Ejemplo n.º 1
0
/*
 * Grow the GDT.
 */
void
gdt_grow(int which)
{
    size_t old_len, new_len;
    CPU_INFO_ITERATOR cii;
    struct cpu_info *ci;
    struct vm_page *pg;
    vaddr_t va;

    old_len = gdt_size[which] * sizeof(gdt[0]);
    gdt_size[which] <<= 1;
    new_len = old_len << 1;

#ifdef XEN
    if (which != 0) {
        size_t max_len = MAXGDTSIZ * sizeof(gdt[0]);
        if (old_len == 0) {
            gdt_size[which] = MINGDTSIZ;
            new_len = gdt_size[which] * sizeof(gdt[0]);
        }
        for(va = (vaddr_t)(cpu_info_primary.ci_gdt) + old_len + max_len;
                va < (vaddr_t)(cpu_info_primary.ci_gdt) + new_len + max_len;
                va += PAGE_SIZE) {
            while ((pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO))
                    == NULL) {
                uvm_wait("gdt_grow");
            }
            pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
                           VM_PROT_READ | VM_PROT_WRITE);
        }
        return;
    }
#endif

    for (CPU_INFO_FOREACH(cii, ci)) {
        for (va = (vaddr_t)(ci->ci_gdt) + old_len;
                va < (vaddr_t)(ci->ci_gdt) + new_len;
                va += PAGE_SIZE) {
            while ((pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO)) ==
                    NULL) {
                uvm_wait("gdt_grow");
            }
            pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
                           VM_PROT_READ | VM_PROT_WRITE);
        }
    }

    pmap_update(pmap_kernel());
}
Ejemplo n.º 2
0
/*
 * Grow the GDT.
 */
void
gdt_grow()
{
	size_t old_len, new_len;
	CPU_INFO_ITERATOR cii;
	struct cpu_info *ci;
	struct vm_page *pg;
	vaddr_t va;

	old_len = gdt_size * sizeof(union descriptor);
	gdt_size <<= 1;
	new_len = old_len << 1;

	CPU_INFO_FOREACH(cii, ci) {
		for (va = (vaddr_t)(ci->ci_gdt) + old_len;
		     va < (vaddr_t)(ci->ci_gdt) + new_len;
		     va += PAGE_SIZE) {
			while (
			    (pg =
			    uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO)) ==
			    NULL) {
				uvm_wait("gdt_grow");
			}
			pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
			    VM_PROT_READ | VM_PROT_WRITE);
		}
	}
}
Ejemplo n.º 3
0
/*
 * Allocate shadow GDT for a slave CPU.
 */
void
gdt_alloc_cpu(struct cpu_info *ci)
{
    int max_len = MAXGDTSIZ * sizeof(gdt[0]);
    int min_len = MINGDTSIZ * sizeof(gdt[0]);
    struct vm_page *pg;
    vaddr_t va;

    ci->ci_gdt = (union descriptor *)uvm_km_alloc(kernel_map, max_len,
                 0, UVM_KMF_VAONLY);
    for (va = (vaddr_t)ci->ci_gdt; va < (vaddr_t)ci->ci_gdt + min_len;
            va += PAGE_SIZE) {
        while ((pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO))
                == NULL) {
            uvm_wait("gdt_alloc_cpu");
        }
        pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
                       VM_PROT_READ | VM_PROT_WRITE);
    }
    pmap_update(pmap_kernel());
    memset(ci->ci_gdt, 0, min_len);
    memcpy(ci->ci_gdt, gdt, gdt_count[0] * sizeof(gdt[0]));
    setsegment(&ci->ci_gdt[GCPU_SEL].sd, ci, 0xfffff,
               SDT_MEMRWA, SEL_KPL, 1, 1);
}
Ejemplo n.º 4
0
/*
 * uvmfault_amapcopy: clear "needs_copy" in a map.
 *
 * => called with VM data structures unlocked (usually, see below)
 * => we get a write lock on the maps and clear needs_copy for a VA
 * => if we are out of RAM we sleep (waiting for more)
 */
static void
uvmfault_amapcopy(struct uvm_faultinfo *ufi)
{

