf_dar; linux_regs.ldsisr = tf->tf_dsisr; linux_regs.lresult = 0; memset(&frame, 0, sizeof(frame)); memcpy(&frame.lgp_regs, &linux_regs, sizeof(linux_regs)); #ifdef PPC_HAVE_FPU fpu_save(); #endif memcpy(&frame.lfp_regs, curpcb->pcb_fpu.fpreg, sizeof(frame.lfp_regs)); /* * Copy Linux's signal trampoline on the user stack It should not * be used, but Linux binaries might expect it to be there. */ frame.ltramp[0] = 0x38997777; /* li r0, 0x7777 */ frame.ltramp[1] = 0x44000002; /* sc */ /* * Move it to the user stack * There is a little trick here, about the LINUX_ABIGAP: the * linux_sigreg structure has a 56 int gap to support rs6000/xcoff * binaries. But the Linux kernel seems to do without it, and it * just skip it when building the stack frame. Hence the LINUX_ABIGAP. */ sendsig_reset(l, sig); mutex_exit(p->p_lock); error = copyout(&frame, (void *)fp, sizeof (frame) - LINUX_ABIGAP); if (error != 0) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ mutex_enter(p->p_lock); sigexit(l, SIGILL); /* NOTREACHED */ } /* * Add a sigcontext on the stack */ fp -= sizeof(struct linux_sigcontext); error = copyout(&sc, (void *)fp, sizeof (struct linux_sigcontext)); mutex_enter(p->p_lock); if (error != 0) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ sigexit(l, SIGILL); /* NOTREACHED */ } /* * Set the registers according to how the Linux process expects them. * "Mind the gap" Linux expects a gap here. */ tf->tf_fixreg[1] = fp - LINUX__SIGNAL_FRAMESIZE; tf->tf_lr = (int)catcher; tf->tf_fixreg[3] = (int)native_to_linux_signo[sig]; tf->tf_fixreg[4] = fp; tf->tf_srr0 = (int)p->p_sigctx.ps_sigcode; #ifdef DEBUG_LINUX printf("fp at end of linux_sendsig = %x\n", fp); #endif /* * Remember that we're now on the signal stack. */ if (onstack) l->l_sigstk.ss_flags |= SS_ONSTACK; #ifdef DEBUG_LINUX printf("linux_sendsig: exiting. fp=0x%lx\n",(long)fp); #endif }
/* * Finish a fork operation, with execution context l2 nearly set up. * Copy and update the pcb and trap frame, making the child ready to run. * * Rig the child's kernel stack so that it will have a switch frame which * returns to cpu_lwp_bootstrap() which will call child_return() with l2 * as its argument. This causes the newly-created child process to go * directly to user level with an apparent return value of 0 from * fork(), while the parent process returns normally. * * l1 is the execution context being forked; if l1 == &lwp0, we are creating * a kernel thread, and the return path and argument are specified with * `func' and `arg'. * * If an alternate user-level stack is requested (with non-zero values * in both the stack and stacksize args), set up the user stack pointer * accordingly. */ void cpu_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize, void (*func)(void *), void *arg) { /* * If l1 != curlwp && l1 == &lwp0, we're creating a kernel thread. */ KASSERT(l1 == curlwp || l1 == &lwp0); struct pcb * const pcb1 = lwp_getpcb(l1); struct pcb * const pcb2 = lwp_getpcb(l2); /* Copy MD part of lwp and set up user trapframe pointer. */ l2->l_md = l1->l_md; l2->l_md.md_utf = trapframe(l2); /* Copy PCB. */ *pcb2 = *pcb1; pcb2->pcb_pm = l2->l_proc->p_vmspace->vm_map.pmap; /* * Setup the trap frame for the new process */ *l2->l_md.md_utf = *l1->l_md.md_utf; /* * If specified, give the child a different stack. Make sure to * reserve enough at the top to store the previous LR. */ if (stack != NULL) { l2->l_md.md_utf->tf_fixreg[1] = ((register_t)stack + stacksize - STACK_ALIGNBYTES) & ~STACK_ALIGNBYTES; } /* * Now deal setting up the initial function and its argument. */ struct ktrapframe * const ktf = ktrapframe(l2); struct