/* precise tropospheric model ------------------------------------------------*/ static double prectrop(gtime_t time, const double *pos, const double *azel, const prcopt_t *opt, const double *x, double *dtdx, double *var) { const double zazel[]={0.0,PI/2.0}; double zhd,m_h,m_w,cotz,grad_n,grad_e; /* zenith hydrostatic delay */ zhd=tropmodel(time,pos,zazel,0.0); /* mapping function */ m_h=tropmapf(time,pos,azel,&m_w); if ((opt->tropopt==TROPOPT_ESTG||opt->tropopt==TROPOPT_CORG)&&azel[1]>0.0) { /* m_w=m_0+m_0*cot(el)*(Gn*cos(az)+Ge*sin(az)): ref [6] */ cotz=1.0/tan(azel[1]); grad_n=m_w*cotz*cos(azel[0]); grad_e=m_w*cotz*sin(azel[0]); m_w+=grad_n*x[1]+grad_e*x[2]; dtdx[1]=grad_n*(x[0]-zhd); dtdx[2]=grad_e*(x[0]-zhd); } dtdx[0]=m_w; *var=SQR(0.01); return m_h*zhd+m_w*(x[0]-zhd); }
/* static int zdres(int base, const obsd_t *obs, int n, const double *rs, const double *dts, const int *svh, const nav_t *nav, const double *rr, const prcopt_t *opt, double *y, double *e, double *azel) Description: zero differenced residual Params: base I 1:base, 0: rover obs I n I number of obs data rs I sat positions/velocities dts I sat clock bias svh I nav I rr I receiver position y O zero diff residuals e O azel O {az/el} Return: 0 ok, !0 error */ static int zdres(int base, const obsd_t *obs, int n, const double *rs, const double *dts, const int *svh, const nav_t *nav, const double *rr, const prcopt_t *opt, int index, double *y, double *e, double *azel) { double r,rr_[3],pos[3]; double zhd, zazel[]= {0.0,90.0*D2R}; //tai sao init zazel = {0,90} int i; for (i=0; i<2*n; i++) y[i]=0.0; if (sos3(rr)<=0.0) return -1;//no receiver pos for (i=0; i<3; i++) rr_[i]=rr[i]; ecef2pos(rr_,pos); for (i=0; i<n; i++) { if ((r=geodist(rs+i*6,rr_,e+i*3))<=0.0) continue; if (satazel(pos,e+i*3,azel+i*2)<opt->elmin) continue; //satellite clock-bias r -= CLIGHT*dts[i*2]; /* troposphere delay model (hydrostatic) */ zhd=tropmodel(obs[0].time,pos,zazel,0.0);//tai sao chon rel_humi = 0??????????? r+=tropmapf(obs[i].time,pos,azel+i*2,NULL)*zhd; /* undifferenced phase/code residual for satellite */ zdres_sat(base,r,obs+i,nav,azel+i*2,opt,y+i*2); } return 0; }
/* tropmodel */ void utest3(void) { gtime_t time={0}; double pos1 []={ 35*D2R, 140*D2R, 100.0}; double pos2 []={-80*D2R,-170*D2R,1000.0}; double pos3 []={-80*D2R,-170*D2R,100000.0}; double pos4 []={-80*D2R,-170*D2R,-200.0}; double azel1[]={ 60*D2R, 75*D2R}; double azel2[]={190*D2R, 3*D2R}; double azel3[]={190*D2R,-10*D2R}; double dtrp; dtrp=tropmodel(time,pos1,azel1,0.5); assert(fabs(dtrp-2.44799870144088)<1e-8); dtrp=tropmodel(time,pos1,azel2,0.5); assert(fabs(dtrp-45.1808916506163)<1e-8); dtrp=tropmodel(time,pos2,azel1,0.5); assert(fabs(dtrp-2.17295817298152)<1e-8); dtrp=tropmodel(time,pos1,azel3,0.0); assert(fabs(dtrp-0.00000000000000)<1e-8); dtrp=tropmodel(time,pos3,azel1,0.0); assert(fabs(dtrp-0.00000000000000)<1e-8); dtrp=tropmodel(time,pos4,azel1,0.0); assert(fabs(dtrp-0.00000000000000)<1e-8); printf("%s utest3 : OK\n",__FILE__); }