	/* while we haven't done the job */
	while (1) {
		/* no mapping?  give up. */
		if (uvmfault_lookup(ufi, TRUE) == FALSE)
			return;

		/* copy if needed. */
		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
			amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE, 
				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);

		/* didn't work?  must be out of RAM.  unlock and sleep. */
		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
			uvmfault_unlockmaps(ufi, TRUE);
			uvm_wait("fltamapcopy");
			continue;
		}

		/* got it! unlock and return*/
		uvmfault_unlockmaps(ufi, TRUE);
		return;
	}
	/*NOTREACHED*/
}
Ejemplo n.º 5
0
/* ARGSUSED */
vaddr_t
uvm_km_alloc_poolpage1(struct vm_map *map, struct uvm_object *obj,
    boolean_t waitok)
{
#if defined(__HAVE_PMAP_DIRECT)
	struct vm_page *pg;
	vaddr_t va;

 again:
	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
	if (__predict_false(pg == NULL)) {
		if (waitok) {
			uvm_wait("plpg");
			goto again;
		} else
			return (0);
	}
	va = pmap_map_direct(pg);
	if (__predict_false(va == 0))
		uvm_pagefree(pg);
	return (va);
#else
	vaddr_t va;
	int s;

	/*
	 * NOTE: We may be called with a map that doesn't require splvm
	 * protection (e.g. kernel_map).  However, it does not hurt to
	 * go to splvm in this case (since unprotected maps will never be
	 * accessed in interrupt context).
	 *
	 * XXX We may want to consider changing the interface to this
	 * XXX function.
	 */

	s = splvm();
	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
	splx(s);
	return (va);
#endif /* __HAVE_PMAP_DIRECT */
}
Ejemplo n.º 6
0
static int
uvm_loanzero(struct uvm_faultinfo *ufi, void ***output, int flags)
{
	struct vm_anon *anon;
	struct vm_page *pg;
	struct vm_amap *amap = ufi->entry->aref.ar_amap;

	UVMHIST_FUNC(__func__); UVMHIST_CALLED(loanhist);
again:
	mutex_enter(&uvm_loanzero_object.vmobjlock);

	/*
	 * first, get ahold of our single zero page.
	 */

	if (__predict_false((pg =
			     TAILQ_FIRST(&uvm_loanzero_object.memq)) == NULL)) {
		while ((pg = uvm_pagealloc(&uvm_loanzero_object, 0, NULL,
					   UVM_PGA_ZERO)) == NULL) {
			mutex_exit(&uvm_loanzero_object.vmobjlock);
			uvmfault_unlockall(ufi, amap, NULL, NULL);
			uvm_wait("loanzero");
			if (!uvmfault_relock(ufi)) {
				return (0);
			}
			if (amap) {
				amap_lock(amap);
			}
			goto again;
		}

		/* got a zero'd page. */
		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
		pg->flags |= PG_RDONLY;
		mutex_enter(&uvm_pageqlock);
		uvm_pageactivate(pg);
		mutex_exit(&uvm_pageqlock);
		UVM_PAGE_OWN(pg, NULL);
	}

	if ((flags & UVM_LOAN_TOANON) == 0) {	/* loaning to kernel-page */
		mutex_enter(&uvm_pageqlock);
		pg->loan_count++;
		mutex_exit(&uvm_pageqlock);
		mutex_exit(&uvm_loanzero_object.vmobjlock);
		**output = pg;
		(*output)++;
		return (1);
	}

