static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize, unsigned short& maxRegionId, rcCompactHeightfield& chf, unsigned short* srcReg) { const int w = chf.width; const int h = chf.height; const int nreg = maxRegionId+1; rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP); if (!regions) { ctx->log(RC_LOG_ERROR, "filterSmallRegions: Out of memory 'regions' (%d).", nreg); return false; } // Construct regions for (int i = 0; i < nreg; ++i) new(®ions[i]) rcRegion((unsigned short)i); // Find edge of a region and find connections around the contour. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { unsigned short r = srcReg[i]; if (r == 0 || r >= nreg) continue; rcRegion& reg = regions[r]; reg.spanCount++; // Update floors. for (int j = (int)c.index; j < ni; ++j) { if (i == j) continue; unsigned short floorId = srcReg[j]; if (floorId == 0 || floorId >= nreg) continue; addUniqueFloorRegion(reg, floorId); } // Have found contour if (reg.connections.size() > 0) continue; reg.areaType = chf.areas[i]; // Check if this cell is next to a border. int ndir = -1; for (int dir = 0; dir < 4; ++dir) { if (isSolidEdge(chf, srcReg, x, y, i, dir)) { ndir = dir; break; } } if (ndir != -1) { // The cell is at border. // Walk around the contour to find all the neighbours. walkContour(x, y, i, ndir, chf, srcReg, reg.connections); } } } } // Remove too small regions. rcIntArray stack(32); rcIntArray trace(32); for (int i = 0; i < nreg; ++i) { rcRegion& reg = regions[i]; if (reg.id == 0 || (reg.id & RC_BORDER_REG)) continue; if (reg.spanCount == 0) continue; if (reg.visited) continue; // Count the total size of all the connected regions. // Also keep track of the regions connects to a tile border. bool connectsToBorder = false; int spanCount = 0; stack.resize(0); trace.resize(0); reg.visited = true; stack.push(i); while (stack.size()) { // Pop int ri = stack.pop(); rcRegion& creg = regions[ri]; spanCount += creg.spanCount; trace.push(ri); for (int j = 0; j < creg.connections.size(); ++j) { if (creg.connections[j] & RC_BORDER_REG) { connectsToBorder = true; continue; } rcRegion& neireg = regions[creg.connections[j]]; if (neireg.visited) continue; if (neireg.id == 0 || (neireg.id & RC_BORDER_REG)) continue; // Visit stack.push(neireg.id); neireg.visited = true; } } // If the accumulated regions size is too small, remove it. // Do not remove areas which connect to tile borders // as their size cannot be estimated correctly and removing them // can potentially remove necessary areas. if (spanCount < minRegionArea && !connectsToBorder) { // Kill all visited regions. for (int j = 0; j < trace.size(); ++j) { regions[trace[j]].spanCount = 0; regions[trace[j]].id = 0; } } } // Merge too small regions to neighbour regions. int mergeCount = 0 ; do { mergeCount = 0; for (int i = 0; i < nreg; ++i) { rcRegion& reg = regions[i]; if (reg.id == 0 || (reg.id & RC_BORDER_REG)) continue; if (reg.spanCount == 0) continue; // Check to see if the region should be merged. if (reg.spanCount > mergeRegionSize && isRegionConnectedToBorder(reg)) continue; // Small region with more than 1 connection. // Or region which is not connected to a border at all. // Find smallest neighbour region that connects to this one. int smallest = 0xfffffff; unsigned short mergeId = reg.id; for (int j = 0; j < reg.connections.size(); ++j) { if (reg.connections[j] & RC_BORDER_REG) continue; rcRegion& mreg = regions[reg.connections[j]]; if (mreg.id == 0 || (mreg.id & RC_BORDER_REG)) continue; if (mreg.spanCount < smallest && canMergeWithRegion(reg, mreg) && canMergeWithRegion(mreg, reg)) { smallest = mreg.spanCount; mergeId = mreg.id; } } // Found new id. if (mergeId != reg.id) { unsigned short oldId = reg.id; rcRegion& target = regions[mergeId]; // Merge neighbours. if (mergeRegions(target, reg)) { // Fixup regions pointing to current region. for (int j = 0; j < nreg; ++j) { if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue; // If another region was already merged into current region // change the nid of the previous region too. if (regions[j].id == oldId) regions[j].id = mergeId; // Replace the current region with the new one if the // current regions is neighbour. replaceNeighbour(regions[j], oldId, mergeId); } mergeCount++; } } } } while (mergeCount > 0); // Compress region Ids. for (int i = 0; i < nreg; ++i) { regions[i].remap = false; if (regions[i].id == 0) continue; // Skip nil regions. if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. regions[i].remap = true; } unsigned short regIdGen = 0; for (int i = 0; i < nreg; ++i) { if (!regions[i].remap) continue; unsigned short oldId = regions[i].id; unsigned short newId = ++regIdGen; for (int j = i; j < nreg; ++j) { if (regions[j].id == oldId) { regions[j].id = newId; regions[j].remap = false; } } } maxRegionId = regIdGen; // Remap regions. for (int i = 0; i < chf.spanCount; ++i) { if ((srcReg[i] & RC_BORDER_REG) == 0) srcReg[i] = regions[srcReg[i]].id; } for (int i = 0; i < nreg; ++i) regions[i].~rcRegion(); rcFree(regions); return true; }
