Ejemplo n.º 1
0
/**
 * Visits a given room. Updates any calculations. Tries to find all possible rooms
 * to visit and will go to them.
 */
void go(Room *r, Sphere *os, Direction d)
{
    // copy the sphere object. this allows us to easily branch off.
    Sphere *s = Sphere_copy(os);

    Sphere_moved(s, r, d);

    // the puzzle requires you to solve it in under 15 steps (it may be less, but I know
    // that 15 doesn't work).
    if (s->steps < PATH_LIMIT) {
        // do the maths
        handle_symbol(r, s);

        // value must remain positive. if we hit zero or go negative, the path is bad
        if (s->value > 0) {
            // if we are in the final room, see if we have a good solution.
            if (Room_is_vault(r)) {
                verify_solution(s);
            }
            // try to find all available paths and visit them.
            else {
                visit_paths(r, s);
            }
        }
    }

    Sphere_destroy(s);
}
Ejemplo n.º 2
0
int
driver(const Box& global_box, Box& my_box,
       Parameters& params, YAML_Doc& ydoc)
{
  int global_nx = global_box[0][1];
  int global_ny = global_box[1][1];
  int global_nz = global_box[2][1];

  int numprocs = 1, myproc = 0;
#ifdef HAVE_MPI
  MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
  MPI_Comm_rank(MPI_COMM_WORLD, &myproc);
#endif

  if (params.load_imbalance > 0) {
    add_imbalance<GlobalOrdinal>(global_box, my_box, params.load_imbalance, ydoc);
  }

  float largest_imbalance = 0, std_dev = 0;
  compute_imbalance<GlobalOrdinal>(global_box, my_box, largest_imbalance,
                                   std_dev, ydoc, true);


  //Create a representation of the mesh:
  //Note that 'simple_mesh_description' is a virtual or conceptual
  //mesh that doesn't actually store mesh data.
#ifdef TIME_IT
  if (myproc==0) {
    std::cout.width(30);
    std::cout << "creating/filling mesh...";
    std::cout.flush();
  }
#endif

  timer_type t_start = mytimer();
  timer_type t0 = mytimer();

  simple_mesh_description<GlobalOrdinal> mesh(global_box, my_box);

  timer_type mesh_fill = mytimer() - t0;
  timer_type t_total = mytimer() - t_start;

#ifdef TIME_IT
  if (myproc==0) {
    std::cout << mesh_fill << "s, total time: " << t_total << std::endl;
  }
#endif

  //next we will generate the matrix structure.

  //Declare matrix object:

#if defined(MINIFE_ELL_MATRIX)
  typedef ELLMatrix<Scalar,LocalOrdinal,GlobalOrdinal> MatrixType;
#else
  typedef CSRMatrix<Scalar,LocalOrdinal,GlobalOrdinal> MatrixType;
#endif

  MatrixType A;

  timer_type gen_structure;
  RUN_TIMED_FUNCTION("generating matrix structure...",
                     generate_matrix_structure(mesh, A),
                     gen_structure, t_total);

  GlobalOrdinal local_nrows = A.rows.size();
  GlobalOrdinal my_first_row = local_nrows > 0 ? A.rows[0] : -1;

  Vector<Scalar,LocalOrdinal,GlobalOrdinal> b(my_first_row, local_nrows);
  Vector<Scalar,LocalOrdinal,GlobalOrdinal> x(my_first_row, local_nrows);

  //Assemble finite-element sub-matrices and sub-vectors into the global
  //linear system:

  timer_type fe_assembly;
  RUN_TIMED_FUNCTION("assembling FE data...",
                     assemble_FE_data(mesh, A, b, params),
                     fe_assembly, t_total);

  if (myproc == 0) {
    ydoc.add("Matrix structure generation","");
    ydoc.get("Matrix structure generation")->add("Mat-struc-gen Time",gen_structure);
    ydoc.add("FE assembly","");
    ydoc.get("FE assembly")->add("FE assembly Time",fe_assembly);
  }

#ifdef MINIFE_DEBUG
  write_matrix("A_prebc.mtx", A);
  write_vector("b_prebc.vec", b);
#endif