/* tropospheric correction ----------------------------------------------------- * compute tropospheric correction * args : gtime_t time I time * nav_t *nav I navigation data * double *pos I receiver position {lat,lon,h} (rad|m) * double *azel I azimuth/elevation angle {az,el} (rad) * int tropopt I tropospheric correction option (TROPOPT_???) * double *trp O tropospheric delay (m) * double *var O tropospheric delay variance (m^2) * return : status(1:ok,0:error) *-----------------------------------------------------------------------------*/ extern int tropcorr(gtime_t time, const nav_t *nav, const double *pos, const double *azel, int tropopt, double *trp, double *var) { /* saastamoinen model */ if (tropopt == TROPOPT_SAAS || tropopt == TROPOPT_EST || tropopt == TROPOPT_ESTG) { *trp = tropmodel(time, pos, azel, REL_HUMI); *var = SQR(ERR_SAAS / (sin(azel[1]) + 0.1)); return 1; } /* sbas troposphere model */ if (tropopt == TROPOPT_SBAS) { *trp = sbstropcorr(time, pos, azel, var); return 1; } /* no correction */ *trp = 0.0; *var = tropopt == TROPOPT_OFF ? SQR(ERR_TROP) : 0.0; return 1; }
/* tropospheric correction ----------------------------------------------------- * compute tropospheric correction * args : gtime_t time I time * nav_t *nav I navigation data * double *pos I receiver position {lat,lon,h} (rad|m) * double *azel I azimuth/elevation angle {az,el} (rad) * int tropopt I tropospheric correction option (TROPOPT_???) * double *trp O tropospheric delay (m) * double *var O tropospheric delay variance (m^2) * return : status(1:ok,0:error) *-----------------------------------------------------------------------------*/ extern int tropcorr(gtime_t time, const nav_t *nav, const double *pos, const double *azel, int tropopt, double *trp, double *var) { trace(4,"tropcorr: time=%s opt=%d pos=%.3f %.3f azel=%.3f %.3f\n", time_str(time,3),tropopt,pos[0]*R2D,pos[1]*R2D,azel[0]*R2D, azel[1]*R2D); /* saastamoinen model */ if (tropopt==TROPOPT_SAAS||tropopt==TROPOPT_EST||tropopt==TROPOPT_ESTG) { *trp=tropmodel(time,pos,azel,REL_HUMI); *var=SQR(ERR_SAAS/(sin(azel[1])+0.1)); return 1; } /* sbas troposphere model */ if (tropopt==TROPOPT_SBAS) { *trp=sbstropcorr(time,pos,azel,var); return 1; } /* no correction */ *trp=0.0; *var=tropopt==TROPOPT_OFF?SQR(ERR_TROP):0.0; return 1; }
