Ejemplo n.º 1
0
static void draw(state_t * state, vx_world_t * world)
{
    // Draw from the vx shape library
    vx_buffer_add_back(vx_world_get_buffer(world, "fixed-cube"), vxo_chain(vxo_mat_translate3(3.0,0,0),
                       vxo_mat_scale(2),
                       vxo_box(vxo_mesh_style(vx_orange))));
    vx_buffer_swap(vx_world_get_buffer(world, "fixed-cube"));

    // Draw some text
    if (1) {
        vx_object_t *vt = vxo_text_create(VXO_TEXT_ANCHOR_LEFT, "<<right>>hello!\n<<serif-italic-4>>line 2\nfoo<<#ff0000>>red<<sansserif-bold-30,#0000ff80>>blue semi\n<<serif-italic-4>>foo bar baz");
        vx_buffer_t *vb = vx_world_get_buffer(world, "text");
        vx_buffer_add_back(vb, vt);
        vx_buffer_swap(vb);
    }

    // Draw a custom ellipse:
    {
        int npoints = 35;
        float points[npoints*3];
        for (int i = 0; i < npoints; i++) {
            float angle = 2*M_PI*i/npoints;

            float x = 5.0f*cosf(angle);
            float y = 8.0f*sinf(angle);
            float z = 0.0f;

            points[3*i + 0] = x;
            points[3*i + 1] = y;
            points[3*i + 2] = z;
        }

        vx_buffer_add_back(vx_world_get_buffer(world, "ellipse"), vxo_lines(vx_resc_copyf (points, npoints*3),
                           npoints, GL_LINE_LOOP,
                           vxo_lines_style(vx_purple, 1.0f) ));
        vx_buffer_swap(vx_world_get_buffer(world, "ellipse"));
    }

    // Draw a sin wave
    {
        int npoints = 100;
        float points[npoints*3];

        for (int i = 0; i < npoints; i++) {
            float angle = 2*M_PI*i/npoints;

            float x = i*.1;
            float y = sinf(angle);
            float z = 0.0f;

            points[3*i + 0] = x;
            points[3*i + 1] = y;
            points[3*i + 2] = z;
        }

        vx_buffer_add_back(vx_world_get_buffer(world, "sin"), vxo_points(vx_resc_copyf (points, npoints*3), npoints,
                           vxo_points_style(vx_purple, 10.0)));
        vx_buffer_swap(vx_world_get_buffer(world, "sin"));

    }

    // Draw a cos wave
    {
        int npoints = 100;
        float points[npoints*3];
        float colors[npoints*4];

        for (int i = 0; i < npoints; i++) {
            float angle = 2*M_PI*i/npoints;

            float x = i*.1;
            float y = cosf(angle);
            float z = 0.0f;

            points[3*i + 0] = x;
            points[3*i + 1] = y;
            points[3*i + 2] = z;

            float r = angle/(2*M_PI);
            float g = 0.3f;
            float b = 1.0f-(angle/(2*M_PI));

            colors[4*i + 0] = r;
            colors[4*i + 1] = g;
            colors[4*i + 2] = b;
            colors[4*i + 3] = 1.0f;

        }

        vx_buffer_add_back(vx_world_get_buffer(world, "cos"), vxo_points(vx_resc_copyf (points, npoints*3), npoints,
                           vxo_points_style_multi_colored(vx_resc_copyf(colors, npoints*4), 10.0)));
        vx_buffer_swap(vx_world_get_buffer(world, "cos"));

    }

    // Draw a rose
    if (1) {
        int npoints = 100;
        float points[npoints*3];
        float colors[npoints*4];
        int k = 3;

        for (int i = 0; i < npoints; i++) {
            float angle = M_PI*i/npoints; // [0, Pi] for Odd

            float x = cosf(k*angle)*sin(angle);
            float y = cosf(k*angle)*cos(angle);
            float z = 0.0f;

            points[3*i + 0] = x;
            points[3*i + 1] = y;
            points[3*i + 2] = z;

            float r = angle/(M_PI);
            float g = 1.0f-(angle/(M_PI));
            float b = 0.3f;

            colors[4*i + 0] = r;
            colors[4*i + 1] = g;
            colors[4*i + 2] = b;
            colors[4*i + 3] = 1.0f;