  //Now apply dirichlet boundary-conditions
  //(Apply the 0-valued surfaces first, then the 1-valued surface last.)

  timer_type dirbc_time;
  RUN_TIMED_FUNCTION("imposing Dirichlet BC...",
            impose_dirichlet(0.0, A, b, global_nx+1, global_ny+1, global_nz+1, mesh.bc_rows_0), dirbc_time, t_total);
  RUN_TIMED_FUNCTION("imposing Dirichlet BC...",
            impose_dirichlet(1.0, A, b, global_nx+1, global_ny+1, global_nz+1, mesh.bc_rows_1), dirbc_time, t_total);

#ifdef MINIFE_DEBUG
  write_matrix("A.mtx", A);
  write_vector("b.vec", b);
#endif

  //Transform global indices to local, set up communication information:

  timer_type make_local_time;
  RUN_TIMED_FUNCTION("making matrix indices local...",
                     make_local_matrix(A),
                     make_local_time, t_total);

#ifdef MINIFE_DEBUG
  write_matrix("A_local.mtx", A);
  write_vector("b_local.vec", b);
#endif

  size_t global_nnz = compute_matrix_stats(A, myproc, numprocs, ydoc);

  //Prepare to perform conjugate gradient solve:

  LocalOrdinal max_iters = 200;
  LocalOrdinal num_iters = 0;
  typedef typename TypeTraits<Scalar>::magnitude_type magnitude;
  magnitude rnorm = 0;
  magnitude tol = std::numeric_limits<magnitude>::epsilon();

  timer_type cg_times[NUM_TIMERS];

  typedef Vector<Scalar,LocalOrdinal,GlobalOrdinal> VectorType;

  t_total = mytimer() - t_start;

  bool matvec_with_comm_overlap = params.mv_overlap_comm_comp==1;

  int verify_result = 0;

#if MINIFE_KERNELS != 0
  if (myproc==0) {
    std::cout.width(30);
    std::cout << "Starting kernel timing loops ..." << std::endl;
  }

  max_iters = 500;
  x.coefs[0] = 0.9;
  if (matvec_with_comm_overlap) {
    time_kernels(A, b, x, matvec_overlap<MatrixType,VectorType>(), max_iters, rnorm, cg_times);
  }
  else {
    time_kernels(A, b, x, matvec_std<MatrixType,VectorType>(), max_iters, rnorm, cg_times);
  }
  num_iters = max_iters;
  std::string title("Kernel timings");
#else
  if (myproc==0) {
    std::cout << "Starting CG solver ... " << std::endl;
  }

  if (matvec_with_comm_overlap) {
#ifdef MINIFE_CSR_MATRIX
    rearrange_matrix_local_external(A);
    cg_solve(A, b, x, matvec_overlap<MatrixType,VectorType>(), max_iters, tol,
           num_iters, rnorm, cg_times);
#else
    std::cout << "ERROR, matvec with overlapping comm/comp only works with CSR matrix."<<std::endl;
#endif
  }
  else {
    cg_solve(A, b, x, matvec_std<MatrixType,VectorType>(), max_iters, tol,
           num_iters, rnorm, cg_times);
    if (myproc == 0) {
      std::cout << "Final Resid Norm: " << rnorm << std::endl;
    }

    if (params.verify_solution > 0) {
      double tolerance = 0.06;
      bool verify_whole_domain = false;
  #ifdef MINIFE_DEBUG
      verify_whole_domain = true;
  #endif
      if (myproc == 0) {
        if (verify_whole_domain) std::cout << "verifying solution..." << std::endl;
        else std::cout << "verifying solution at ~ (0.5, 0.5, 0.5) ..." << std::endl;
      }
      verify_result = verify_solution(mesh, x, tolerance, verify_whole_domain);
    }
  }