/* phase and code residuals --------------------------------------------------*/ static int res_ppp(int iter, const obsd_t *obs, int n, const double *rs, const double *dts, const double *vare, const int *svh, const nav_t *nav, const double *x, rtk_t *rtk, double *v, double *H, double *R, double *azel) { prcopt_t *opt=&rtk->opt; double r,rr[3],disp[3],pos[3],e[3],meas[2],dtdx[3],dantr[NFREQ]={0}; double dants[NFREQ]={0},var[MAXOBS*2],dtrp=0.0,vart=0.0,varm[2]={0}; int i,j,k,sat,sys,nv=0,nx=rtk->nx,brk,tideopt; trace(3,"res_ppp : n=%d nx=%d\n",n,nx); for (i=0;i<MAXSAT;i++) rtk->ssat[i].vsat[0]=0; for (i=0;i<3;i++) rr[i]=x[i]; /* earth tides correction */ if (opt->tidecorr) { tideopt=opt->tidecorr==1?1:7; /* 1:solid, 2:solid+otl+pole */ tidedisp(gpst2utc(obs[0].time),rr,tideopt,&nav->erp,opt->odisp[0], disp); for (i=0;i<3;i++) rr[i]+=disp[i]; } ecef2pos(rr,pos); for (i=0;i<n&&i<MAXOBS;i++) { sat=obs[i].sat; if (!(sys=satsys(sat,NULL))||!rtk->ssat[sat-1].vs) continue; /* geometric distance/azimuth/elevation angle */ if ((r=geodist(rs+i*6,rr,e))<=0.0|| satazel(pos,e,azel+i*2)<opt->elmin) continue; /* excluded satellite? */ if (satexclude(obs[i].sat,svh[i],opt)) continue; /* tropospheric delay correction */ if (opt->tropopt==TROPOPT_SAAS) { dtrp=tropmodel(obs[i].time,pos,azel+i*2,REL_HUMI); vart=SQR(ERR_SAAS); } else if (opt->tropopt==TROPOPT_SBAS) { dtrp=sbstropcorr(obs[i].time,pos,azel+i*2,&vart); } else if (opt->tropopt==TROPOPT_EST||opt->tropopt==TROPOPT_ESTG) { dtrp=prectrop(obs[i].time,pos,azel+i*2,opt,x+IT(opt),dtdx,&vart); } else if (opt->tropopt==TROPOPT_COR||opt->tropopt==TROPOPT_CORG) { dtrp=prectrop(obs[i].time,pos,azel+i*2,opt,x,dtdx,&vart); } /* satellite antenna model */ if (opt->posopt[0]) { satantpcv(rs+i*6,rr,nav->pcvs+sat-1,dants); } /* receiver antenna model */ antmodel(opt->pcvr,opt->antdel[0],azel+i*2,opt->posopt[1],dantr); /* phase windup correction */ if (opt->posopt[2]) { windupcorr(rtk->sol.time,rs+i*6,rr,&rtk->ssat[sat-1].phw); } /* ionosphere and antenna phase corrected measurements */ if (!corrmeas(obs+i,nav,pos,azel+i*2,&rtk->opt,dantr,dants, rtk->ssat[sat-1].phw,meas,varm,&brk)) { continue; } /* satellite clock and tropospheric delay */ r+=-CLIGHT*dts[i*2]+dtrp; trace(5,"sat=%2d azel=%6.1f %5.1f dtrp=%.3f dantr=%6.3f %6.3f dants=%6.3f %6.3f phw=%6.3f\n", sat,azel[i*2]*R2D,azel[1+i*2]*R2D,dtrp,dantr[0],dantr[1],dants[0], dants[1],rtk->ssat[sat-1].phw); for (j=0;j<2;j++) { /* for phase and code */ if (meas[j]==0.0) continue; for (k=0;k<nx;k++) H[k+nx*nv]=0.0; v[nv]=meas[j]-r; for (k=0;k<3;k++) H[k+nx*nv]=-e[k]; if (sys!=SYS_GLO) { v[nv]-=x[IC(0,opt)]; H[IC(0,opt)+nx*nv]=1.0; } else { v[nv]-=x[IC(1,opt)]; H[IC(1,opt)+nx*nv]=1.0; } if (opt->tropopt>=TROPOPT_EST) { for (k=0;k<(opt->tropopt>=TROPOPT_ESTG?3:1);k++) { H[IT(opt)+k+nx*nv]=dtdx[k]; } } if (j==0) { v[nv]-=x[IB(obs[i].sat,opt)]; H[IB(obs[i].sat,opt)+nx*nv]=1.0; } var[nv]=varerr(obs[i].sat,sys,azel[1+i*2],j,opt)+varm[j]+vare[i]+vart; if (j==0) rtk->ssat[sat-1].resc[0]=v[nv]; else rtk->ssat[sat-1].resp[0]=v[nv]; /* test innovation */ #if 0 if (opt->maxinno>0.0&&fabs(v[nv])>opt->maxinno) { #else if (opt->maxinno>0.0&&fabs(v[nv])>opt->maxinno&&sys!