Ejemplo n.º 1
0
void nfs_dq_release_inode(struct inode *inode)
{
	if (inode) {
		dprintk("NFS: DQ release inode (ino: %ld)\n", inode->i_ino);
		vfs_dq_free_inode(inode);
		vfs_dq_drop(inode);
		inode->i_flags |= S_NOQUOTA;
		iput(inode);
	}
}
Ejemplo n.º 2
0
/* Added only to hook vfs_dq_free_inode. --ANK */
void nfs_dq_delete_inode(struct inode * inode)
{
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	nfs_dq_update_shrink(inode, inode->i_blocks);
	nfs_dq_remove_from_prealloc_list(inode);
	dprintk("NFS: DQ delete inode (ino: %ld)\n", inode->i_ino);
	vfs_dq_free_inode(inode);
	vfs_dq_drop(inode);
	inode->i_flags |= S_NOQUOTA;

no_delete:
	clear_inode(inode);
}
Ejemplo n.º 3
0
/*
 * There are two policies for allocating an inode.  If the new inode is
 * a directory, then a forward search is made for a block group with both
 * free space and a low directory-to-inode ratio; if that fails, then of
 * the groups with above-average free space, that group with the fewest
 * directories already is chosen.
 *
 * For other inodes, search forward from the parent directory's block
 * group to find a free inode.
 */
struct inode *ext3_new_inode(handle_t *handle, struct inode * dir, int mode)
{
	struct super_block *sb;
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *bh2;
	int group;
	unsigned long ino = 0;
	struct inode * inode;
	struct ext3_group_desc * gdp = NULL;
	struct ext3_super_block * es;
	struct ext3_inode_info *ei;
	struct ext3_sb_info *sbi;
	int err = 0;
	struct inode *ret;
	int i;

	/* Cannot create files in a deleted directory */
	if (!dir || !dir->i_nlink)
		return ERR_PTR(-EPERM);

	sb = dir->i_sb;
	inode = new_inode(sb);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	ei = EXT3_I(inode);

	sbi = EXT3_SB(sb);
	es = sbi->s_es;
	if (S_ISDIR(mode)) {
		if (test_opt (sb, OLDALLOC))
			group = find_group_dir(sb, dir);
		else
			group = find_group_orlov(sb, dir);
	} else
		group = find_group_other(sb, dir);

	err = -ENOSPC;
	if (group == -1)
		goto out;

	for (i = 0; i < sbi->s_groups_count; i++) {
		err = -EIO;

		gdp = ext3_get_group_desc(sb, group, &bh2);
		if (!gdp)
			goto fail;

		brelse(bitmap_bh);
		bitmap_bh = read_inode_bitmap(sb, group);
		if (!bitmap_bh)
			goto fail;

		ino = 0;

repeat_in_this_group:
		ino = ext3_find_next_zero_bit((unsigned long *)
				bitmap_bh->b_data, EXT3_INODES_PER_GROUP(sb), ino);
		if (ino < EXT3_INODES_PER_GROUP(sb)) {

			BUFFER_TRACE(bitmap_bh, "get_write_access");
			err = ext3_journal_get_write_access(handle, bitmap_bh);
			if (err)
				goto fail;

			if (!ext3_set_bit_atomic(sb_bgl_lock(sbi, group),
						ino, bitmap_bh->b_data)) {
				/* we won it */
				BUFFER_TRACE(bitmap_bh,
					"call ext3_journal_dirty_metadata");
				err = ext3_journal_dirty_metadata(handle,
								bitmap_bh);
				if (err)
					goto fail;
				goto got;
			}
			/* we lost it */
			journal_release_buffer(handle, bitmap_bh);

			if (++ino < EXT3_INODES_PER_GROUP(sb))
				goto repeat_in_this_group;
		}

		/*
		 * This case is possible in concurrent environment.  It is very
		 * rare.  We cannot repeat the find_group_xxx() call because
		 * that will simply return the same blockgroup, because the
		 * group descriptor metadata has not yet been updated.
		 * So we just go onto the next blockgroup.
		 */
		if (++group == sbi->s_groups_count)
			group = 0;
	}
	err = -ENOSPC;
	goto out;

got:
	ino += group * EXT3_INODES_PER_GROUP(sb) + 1;
	if (ino < EXT3_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
		ext3_error (sb, "ext3_new_inode",
			    "reserved inode or inode > inodes count - "
			    "block_group = %d, inode=%lu", group, ino);
		err = -EIO;
		goto fail;
	}