	/*
	 * loaning to an anon.  check to see if there is already an anon
	 * associated with this page.  if so, then just return a reference
	 * to this object.
	 */

	if (pg->uanon) {
		anon = pg->uanon;
		mutex_enter(&anon->an_lock);
		anon->an_ref++;
		mutex_exit(&anon->an_lock);
		mutex_exit(&uvm_loanzero_object.vmobjlock);
		**output = anon;
		(*output)++;
		return (1);
	}

	/*
	 * need to allocate a new anon
	 */

	anon = uvm_analloc();
	if (anon == NULL) {
		/* out of swap causes us to fail */
		mutex_exit(&uvm_loanzero_object.vmobjlock);
		uvmfault_unlockall(ufi, amap, NULL, NULL);
		return (-1);
	}
	anon->an_page = pg;
	pg->uanon = anon;
	mutex_enter(&uvm_pageqlock);
	pg->loan_count++;
	uvm_pageactivate(pg);
	mutex_exit(&uvm_pageqlock);
	mutex_exit(&anon->an_lock);
	mutex_exit(&uvm_loanzero_object.vmobjlock);
	**output = anon;
	(*output)++;
	return (1);
}
Ejemplo n.º 7
0
int
uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    struct vm_anon *anon)
{
	boolean_t we_own;	/* we own anon's page? */
	boolean_t locked;	/* did we relock? */
	struct vm_page *pg;
	int result;

	result = 0;		/* XXX shut up gcc */
	uvmexp.fltanget++;
        /* bump rusage counters */
	if (anon->an_page)
		curproc->p_ru.ru_minflt++;
	else
		curproc->p_ru.ru_majflt++;

	/* 
	 * loop until we get it, or fail.
	 */

	while (1) {

		we_own = FALSE;		/* TRUE if we set PG_BUSY on a page */
		pg = anon->an_page;

		/*
		 * if there is a resident page and it is loaned, then anon
		 * may not own it.   call out to uvm_anon_lockpage() to ensure
		 * the real owner of the page has been identified and locked.
		 */

		if (pg && pg->loan_count)
			pg = uvm_anon_lockloanpg(anon);

		/*
		 * page there?   make sure it is not busy/released.
		 */

		if (pg) {

			/*
			 * at this point, if the page has a uobject [meaning
			 * we have it on loan], then that uobject is locked
			 * by us!   if the page is busy, we drop all the
			 * locks (including uobject) and try again.
			 */

			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0) {
				return (VM_PAGER_OK);
			}
			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
			uvmexp.fltpgwait++;

			/*
			 * the last unlock must be an atomic unlock+wait on
			 * the owner of page
			 */
			if (pg->uobject) {	/* owner is uobject ? */
				uvmfault_unlockall(ufi, amap, NULL, anon);
				UVM_UNLOCK_AND_WAIT(pg,
				    &pg->uobject->vmobjlock,
				    FALSE, "anonget1",0);
			} else {
				/* anon owns page */
				uvmfault_unlockall(ufi, amap, NULL, NULL);
				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
				    "anonget2",0);
			}
			/* ready to relock and try again */

		} else {
		
			/*
			 * no page, we must try and bring it in.
			 */
			pg = uvm_pagealloc(NULL, 0, anon, 0);

			if (pg == NULL) {		/* out of RAM.  */

				uvmfault_unlockall(ufi, amap, NULL, anon);
				uvmexp.fltnoram++;
				uvm_wait("flt_noram1");
				/* ready to relock and try again */

			} else {
	
				/* we set the PG_BUSY bit */
				we_own = TRUE;	
				uvmfault_unlockall(ufi, amap, NULL, anon);

				/*
				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
				 * page into the uvm_swap_get function with
				 * all data structures unlocked.  note that
				 * it is ok to read an_swslot here because
				 * we hold PG_BUSY on the page.
				 */
				uvmexp.pageins++;
				result = uvm_swap_get(pg, anon->an_swslot,
				    PGO_SYNCIO);

				/*
				 * we clean up after the i/o below in the
				 * "we_own" case
				 */
				/* ready to relock and try again */
			}
		}