#ifdef MINIFE_DEBUG
  write_vector("x.vec", x);
#endif
  std::string title("CG solve");
#endif

  if (myproc == 0) {
    ydoc.get("Global Run Parameters")->add("ScalarType",TypeTraits<Scalar>::name());
    ydoc.get("Global Run Parameters")->add("GlobalOrdinalType",TypeTraits<GlobalOrdinal>::name());
    ydoc.get("Global Run Parameters")->add("LocalOrdinalType",TypeTraits<LocalOrdinal>::name());
    ydoc.add(title,"");
    ydoc.get(title)->add("Iterations",num_iters);
    ydoc.get(title)->add("Final Resid Norm",rnorm);

    GlobalOrdinal global_nrows = global_nx;
    global_nrows *= global_ny*global_nz;

    //flops-per-mv, flops-per-dot, flops-per-waxpy:
    double mv_flops = global_nnz*2.0;
    double dot_flops = global_nrows*2.0;
    double waxpy_flops = global_nrows*3.0;

#if MINIFE_KERNELS == 0
//if MINIFE_KERNELS == 0 then we did a CG solve, and in that case
//there were num_iters+1 matvecs, num_iters*2 dots, and num_iters*3+2 waxpys.
    mv_flops *= (num_iters+1);
    dot_flops *= (2*num_iters);
    waxpy_flops *= (3*num_iters+2);
#else
//if MINIFE_KERNELS then we did one of each operation per iteration.
    mv_flops *= num_iters;
    dot_flops *= num_iters;
    waxpy_flops *= num_iters;
#endif

    double total_flops = mv_flops + dot_flops + waxpy_flops;

    double mv_mflops = -1;
    if (cg_times[MATVEC] > 1.e-4)
      mv_mflops = 1.e-6 * (mv_flops/cg_times[MATVEC]);

    double dot_mflops = -1;
    if (cg_times[DOT] > 1.e-4)
      dot_mflops = 1.e-6 * (dot_flops/cg_times[DOT]);

    double waxpy_mflops = -1;
    if (cg_times[WAXPY] > 1.e-4)
      waxpy_mflops = 1.e-6 *  (waxpy_flops/cg_times[WAXPY]);

    double total_mflops = -1;
    if (cg_times[TOTAL] > 1.e-4)
      total_mflops = 1.e-6 * (total_flops/cg_times[TOTAL]);

    ydoc.get(title)->add("WAXPY Time",cg_times[WAXPY]);
    ydoc.get(title)->add("WAXPY Flops",waxpy_flops);
    if (waxpy_mflops >= 0)
      ydoc.get(title)->add("WAXPY Mflops",waxpy_mflops);
    else
      ydoc.get(title)->add("WAXPY Mflops","inf");

    ydoc.get(title)->add("DOT Time",cg_times[DOT]);
    ydoc.get(title)->add("DOT Flops",dot_flops);
    if (dot_mflops >= 0)
      ydoc.get(title)->add("DOT Mflops",dot_mflops);
    else
      ydoc.get(title)->add("DOT Mflops","inf");

    ydoc.get(title)->add("MATVEC Time",cg_times[MATVEC]);
    ydoc.get(title)->add("MATVEC Flops",mv_flops);
    if (mv_mflops >= 0)
      ydoc.get(title)->add("MATVEC Mflops",mv_mflops);
    else
      ydoc.get(title)->add("MATVEC Mflops","inf");

#ifdef MINIFE_FUSED
    ydoc.get(title)->add("MATVECDOT Time",cg_times[MATVECDOT]);
    ydoc.get(title)->add("MATVECDOT Flops",mv_flops);
    if (mv_mflops >= 0)
      ydoc.get(title)->add("MATVECDOT Mflops",mv_mflops);
    else
      ydoc.get(title)->add("MATVECDOT Mflops","inf");
#endif

#if MINIFE_KERNELS == 0
    ydoc.get(title)->add("Total","");
    ydoc.get(title)->get("Total")->add("Total CG Time",cg_times[TOTAL]);
    ydoc.get(title)->get("Total")->add("Total CG Flops",total_flops);
    if (total_mflops >= 0)
      ydoc.get(title)->get("Total")->add("Total CG Mflops",total_mflops);
    else
      ydoc.get(title)->get("Total")->add("Total CG Mflops","inf");
    ydoc.get(title)->add("Time per iteration",cg_times[TOTAL]/num_iters);
#endif
  }

  return verify_result;
}