	BUFFER_TRACE(bh2, "get_write_access");
	err = ext3_journal_get_write_access(handle, bh2);
	if (err) goto fail;
	spin_lock(sb_bgl_lock(sbi, group));
	le16_add_cpu(&gdp->bg_free_inodes_count, -1);
	if (S_ISDIR(mode)) {
		le16_add_cpu(&gdp->bg_used_dirs_count, 1);
	}
	spin_unlock(sb_bgl_lock(sbi, group));
	BUFFER_TRACE(bh2, "call ext3_journal_dirty_metadata");
	err = ext3_journal_dirty_metadata(handle, bh2);
	if (err) goto fail;

	percpu_counter_dec(&sbi->s_freeinodes_counter);
	if (S_ISDIR(mode))
		percpu_counter_inc(&sbi->s_dirs_counter);

	inode->i_uid = current_fsuid();
	if (test_opt (sb, GRPID))
		inode->i_gid = dir->i_gid;
	else if (dir->i_mode & S_ISGID) {
		inode->i_gid = dir->i_gid;
		if (S_ISDIR(mode))
			mode |= S_ISGID;
	} else
		inode->i_gid = current_fsgid();
	inode->i_mode = mode;

	inode->i_ino = ino;
	/* This is the optimal IO size (for stat), not the fs block size */
	inode->i_blocks = 0;
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;

	memset(ei->i_data, 0, sizeof(ei->i_data));
	ei->i_dir_start_lookup = 0;
	ei->i_disksize = 0;

	ei->i_flags =
		ext3_mask_flags(mode, EXT3_I(dir)->i_flags & EXT3_FL_INHERITED);
#ifdef EXT3_FRAGMENTS
	ei->i_faddr = 0;
	ei->i_frag_no = 0;
	ei->i_frag_size = 0;
#endif
	ei->i_file_acl = 0;
	ei->i_dir_acl = 0;
	ei->i_dtime = 0;
	ei->i_block_alloc_info = NULL;
	ei->i_block_group = group;

	ext3_set_inode_flags(inode);
	if (IS_DIRSYNC(inode))
		handle->h_sync = 1;
	if (insert_inode_locked(inode) < 0) {
		err = -EINVAL;
		goto fail_drop;
	}
	spin_lock(&sbi->s_next_gen_lock);
	inode->i_generation = sbi->s_next_generation++;
	spin_unlock(&sbi->s_next_gen_lock);

	ei->i_state = EXT3_STATE_NEW;
	ei->i_extra_isize =
		(EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) ?
		sizeof(struct ext3_inode) - EXT3_GOOD_OLD_INODE_SIZE : 0;

	ret = inode;
	if (vfs_dq_alloc_inode(inode)) {
		err = -EDQUOT;
		goto fail_drop;
	}

	err = ext3_init_acl(handle, inode, dir);
	if (err)
		goto fail_free_drop;

	err = ext3_init_security(handle,inode, dir);
	if (err)
		goto fail_free_drop;

	err = ext3_mark_inode_dirty(handle, inode);
	if (err) {
		ext3_std_error(sb, err);
		goto fail_free_drop;
	}

	ext3_debug("allocating inode %lu\n", inode->i_ino);
	goto really_out;
fail:
	ext3_std_error(sb, err);
out:
	iput(inode);
	ret = ERR_PTR(err);
really_out:
	brelse(bitmap_bh);
	return ret;

fail_free_drop:
	vfs_dq_free_inode(inode);

fail_drop:
	vfs_dq_drop(inode);
	inode->i_flags |= S_NOQUOTA;
	inode->i_nlink = 0;
	unlock_new_inode(inode);
	iput(inode);
	brelse(bitmap_bh);
	return ERR_PTR(err);
}
Ejemplo n.º 4
0
/*
 * NOTE! When we get the inode, we're the only people
 * that have access to it, and as such there are no
 * race conditions we have to worry about. The inode
 * is not on the hash-lists, and it cannot be reached
 * through the filesystem because the directory entry
 * has been deleted earlier.
 *
 * HOWEVER: we must make sure that we get no aliases,
 * which means that we have to call "clear_inode()"
 * _before_ we mark the inode not in use in the inode
 * bitmaps. Otherwise a newly created file might use
 * the same inode number (not actually the same pointer
 * though), and then we'd have two inodes sharing the
 * same inode number and space on the harddisk.
 */
void ext3_free_inode (handle_t *handle, struct inode * inode)
{
	struct super_block * sb = inode->i_sb;
	int is_directory;
	unsigned long ino;
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *bh2;
	unsigned long block_group;
	unsigned long bit;
	struct ext3_group_desc * gdp;
	struct ext3_super_block * es;
	struct ext3_sb_info *sbi;
	int fatal = 0, err;

	if (atomic_read(&inode->i_count) > 1) {
		printk ("ext3_free_inode: inode has count=%d\n",
					atomic_read(&inode->i_count));
		return;
	}
	if (inode->i_nlink) {
		printk ("ext3_free_inode: inode has nlink=%d\n",
			inode->i_nlink);
		return;
	}
	if (!sb) {
		printk("ext3_free_inode: inode on nonexistent device\n");
		return;
	}
	sbi = EXT3_SB(sb);

	ino = inode->i_ino;
	ext3_debug ("freeing inode %lu\n", ino);

	/*
	 * Note: we must free any quota before locking the superblock,
	 * as writing the quota to disk may need the lock as well.
	 */
	vfs_dq_init(inode);
	ext3_xattr_delete_inode(handle, inode);
	vfs_dq_free_inode(inode);
	vfs_dq_drop(inode);

	is_directory = S_ISDIR(inode->i_mode);