		/*
		 * now relock and try again
		 */

		locked = uvmfault_relock(ufi);
		if (locked || we_own)
			simple_lock(&anon->an_lock);

		/*
		 * if we own the page (i.e. we set PG_BUSY), then we need
		 * to clean up after the I/O. there are three cases to
		 * consider:
		 *   [1] page released during I/O: free anon and ReFault.
		 *   [2] I/O not OK.   free the page and cause the fault 
		 *       to fail.
		 *   [3] I/O OK!   activate the page and sync with the
		 *       non-we_own case (i.e. drop anon lock if not locked).
		 */
		
		if (we_own) {

			if (pg->pg_flags & PG_WANTED) {
				/* still holding object lock */
				wakeup(pg);	
			}
			/* un-busy! */
			atomic_clearbits_int(&pg->pg_flags,
			    PG_WANTED|PG_BUSY|PG_FAKE);
			UVM_PAGE_OWN(pg, NULL);

			/* 
			 * if we were RELEASED during I/O, then our anon is
			 * no longer part of an amap.   we need to free the
			 * anon and try again.
			 */
			if (pg->pg_flags & PG_RELEASED) {
				pmap_page_protect(pg, VM_PROT_NONE);
				simple_unlock(&anon->an_lock);
				uvm_anfree(anon);	/* frees page for us */
				if (locked)
					uvmfault_unlockall(ufi, amap, NULL,
							   NULL);
				uvmexp.fltpgrele++;
				return (VM_PAGER_REFAULT);	/* refault! */
			}

			if (result != VM_PAGER_OK) {
				KASSERT(result != VM_PAGER_PEND);

				/* remove page from anon */
				anon->an_page = NULL;

				/*
				 * remove the swap slot from the anon
				 * and mark the anon as having no real slot.
				 * don't free the swap slot, thus preventing
				 * it from being used again.
				 */
				uvm_swap_markbad(anon->an_swslot, 1);
				anon->an_swslot = SWSLOT_BAD;

				/*
				 * note: page was never !PG_BUSY, so it
				 * can't be mapped and thus no need to
				 * pmap_page_protect it...
				 */
				uvm_lock_pageq();
				uvm_pagefree(pg);
				uvm_unlock_pageq();

				if (locked)
					uvmfault_unlockall(ufi, amap, NULL,
					    anon);
				else
					simple_unlock(&anon->an_lock);
				return (VM_PAGER_ERROR);
			}
			
			/*
			 * must be OK, clear modify (already PG_CLEAN)
			 * and activate
			 */
			pmap_clear_modify(pg);
			uvm_lock_pageq();
			uvm_pageactivate(pg);
			uvm_unlock_pageq();
			if (!locked)
				simple_unlock(&anon->an_lock);
		}

		/*
		 * we were not able to relock.   restart fault.
		 */

		if (!locked)
			return (VM_PAGER_REFAULT);

		/*
		 * verify no one has touched the amap and moved the anon on us.
		 */

		if (ufi != NULL &&
		    amap_lookup(&ufi->entry->aref, 
				ufi->orig_rvaddr - ufi->entry->start) != anon) {
			
			uvmfault_unlockall(ufi, amap, NULL, anon);
			return (VM_PAGER_REFAULT);
		}
			
		/*
		 * try it again! 
		 */

		uvmexp.fltanretry++;
		continue;

	} /* while (1) */

	/*NOTREACHED*/
}
Ejemplo n.º 8
0
int
uvm_objwire(struct uvm_object *uobj, off_t start, off_t end,
    struct pglist *pageq)
{
	int i, npages, error;
	struct vm_page *pgs[FETCH_PAGECOUNT];
	off_t offset = start, left;

	left = (end - start) >> PAGE_SHIFT;

	mtx_enter(&uobj->vmobjlock);
	while (left) {

		npages = MIN(FETCH_PAGECOUNT, left);