callframe * const cf = ((struct callframe *)ktf) - 1; struct switchframe * const sf = ((struct switchframe *)cf) - 1; /* * Align stack pointer * struct ktrapframe has a partial callframe (sp & lr) * followed by a real trapframe. The partial callframe * is for the callee to store LR. The SP isn't really used * since trap/syscall will use the SP in the trapframe. * There happens to be a partial callframe in front of the * trapframe, too. */ ktf->ktf_lr = (register_t) cpu_lwp_bootstrap; ktf->ktf_sp = (register_t) (ktf + 1); /* just in case */ cf->cf_sp = (register_t) ktf; cf->cf_r31 = (register_t) func; cf->cf_r30 = (register_t) arg; memset((void *)sf, 0, sizeof *sf); /* just in case */ sf->sf_sp = (register_t) cf; #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE) sf->sf_user_sr = pmap_kernel()->pm_sr[USER_SR]; /* again, just in case */ #endif pcb2->pcb_sp = (register_t)sf; pcb2->pcb_kmapsr = 0; pcb2->pcb_umapsr = 0; #ifdef PPC_HAVE_FPU pcb2->pcb_flags = PSL_FE_DFLT; #endif #ifdef CACHE_PROTO_MEI { paddr_t pa; int dcache_line_size, i; /* Flush on cache values for other cpu. */ dcache_line_size = curcpu()->ci_ci.dcache_line_size; pa = vtophys((vaddr_t)sf); for (i = 0; i < SFRAMELEN + CALLFRAMELEN + FRAMELEN; i += dcache_line_size) { __asm volatile ("dcbf 0,%0"::"r"(pa):"memory"); pa += dcache_line_size; } __asm volatile ("dcbf 0,%0"::"r"(pa):"memory"); pa = vtophys((vaddr_t)pcb2->pcb_pm); for (i = 0; i < sizeof(*pcb2->pcb_pm); i += dcache_line_size) { __asm volatile ("dcbf 0,%0"::"r"(pa):"memory"); pa += dcache_line_size; } __asm volatile ("dcbf 0,%0"::"r"(pa):"memory"); pa = vtophys((vaddr_t)pcb2); for (i = 0; i < sizeof(*pcb2); i += dcache_line_size) { __asm volatile ("dcbf 0,%0"::"r"(pa):"memory"); pa += dcache_line_size; } __asm volatile ("dcbf 0,%0"::"r"(pa):"memory"); /* Need more flush? */ } #endif }
/* * Finish a fork operation, with process p2 nearly set up. */ void cpu_fork(struct proc *p1, struct proc *p2, void *stack, size_t stacksize, void (*func)(void *), void *arg) { struct trapframe *tf; struct callframe *cf; struct switchframe *sf; caddr_t stktop1, stktop2; extern void fork_trampoline(void); struct pcb *pcb = &p2->p_addr->u_pcb; struct cpu_info *ci = curcpu(); if (p1 == ci->ci_fpuproc) save_fpu(); *pcb = p1->p_addr->u_pcb; #ifdef ALTIVEC if (p1->p_addr->u_pcb.pcb_vr != NULL) { if (p1 == ci->ci_vecproc) save_vec(p1); pcb->pcb_vr = pool_get(&ppc_vecpl, PR_WAITOK); *pcb->pcb_vr = *p1->p_addr->u_pcb.pcb_vr; } else pcb->pcb_vr = NULL; #endif /* ALTIVEC */ pcb->pcb_pm = p2->p_vmspace->vm_map.pmap; pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm, (paddr_t *)&pcb->pcb_pmreal); /* * Setup the trap frame for the new process */ stktop1 = (caddr_t)trapframe(p1); stktop2 = (caddr_t)trapframe(p2); bcopy(stktop1, stktop2, sizeof(struct trapframe)); /* * If specified, give the child a different stack. */ if (stack != NULL) { tf = trapframe(p2); tf->fixreg[1] = (register_t)stack + stacksize; } stktop2 = (caddr_t)((u_long)stktop2 & ~15); /* Align stack pointer */ /* * There happens to be a callframe, too. */ cf = (struct callframe *)stktop2; cf->lr = (int)fork_trampoline; /* * Below the trap frame, there is another call frame: */ stktop2 -= 16; cf = (struct callframe *)stktop2; cf->r31 = (register_t)func; cf->r30 = (register_t)arg; /* * Below that, we allocate the switch frame: */ /* must match SFRAMELEN in genassym */ stktop2 -= roundup(sizeof *sf, 16); sf = (struct switchframe *)stktop2; bzero((void *)sf, sizeof *sf); /* just in case */ sf->sp = (int)cf; sf->user_sr = pmap_kernel()->pm_sr[PPC_USER_SR]; /* just in case */ pcb->pcb_sp = (int)stktop2; }