        }

        vx_buffer_add_back(vx_world_get_buffer(world, "rose"), vxo_lines(vx_resc_copyf (points, npoints*3), npoints,
                           GL_LINE_LOOP,
                           vxo_lines_style_multi_colored(vx_resc_copyf(colors, npoints*4), 1.0)));
        vx_buffer_swap(vx_world_get_buffer(world, "rose"));

    }


    if (1) { // draw a box with all the fixings
        vx_buffer_t * vb = vx_world_get_buffer(world, "rect");

        // should draw purple square, with green lines, all occluded by red corners.
        vx_buffer_add_back(vb, vxo_depth_test(0,vxo_chain(
                vxo_mat_translate2(-5,-5),
                vxo_rect(vxo_mesh_style(vx_purple),
                         vxo_lines_style(vx_green, 6.0f),
                         vxo_points_style(vx_red, 6.0f)))));
        vx_buffer_swap(vb);

    }

    // Draw a texture
    if (state->img != NULL) {
        image_u8_t * img = state->img;
        vx_object_t * o3 = vxo_image(vx_resc_copyub(img->buf, img->width*img->height*img->bpp),
                                     img->width, img->height, img->bpp == 4? GL_RGBA : GL_RGB, VXO_IMAGE_FLIPY);

        // pack the image into the unit square
        vx_buffer_t * vb = vx_world_get_buffer(world, "texture");
        vx_buffer_add_back(vb, vxo_chain(vxo_mat_scale3(1.0/img->width, 1.0/img->height, 1), o3));
        vx_buffer_swap(vb);
    }
}
Ejemplo n.º 2
0
Archivo: vx_demo.c Proyecto: DH-std/A3
static void draw(state_t * state, vx_world_t * world)
{
    if (1) {
        vx_buffer_add_back(vx_world_get_buffer(world, "grid"),
                           vxo_grid());
        vx_buffer_set_draw_order(vx_world_get_buffer(world, "grid"), -100);
        vx_buffer_swap(vx_world_get_buffer(world, "grid"));
    }

    // Draw from the vx shape library
    if (1) {
        vx_buffer_add_back(vx_world_get_buffer(world, "fixed-cube"),
                           vxo_chain(vxo_mat_translate3(3.0,0,0),
                                     vxo_mat_scale3(2,2,2),
                                     /* vxo_box(vxo_mesh_style(vx_orange)))); */
                                     vxo_box(vxo_mesh_style_fancy(vx_orange, vx_orange, vx_white, 1.0, 400.0, 2))));


        vx_buffer_add_back(vx_world_get_buffer(world, "fixed-cube"),
                           vxo_chain(vxo_mat_translate3(0,3.0,0),
                                     vxo_mat_scale3(1,1,1),
                                     vxo_depth_test(0,
                                                    vxo_box(vxo_mesh_style_solid(vx_green)))));
        vx_buffer_swap(vx_world_get_buffer(world, "fixed-cube"));
    }

    if (1) {
        float Tr = .2;
        float amb[] = {0.0,0.0,0.0};
        float diff[] = {0.0,0.0,0.0};
        float spec[] = {1.0,1.0,1.0};
        float specularity = 1.0;

        int type = 2;

        vx_buffer_add_back(vx_world_get_buffer(world, "window"),
                           vxo_chain(vxo_mat_translate3(0,0,2.5),
                                     vxo_mat_rotate_y(-M_PI/7),
                                     vxo_mat_rotate_z(M_PI/5),
                                     vxo_mat_rotate_x(M_PI/2),
                                     vxo_mat_scale3(10,10,1),
                                     vxo_rect(vxo_mesh_style_fancy(amb, diff, spec, Tr, specularity, type),
                                              vxo_lines_style(vx_black,2))));
        vx_buffer_swap(vx_world_get_buffer(world, "window"));
        vx_buffer_set_draw_order(vx_world_get_buffer(world, "window"), 100);
    }


    if (1) {
        // Draw a custom ellipse:
        int npoints = 35;
        float points[npoints*3];
        for (int i = 0; i < npoints; i++) {
            float angle = 2*M_PI*i/npoints;

            float x = 5.0f*cosf(angle);
            float y = 8.0f*sinf(angle);
            float z = 0.0f;

            points[3*i + 0] = x;
            points[3*i + 1] = y;
            points[3*i + 2] = z;
        }