		/* Get the pages */
		memset(pgs, 0, sizeof(pgs));
		error = (*uobj->pgops->pgo_get)(uobj, offset, pgs, &npages, 0,
			VM_PROT_READ | VM_PROT_WRITE, UVM_ADV_SEQUENTIAL,
			PGO_ALLPAGES | PGO_SYNCIO);

		if (error)
			goto error;

		mtx_enter(&uobj->vmobjlock);
		for (i = 0; i < npages; i++) {

			KASSERT(pgs[i] != NULL);
			KASSERT(!(pgs[i]->pg_flags & PG_RELEASED));

#if 0
			/*
			 * Loan break
			 */
			if (pgs[i]->loan_count) {
				while (pgs[i]->loan_count) {
					pg = uvm_loanbreak(pgs[i]);
					if (!pg) {
						mtx_leave(&uobj->vmobjlock);
						uvm_wait("uobjwirepg");
						mtx_enter(&uobj->vmobjlock);
						continue;
					}
				}
				pgs[i] = pg;
			}
#endif

			if (pgs[i]->pg_flags & PQ_AOBJ) {
				atomic_clearbits_int(&pgs[i]->pg_flags,
				    PG_CLEAN);
				uao_dropswap(uobj, i);
			}
		}

		/* Wire the pages */
		uvm_lock_pageq();
		for (i = 0; i < npages; i++) {
			uvm_pagewire(pgs[i]);
			if (pageq != NULL)
				TAILQ_INSERT_TAIL(pageq, pgs[i], pageq);
		}
		uvm_unlock_pageq();

		/* Unbusy the pages */
		uvm_page_unbusy(pgs, npages);

		left -= npages;
		offset += (off_t)npages << PAGE_SHIFT;
	}
	mtx_leave(&uobj->vmobjlock);

	return 0;

error:
	/* Unwire the pages which have been wired */
	uvm_objunwire(uobj, start, offset);

	return error;
}
Ejemplo n.º 9
0
vaddr_t
uvm_km_alloc1(struct vm_map *map, vsize_t size, vsize_t align, boolean_t zeroit)
{
	vaddr_t kva, loopva;
	voff_t offset;
	struct vm_page *pg;
	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);

	UVMHIST_LOG(maphist,"(map=%p, size=0x%lx)", map, size,0,0);
	KASSERT(vm_map_pmap(map) == pmap_kernel());

	size = round_page(size);
	kva = vm_map_min(map);		/* hint */

	/*
	 * allocate some virtual space
	 */

	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
	    UVM_INH_NONE, UVM_ADV_RANDOM, 0)) != 0)) {
		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
		return(0);
	}

	/*
	 * recover object offset from virtual address
	 */

	offset = kva - vm_map_min(kernel_map);
	UVMHIST_LOG(maphist,"  kva=0x%lx, offset=0x%lx", kva, offset,0,0);

	/*
	 * now allocate the memory.  we must be careful about released pages.
	 */

	loopva = kva;
	while (size) {
		simple_lock(&uvm.kernel_object->vmobjlock);
		pg = uvm_pagelookup(uvm.kernel_object, offset);

		/*
		 * if we found a page in an unallocated region, it must be
		 * released
		 */
		if (pg) {
			if ((pg->pg_flags & PG_RELEASED) == 0)
				panic("uvm_km_alloc1: non-released page");
			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
			    FALSE, "km_alloc", 0);
			continue;   /* retry */
		}
		
		/* allocate ram */
		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
		if (pg) {
			atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
			UVM_PAGE_OWN(pg, NULL);
		}
		simple_unlock(&uvm.kernel_object->vmobjlock);
		if (__predict_false(pg == NULL)) {
			if (curproc == uvm.pagedaemon_proc) {
				/*
				 * It is unfeasible for the page daemon to
				 * sleep for memory, so free what we have
				 * allocated and fail.
				 */
				uvm_unmap(map, kva, loopva - kva);
				return (NULL);
			} else {
				uvm_wait("km_alloc1w");	/* wait for memory */
				continue;
			}
		}