=SYS_GLO) { #endif trace(2,"ppp outlier rejected %s sat=%2d type=%d v=%.3f\n", time_str(obs[i].time,0),sat,j,v[nv]); rtk->ssat[sat-1].rejc[0]++; continue; } if (j==0) rtk->ssat[sat-1].vsat[0]=1; nv++; } } for (i=0;i<nv;i++) for (j=0;j<nv;j++) { R[i+j*nv]=i==j?var[i]:0.0; } trace(5,"x=\n"); tracemat(5,x, 1,nx,8,3); trace(5,"v=\n"); tracemat(5,v, 1,nv,8,3); trace(5,"H=\n"); tracemat(5,H,nx,nv,8,3); trace(5,"R=\n"); tracemat(5,R,nv,nv,8,5); return nv; } /* number of estimated states ------------------------------------------------*/ extern int pppnx(const prcopt_t *opt) { return NX(opt); } /* precise point positioning -------------------------------------------------*/ extern void pppos(rtk_t *rtk, const obsd_t *obs, int n, const nav_t *nav) { const prcopt_t *opt=&rtk->opt; double *rs,*dts,*var,*v,*H,*R,*azel,*xp,*Pp; int i,nv,info,svh[MAXOBS],stat=SOLQ_SINGLE; trace(3,"pppos : nx=%d n=%d\n",rtk->nx,n); rs=mat(6,n); dts=mat(2,n); var=mat(1,n); azel=zeros(2,n); for (i=0;i<MAXSAT;i++) rtk->ssat[i].fix[0]=0; /* temporal update of states */ udstate_ppp(rtk,obs,n,nav); trace(4,"x(0)="); tracemat(4,rtk->x,1,NR(opt),13,4); /* satellite positions and clocks */ satposs(obs[0].time,obs,n,nav,rtk->opt.sateph,rs,dts,var,svh); /* exclude measurements of eclipsing satellite */ if (rtk->opt.posopt[3]) { testeclipse(obs,n,nav,rs); } xp=mat(rtk->nx,1); Pp=zeros(rtk->nx,rtk->nx); matcpy(xp,rtk->x,rtk->nx,1); nv=n*rtk->opt.nf*2; v=mat(nv,1); H=mat(rtk->nx,nv); R=mat(nv,nv); for (i=0;i<rtk->opt.niter;i++) { /* phase and code residuals */ if ((nv=res_ppp(i,obs,n,rs,dts,var,svh,nav,xp,rtk,v,H,R,azel))<=0) break; /* measurement update */ matcpy(Pp,rtk->P,rtk->nx,rtk->nx); if ((info=filter(xp,Pp,H,v,R,rtk->nx,nv))) { trace(2,"ppp filter error %s info=%d\n",time_str(rtk->sol.time,0), info); break; } trace(4,"x(%d)=",i+1); tracemat(4,xp,1,NR(opt),13,4); stat=SOLQ_PPP; } if (stat==SOLQ_PPP) { /* postfit residuals */ res_ppp(1,obs,n,rs,dts,var,svh,nav,xp,rtk,v,H,R,azel); /* update state and covariance matrix */ matcpy(rtk->x,xp,rtk->nx,1); matcpy(rtk->P,Pp,rtk->nx,rtk->nx); /* ambiguity resolution in ppp */ if (opt->modear==ARMODE_PPPAR||opt->modear==ARMODE_PPPAR_ILS) { if (pppamb(rtk,obs,n,nav,azel)) stat=SOLQ_FIX; } /* update solution status */ rtk->sol.ns=0; for (i=0;i<n&&i<MAXOBS;i++) { if (!rtk->ssat[obs[i].sat-1].vsat[0]) continue; rtk->ssat[obs[i].sat-1].lock[0]++; rtk->ssat[obs[i].sat-1].outc[0]=0; rtk->ssat[obs[i].sat-1].fix [0]=4; rtk->sol.ns++; } rtk->sol.stat=stat; for (i=0;i<3;i++) { rtk->sol.rr[i]=rtk->x[i]; rtk->sol.qr[i]=(float)rtk->P[i+i*rtk->nx]; } rtk->sol.qr[3]=(float)rtk->P[1]; rtk->sol.qr[4]=(float)rtk->P[2+rtk->nx]; rtk->sol.qr[5]=(float)rtk->P[2]; rtk->sol.dtr[0]=rtk->x[IC(0,opt)]; rtk->sol.dtr[1]=rtk->x[IC(1,opt)]-rtk->x[IC(0,opt)]; for (i=0;i<n&&i<MAXOBS;i++) { rtk->ssat[obs[i].sat-1].snr[0]=MIN(obs[i].SNR[0],obs[i].SNR[1]); } for (i=0;i<MAXSAT;i++) { if (rtk->ssat[i].slip[0]&3) rtk->ssat[i].slipc[0]++; } } free(rs); free(dts); free(var); free(azel); free(xp); free(Pp); free(v); free(H); free(R); }