        vx_buffer_add_back(vx_world_get_buffer(world, "ellipse"), vxo_lines(vx_resc_copyf (points, npoints*3),
                                                                            npoints, GL_LINE_LOOP,
                                                                            vxo_lines_style(vx_purple, 1.0f) ));
        vx_buffer_swap(vx_world_get_buffer(world, "ellipse"));
    }

    if (1) {
        vx_object_t *vt = vxo_text_create(VXO_TEXT_ANCHOR_TOP_RIGHT, "<<right,#0000ff>>Heads Up!\n");
        vx_buffer_t *vb = vx_world_get_buffer(world, "text");
        vx_buffer_add_back(vb, vxo_pix_coords(VX_ORIGIN_TOP_RIGHT,vt));
        vx_buffer_swap(vb);
    }

    // Draw a texture
    if (state->img != NULL){
        image_u32_t * img = state->img;
        vx_object_t * o3 = vxo_image_texflags(vx_resc_copyui(img->buf, img->stride*img->height),
                                              img->width, img->height, img->stride,
                                              GL_RGBA, VXO_IMAGE_FLIPY,
                                              VX_TEX_MIN_FILTER | VX_TEX_MAG_FILTER);

        // pack the image into the unit square
        vx_buffer_t * vb = vx_world_get_buffer(world, "texture");
        vx_buffer_add_back(vb,vxo_chain(
                               vxo_mat_scale(1.0/img->height),
                               vxo_mat_translate3(0, - img->height, 0),
                                        o3));
        vx_buffer_swap(vb);
    }
}
Ejemplo n.º 3
0
// returns the 35 points associated to the test chart in [x1,y1,x2,y2] 
// format if there are more than 35 points will return NULL
matd_t* build_homography(image_u32_t* im, vx_buffer_t* buf, metrics_t met)
{
    frame_t frame = {{0,0}, {im->width-1, im->height-1},
                        {0,0}, {1,1}};
    int good_size = 0;
    zarray_t* blobs = zarray_create(sizeof(node_t));
    hsv_find_balls_blob_detector(im, frame, met, blobs, buf);

    // remove unqualified blobs
    if(met.qualify) {
        for(int i = 0; i < zarray_size(blobs); i++) {
            node_t n;
            zarray_get(blobs, i, &n);

            if(!blob_qualifies(im, &n, met, buf))
                zarray_remove_index(blobs, i, 0);
        }
    }
    if(zarray_size(blobs) == NUM_TARGETS ||zarray_size(blobs) == NUM_CHART_BLOBS) good_size = 1;

    zarray_sort(blobs, compare);
    int pix_array[zarray_size(blobs)*2];

    // iterate through
    int idx = 0;
    double size = 2.0;
    for(int i = 0; i < zarray_size(blobs); i++) {
        node_t n;
        zarray_get(blobs, i, &n);
        loc_t center = {    .x = n.ave_loc.x/n.num_children,
                            .y = n.ave_loc.y/n.num_children};
        loc_t parent = {    .x = n.id % im->stride,
                            .y = n.id / im->stride};


        if(buf != NULL) {
            add_circle_to_buffer(buf, size, center, vx_maroon);
            // add_circle_to_buffer(buf, size, parent, vx_olive);

            // add_sides_to_buffer(im, buf, 1.0, &n, vx_orange, met);
            loc_t* lp = fit_lines(im, &n, buf, met, NULL);
            if(lp != NULL) {
                // printf("(%d, %d) (%d, %d) (%d, %d) (%d, %d) \n",
                //         lp[0].x, lp[0].y, lp[1].x, lp[1].y, lp[2].x, lp[2].y, lp[3].x, lp[3].y);
                loc_t intersect = get_line_intersection(lp[0], lp[1], lp[2], lp[3]);
                if(in_range(im, intersect.x, intersect.y)) {
                    loc_t ext_lines[2];
                    extend_lines_to_edge_of_image(im, intersect, center, ext_lines);
                    add_line_to_buffer(im, buf, 2.0, ext_lines[0], ext_lines[1], vx_blue);                
                }
                for(int i = 0; i < 4; i++) {
                    pix_array[i*2] = lp[i].x;
                    pix_array[i*2+1] = lp[i].y;
                    add_circle_to_buffer(buf, 3.0, lp[i], vx_orange);
                }
            }



            free(n.sides);