		/*
		 * map it in; note we're never called with an intrsafe
		 * object, so we always use regular old pmap_enter().
		 */
		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);

		loopva += PAGE_SIZE;
		offset += PAGE_SIZE;
		size -= PAGE_SIZE;
	}
	pmap_update(map->pmap);
	
	/*
	 * zero on request (note that "size" is now zero due to the above loop
	 * so we need to subtract kva from loopva to reconstruct the size).
	 */

	if (zeroit)
		memset((caddr_t)kva, 0, loopva - kva);

	UVMHIST_LOG(maphist,"<- done (kva=0x%lx)", kva,0,0,0);
	return(kva);
}
Ejemplo n.º 10
0
vaddr_t
uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj, vsize_t size,
    int flags)
{
	vaddr_t kva, loopva;
	voff_t offset;
	struct vm_page *pg;
	int mapflags;
	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);

	UVMHIST_LOG(maphist,"  (map=%p, obj=%p, size=0x%lx, flags=%d)",
		    map, obj, size, flags);
	KASSERT(vm_map_pmap(map) == pmap_kernel());
	/*
	 * we cannot yet make pmap_enter() not sleep
	 * and thus demand that we are called with NOWAIT in that case
	 */
	KASSERT(!((flags & UVM_KMF_NOWAIT) && obj));

	/*
	 * setup for call
	 */

	mapflags = flags & UVM_KMF_NOWAIT? UVM_FLAG_NOWAIT : 0;
	mapflags |= flags & UVM_KMF_TRYLOCK;

	size = round_page(size);
	kva = vm_map_min(map);	/* hint */

	/*
	 * allocate some virtual space
	 */

	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
	    0, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
	    UVM_ADV_RANDOM, mapflags)) != 0)) {
		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
		return(0);
	}

	/*
	 * if all we wanted was VA, return now
	 */

	if (flags & UVM_KMF_VALLOC) {
		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%lx)", kva,0,0,0);
		return(kva);
	}

	/*
	 * recover object offset from virtual address
	 */

	if (obj != NULL)
		offset = kva - vm_map_min(kernel_map);
	else
		offset = 0;

	UVMHIST_LOG(maphist, "  kva=0x%lx, offset=0x%lx", kva, offset,0,0);

	/*
	 * now allocate and map in the memory... note that we are the only ones
	 * whom should ever get a handle on this area of VM.
	 */

	loopva = kva;
	while (loopva != kva + size) {
		pg = uvm_pagealloc(obj, offset, NULL, 0);
		if (pg) {
			atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
			UVM_PAGE_OWN(pg, NULL);
		}
		
		if (__predict_false(pg == NULL)) {
			if ((flags & UVM_KMF_NOWAIT) ||
			    ((flags & UVM_KMF_CANFAIL) &&
			    uvmexp.swpgonly == uvmexp.swpages)) {
				/* free everything! */
				uvm_unmap(map, kva, kva + size);
				return (0);
			} else {
				uvm_wait("km_getwait2");	/* sleep here */
				continue;
			}
		}
		
		/*
		 * map it in: note that we call pmap_enter with the map and
		 * object unlocked in case we are kmem_map.
		 *
		 * pager mappings that must not sleep here will incidently
		 * be installed using pmap_kenter_pa() and thus not sleep!
		 */

		if (obj == NULL) {
			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
			    UVM_PROT_RW);
		} else {
			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
			    UVM_PROT_RW,
			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
		}
		loopva += PAGE_SIZE;
		offset += PAGE_SIZE;
	}
	pmap_update(pmap_kernel());

	UVMHIST_LOG(maphist,"<- done (kva=0x%lx)", kva,0,0,0);
	return(kva);
}