	/* Do this BEFORE marking the inode not in use or returning an error */
	clear_inode (inode);

	es = EXT3_SB(sb)->s_es;
	if (ino < EXT3_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
		ext3_error (sb, "ext3_free_inode",
			    "reserved or nonexistent inode %lu", ino);
		goto error_return;
	}
	block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
	bit = (ino - 1) % EXT3_INODES_PER_GROUP(sb);
	bitmap_bh = read_inode_bitmap(sb, block_group);
	if (!bitmap_bh)
		goto error_return;

	BUFFER_TRACE(bitmap_bh, "get_write_access");
	fatal = ext3_journal_get_write_access(handle, bitmap_bh);
	if (fatal)
		goto error_return;

	/* Ok, now we can actually update the inode bitmaps.. */
	if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
					bit, bitmap_bh->b_data))
		ext3_error (sb, "ext3_free_inode",
			      "bit already cleared for inode %lu", ino);
	else {
		gdp = ext3_get_group_desc (sb, block_group, &bh2);

		BUFFER_TRACE(bh2, "get_write_access");
		fatal = ext3_journal_get_write_access(handle, bh2);
		if (fatal) goto error_return;

		if (gdp) {
			spin_lock(sb_bgl_lock(sbi, block_group));
			le16_add_cpu(&gdp->bg_free_inodes_count, 1);
			if (is_directory)
				le16_add_cpu(&gdp->bg_used_dirs_count, -1);
			spin_unlock(sb_bgl_lock(sbi, block_group));
			percpu_counter_inc(&sbi->s_freeinodes_counter);
			if (is_directory)
				percpu_counter_dec(&sbi->s_dirs_counter);

		}
		BUFFER_TRACE(bh2, "call ext3_journal_dirty_metadata");
		err = ext3_journal_dirty_metadata(handle, bh2);
		if (!fatal) fatal = err;
	}
	BUFFER_TRACE(bitmap_bh, "call ext3_journal_dirty_metadata");
	err = ext3_journal_dirty_metadata(handle, bitmap_bh);
	if (!fatal)
		fatal = err;

error_return:
	brelse(bitmap_bh);
	ext3_std_error(sb, fatal);
}
Ejemplo n.º 5
0
static int ocfs2_remove_inode(struct inode *inode,
			      struct buffer_head *di_bh,
			      struct inode *orphan_dir_inode,
			      struct buffer_head *orphan_dir_bh)
{
	int status;
	struct inode *inode_alloc_inode = NULL;
	struct buffer_head *inode_alloc_bh = NULL;
	handle_t *handle;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	struct ocfs2_dinode *di = (struct ocfs2_dinode *) di_bh->b_data;

	inode_alloc_inode =
		ocfs2_get_system_file_inode(osb, INODE_ALLOC_SYSTEM_INODE,
					    le16_to_cpu(di->i_suballoc_slot));
	if (!inode_alloc_inode) {
		status = -EEXIST;
		mlog_errno(status);
		goto bail;
	}

	mutex_lock(&inode_alloc_inode->i_mutex);
	status = ocfs2_inode_lock(inode_alloc_inode, &inode_alloc_bh, 1);
	if (status < 0) {
		mutex_unlock(&inode_alloc_inode->i_mutex);

		mlog_errno(status);
		goto bail;
	}

	handle = ocfs2_start_trans(osb, OCFS2_DELETE_INODE_CREDITS +
				   ocfs2_quota_trans_credits(inode->i_sb));
	if (IS_ERR(handle)) {
		status = PTR_ERR(handle);
		mlog_errno(status);
		goto bail_unlock;
	}

	status = ocfs2_orphan_del(osb, handle, orphan_dir_inode, inode,
				  orphan_dir_bh);
	if (status < 0) {
		mlog_errno(status);
		goto bail_commit;
	}

	/* set the inodes dtime */
	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
					 OCFS2_JOURNAL_ACCESS_WRITE);
	if (status < 0) {
		mlog_errno(status);
		goto bail_commit;
	}

	di->i_dtime = cpu_to_le64(CURRENT_TIME.tv_sec);
	di->i_flags &= cpu_to_le32(~(OCFS2_VALID_FL | OCFS2_ORPHANED_FL));

	status = ocfs2_journal_dirty(handle, di_bh);
	if (status < 0) {
		mlog_errno(status);
		goto bail_commit;
	}

	ocfs2_remove_from_cache(INODE_CACHE(inode), di_bh);
	vfs_dq_free_inode(inode);

	status = ocfs2_free_dinode(handle, inode_alloc_inode,
				   inode_alloc_bh, di);
	if (status < 0)
		mlog_errno(status);

bail_commit:
	ocfs2_commit_trans(osb, handle);
bail_unlock:
	ocfs2_inode_unlock(inode_alloc_inode, 1);
	mutex_unlock(&inode_alloc_inode->i_mutex);
	brelse(inode_alloc_bh);
bail:
	iput(inode_alloc_inode);

	return status;
}