            // loc_t corners[4] = {{n.box.right, n.box.top},
            //                     {n.box.right, n.box.bottom},
            //                     {n.box.left, n.box.bottom},
            //                     {n.box.left, n.box.top}};
            // print extremes of box
            // if(1) {
            //     add_circle_to_buffer(buf, size, corners[0], vx_green);
            //     add_circle_to_buffer(buf, size, corners[1], vx_yellow);
            //     add_circle_to_buffer(buf, size, corners[2], vx_red);
            //     add_circle_to_buffer(buf, size, corners[3], vx_blue);
            //     for(int j = 0; j < 4; j++) {
            //         // add_circle_to_buffer(buf, size, corners[j], vx_maroon);
            //     }
            // }
        }
    }

    matd_t* H;
    H = dist_homography(pix_array, NUM_TARGETS);

    // if(0) {//zarray_size(blobs) == NUM_CHART_BLOBS){
    //     H = dist_homography(pix_array, NUM_CHART_BLOBS);
    // }
    // else if(zarray_size(blobs) == NUM_TARGETS){
    //     H = dist_homography(pix_array, NUM_TARGETS);
    //     if(met.add_lines) connect_lines(blobs, buf);
    // }
    // else {
    //     if(met.dothis)
    //         printf("num figures: %d\n", zarray_size(blobs));
    //     return(NULL);
    // }

    // make projected points
    // project_measurements_through_homography(H, buf, blobs, zarray_size(blobs));
    zarray_destroy(blobs);

    return(H);
}


/*
{ R00, R01, R02, TX,
   R10, R11, R12, TY,
   R20, R21, R22, TZ,
    0, 0, 0, 1 });
*/
double get_rotation(const char* axis, matd_t* H)
{
    double cosine, sine, theta;

    if(strncmp(axis,"x", 1)) {
        cosine = MATD_EL(H, 1, 1);
        sine = MATD_EL(H, 2, 1);
    }
    else if(strncmp(axis,"y", 1)) {
        cosine = MATD_EL(H, 0, 0);
        sine = MATD_EL(H, 0, 2);
    }
    else if(strncmp(axis,"z", 1)) {
        cosine = MATD_EL(H, 0, 0);
        sine = MATD_EL(H, 1, 0);
    }
    else assert(0);

    theta = atan2(sine, cosine);
    return(theta);
}

// if buf is NULL, will not fill with points of the homography
void take_measurements(image_u32_t* im, vx_buffer_t* buf, metrics_t met)
{
    // form homography
    matd_t* H = build_homography(im, buf, met);
    if(H == NULL) return;

    // get model view from homography
    matd_t* Model = homography_to_pose(H, 654, 655, 334, 224);
    // printf("\n");
    // matd_print(H, matrix_format);
    // printf("\n\n");
    // printf("model:\n");
    // matd_print(Model, "%15f");
    // printf("\n\n");
    // matd_print(matd_op("M^-1",Model), matrix_format);
    // printf("\n");
    // extrapolate metrics from model view
    double TX = MATD_EL(Model, 0, 3);
    double TY = MATD_EL(Model, 1, 3);
    double TZ = MATD_EL(Model, 2, 3);

    // double rot_x = get_rotation("x", H);
    // double rot_y = get_rotation("y", H);
    // double rot_z = get_rotation("z", H);

    double cosine = MATD_EL(Model, 0, 0);

    double rot_z = acos(cosine) * 180/1.5 - 180;


    cosine = MATD_EL(Model, 2, 2);
    double rot_x = asin(cosine) * 90/1.3 + 90;

    cosine = MATD_EL(Model, 1, 1);
    double rot_y = asin(cosine);



    char str[200];
    sprintf(str, "<<#00ffff,serif-30>> DIST:%lf  Offset:(%lf, %lf)\n rot: (%lf, %lf, %lf)\n", 
                TZ, TX, TY, rot_x, rot_y, rot_z);
    vx_object_t *text = vxo_text_create(VXO_TEXT_ANCHOR_BOTTOM_LEFT, str); 
    vx_buffer_add_back(buf, vxo_pix_coords(VX_ORIGIN_BOTTOM_LEFT, text));

    // printf("dist: %lf   cos:%lf  angle: %lf\n", TZ, cosine, theta);
}