/* generate simulated observation data ---------------------------------------*/ static int simobs(gtime_t ts, gtime_t te, double tint, const double *rr, nav_t *nav, obs_t *obs, int opt) { gtime_t time; obsd_t data[MAXSAT]={{{0}}}; double pos[3],rs[3*MAXSAT],dts[MAXSAT],r,e[3],azel[2]; double ecp[MAXSAT][NFREQ]={{0}},epr[MAXSAT][NFREQ]={{0}}; double snr[MAXSAT][NFREQ]={{0}},ers[MAXSAT][3]={{0}}; double iono,trop,fact,cp,pr,dtr=0.0,rref[3],bl; int i,j,k,n,ns,amb[MAXSAT][NFREQ]={{0}},sys,prn; char s[64]; double pref[]={36.106114294,140.087190410,70.3010}; /* ref station */ trace(3,"simobs:nnav=%d ngnav=%d\n",nav->n,nav->ng); for (i=0;i<2;i++) pref[i]*=D2R; pos2ecef(pref,rref); for (i=0;i<3;i++) rref[i]-=rr[i]; bl=norm(rref,3)/1E4; /* baseline (10km) */ srand(0); /* ephemeris error */ for (i=0;i<MAXSAT;i++) { data[i].sat=i+1; data[i].P[0]=2E7; for (j=0;j<3;j++) ers[i][j]=randn(0.0,erreph); } srand(tickget()); ecef2pos(rr,pos); n=(int)(timediff(te,ts)/tint+1.0); for (i=0;i<n;i++) { time=timeadd(ts,tint*i); time2str(time,s,0); for (j=0;j<MAXSAT;j++) data[j].time=time; for (j=0;j<3;j++) { /* iteration for pseudorange */ satpos(time,data,MAXSAT,nav,rs,dts); for (k=0;k<MAXSAT;k++) { if ((r=geodist(rs+k*3,rr,e))<=0.0) continue; data[k].P[0]=r+CLIGHT*(dtr-dts[k]); } } satpos(time,data,MAXSAT,nav,rs,dts); for (j=ns=0;j<MAXSAT;j++) { /* add ephemeris error */ for (k=0;k<3;k++) rs[k+j*3]+=ers[j][k]; if ((r=geodist(rs+j*3,rr,e))<=0.0) continue; satazel(pos,e,azel); if (azel[1]<minel*D2R) continue; iono=ionmodel(time,nav->ion,pos,azel); trop=tropmodel(pos,azel,0.3); /* add ionospheric error */ iono+=errion*bl*ionmapf(pos,azel); snrmodel(azel,snr[j]); errmodel(azel,snr[j],ecp[j],epr[j]); sys=satsys(data[j].sat,&prn); for (k=0;k<NFREQ;k++) { data[j].L[k]=data[j].P[k]=0.0; data[j].SNR[k]=0; data[j].LLI[k]=0; if (sys==SYS_GPS) { if (k>=3) continue; /* no L5a/L5b in gps */ if (k>=2&&!gpsblock[prn-1]) continue; /* no L5 in block II */ } else if (sys==SYS_GLO) { if (k>=3) continue; } else if (sys==SYS_GAL) { if (k==1) continue; /* no L2 in galileo */ } else continue; /* generate observation data */ fact=lam[k]*lam[k]/lam[0]/lam[0]; cp=r+CLIGHT*(dtr-dts[j])-fact*iono+trop+ecp[j][k]; pr=r+CLIGHT*(dtr-dts[j])+fact*iono+trop+epr[j][k]; if (amb[j][k]==0) amb[j][k]=(int)(-cp/lam[k]); data[j].L[k]=cp/lam[k]+amb[j][k]; data[j].P[k]=pr; data[j].SNR[k]=(unsigned char)snr[j][k]; data[j].LLI[k]=data[j].SNR[k]<slipthres?1:0; } if (obs->nmax<=obs->n) { if (obs->nmax==0) obs->nmax=65532; else obs->nmax+=65532; if (!(obs->data=(obsd_t *)realloc(obs->data,sizeof(obsd_t)*obs->nmax))) { fprintf(stderr,"malloc error\n"); return 0; } } obs->data[obs->n++]=data[j]; ns++; } fprintf(stderr,"time=%s nsat=%2d\r",s,ns); } fprintf(stderr,"\n"); return 1; }