SteppableLinearSolver::SteppableLinearSolver(int n_, implicitMatrix *A_, const HB_Precond* P_, Areal x_[], Areal b_[], Areal epsilon_) : n(n_), A(A_), P(P_), x(x_), b(b_), epsilon(epsilon_) { r = (Areal *) malloc(sizeof(Areal) * n); d = (Areal *) malloc(sizeof(Areal) * n); t = (Areal *) malloc(sizeof(Areal) * n); temp = (Areal *) malloc(sizeof(Areal) * n); //vecAssign(n, x, b); printf("starting conjugate gradient with %d variables\n",n); vecAssign(n, r, b); A->matVecMult(x, temp); vecDiffEqual(n, r, temp); rSqrLen = vecSqrLen(n, r); printf("initial error %f\n",rSqrLen); vecAssign(n, d, r); i = 0; if (rSqrLen > epsilon) _done = false; else _done = true; }
void SteppableLinearSolver::takeOneStep() { if (_done) return; ++i; A->matVecMult(d, t); u = vecDot(n, d, t); if (u == 0) { printf("(SolveConjGrad) d'Ad = 0\n"); _done = true; return; } // How far should we go? alpha = rSqrLen / u; //printf("here %f %f\n",rSqrLen, u); // Take a step along direction d vecAssign(n, temp, d); vecTimesScalar(n, temp, alpha); vecAddEqual(n, x, temp); //printf("next length %f\n",vecSqrLen(n,x)); if (i & 0x3F) { vecAssign(n, temp, t); vecTimesScalar(n, temp, alpha); vecDiffEqual(n, r, temp); } else { // For stability, correct r every 64th iteration vecAssign(n, r, b); A->matVecMult(x, temp); vecDiffEqual(n, r, temp); } rSqrLenOld = rSqrLen; rSqrLen = vecSqrLen(n,r); // Converged! Let's get out of here if (rSqrLen <= epsilon) { _done = true; return; } else { //printf("Iteration %d, error %f\n",i, rSqrLen); //fflush(fp); } vecAssign(n,temp,r); P->precondVec(temp); rSqrLen = vecDot(n,temp,r); // Change direction: d = r + beta * d beta = rSqrLen/rSqrLenOld; vecTimesScalar(n, d, beta); vecAddEqual(n, d, temp); }
double ConjGrad(int n, implicitMatrix *A, double x[], double b[], double epsilon, // how low should we go? int *steps) { int i, iMax; double alpha, beta, rSqrLen, rSqrLenOld, u; double *r = (double *) malloc(sizeof(double) * n); double *d = (double *) malloc(sizeof(double) * n); double *t = (double *) malloc(sizeof(double) * n); double *temp = (double *) malloc(sizeof(double) * n); vecAssign(n, x, b); vecAssign(n, r, b); A->matVecMult(x, temp); vecDiffEqual(n, r, temp); rSqrLen = vecSqrLen(n, r); vecAssign(n, d, r); i = 0; if (*steps) iMax = *steps; else iMax = MAX_STEPS; if (rSqrLen > epsilon) while (i < iMax) { i++; A->matVecMult(d, t); u = vecDot(n, d, t); if (u == 0) { printf("(SolveConjGrad) d'Ad = 0\n"); break; } // How far should we go? alpha = rSqrLen / u; // Take a step along direction d vecAssign(n, temp, d); vecTimesScalar(n, temp, alpha); vecAddEqual(n, x, temp); if (i & 0x3F) { vecAssign(n, temp, t); vecTimesScalar(n, temp, alpha); vecDiffEqual(n, r, temp); } else { // For stability, correct r every 64th iteration vecAssign(n, r, b); A->matVecMult(x, temp); vecDiffEqual(n, r, temp); } rSqrLenOld = rSqrLen; rSqrLen = vecSqrLen(n, r); // Converged! Let's get out of here if (rSqrLen <= epsilon) break; // Change direction: d = r + beta * d beta = rSqrLen/rSqrLenOld; vecTimesScalar(n, d, beta); vecAddEqual(n, d, r); } // free memory free(r); free(d); free(t); free(temp); *steps = i; return(rSqrLen); }