/// @par /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf, const int borderSize, const int walkableHeight, rcHeightfieldLayerSet& lset) { rcAssert(ctx); ctx->startTimer(RC_TIMER_BUILD_LAYERS); rcScopedDelete<unsigned short> spanBuf4 = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP); if (!spanBuf4) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'spanBuf4' (%d).", chf.spanCount*4); return false; } ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED); unsigned short* srcReg = spanBuf4; if (!rcGatherRegionsNoFilter(ctx, chf, borderSize, spanBuf4)) return false; ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED); ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER); const int w = chf.width; const int h = chf.height; const int nreg = chf.maxRegions + 1; rcLayerRegion* regions = (rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nreg, RC_ALLOC_TEMP); if (!regions) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regions' (%d).", nreg); return false; } // Construct regions memset(regions, 0, sizeof(rcLayerRegion)*nreg); for (int i = 0; i < nreg; ++i) { regions[i].layerId = (unsigned short)i; regions[i].ymax = 0; regions[i].ymin = 0xffff; } // Find region neighbours and overlapping regions. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; const unsigned short ri = srcReg[i]; if (ri == 0 || ri >= nreg) continue; rcLayerRegion& reg = regions[ri]; reg.ymin = rcMin(reg.ymin, s.y); reg.ymax = rcMax(reg.ymax, s.y); reg.hasSpans = true; // Collect all region layers. for (int j = (int)c.index; j < ni; ++j) { unsigned short nri = srcReg[j]; if (nri == 0 || nri >= nreg) continue; if (nri != ri) { addUniqueLayerRegion(reg, nri); } } // Have found contour if (reg.connections.size() > 0) continue; // Check if this cell is next to a border. int ndir = -1; for (int dir = 0; dir < 4; ++dir) { if (isSolidEdge(chf, srcReg, x, y, i, dir)) { ndir = dir; break; } } if (ndir != -1) { // The cell is at border. // Walk around the contour to find all the neighbors. walkContour(x, y, i, ndir, chf, srcReg, reg.connections); } } } } // Create 2D layers from regions. unsigned short layerId = 0; rcIntArray stack(64); for (int i = 0; i < nreg; i++) { rcLayerRegion& reg = regions[i]; if (reg.visited || !reg.hasSpans) continue; reg.layerId = layerId; reg.visited = true; reg.base = true; stack.resize(0); stack.push(i); while (stack.size()) { int ri = stack.pop(); rcLayerRegion& creg = regions[ri]; for (int j = 0; j < creg.connections.size(); j++) { const unsigned short nei = (unsigned short)creg.connections[j]; if (nei & RC_BORDER_REG) continue; rcLayerRegion& regn = regions[nei]; // Skip already visited. if (regn.visited) continue; // Skip if the neighbor is overlapping root region. if (reg.layers.contains(nei)) continue; // Skip if the height range would become too large. const int ymin = rcMin(reg.ymin, regn.ymin); const int ymax = rcMin(reg.ymax, regn.ymax); if ((ymax - ymin) >= 255) continue; // visit stack.push(nei); regn.visited = true; regn.layerId = layerId; // add layers to root for (int k = 0; k < regn.layers.size(); k++) addUniqueLayerRegion(reg, regn.layers[k]); reg.ymin = rcMin(reg.ymin, regn.ymin); reg.ymax = rcMax(reg.ymax, regn.ymax); } } layerId++; } // Merge non-overlapping regions that are close in height. const unsigned short mergeHeight = (unsigned short)walkableHeight * 4; for (int i = 0; i < nreg; i++) { rcLayerRegion& ri = regions[i]; if (!ri.base) continue; unsigned short newId = ri.layerId; for (;;) { unsigned short oldId = 0xffff; for (int j = 0; j < nreg; j++) { if (i == j) continue; rcLayerRegion& rj = regions[j]; if (!rj.base) continue; // Skip if the regions are not close to each other. if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight)) continue; // Skip if the height range would become too large. const int ymin = rcMin(ri.ymin, rj.ymin); const int ymax = rcMin(ri.ymax, rj.ymax); if ((ymax - ymin) >= 255) continue; // Make sure that there is no overlap when mergin 'ri' and 'rj'. bool overlap = false; // Iterate over all regions which have the same layerId as 'rj' for (int k = 0; k < nreg; ++k) { if (regions[k].layerId != rj.layerId) continue; // Check if region 'k' is overlapping region 'ri' // Index to 'regs' is the same as region id. if (ri.layers.contains(k)) { overlap = true; break; } } // Cannot merge of regions overlap. if (overlap) continue; // Can merge i and j. oldId = rj.layerId; break; } // Could not find anything to merge with, stop. if (oldId == 0xffff) break; // Merge for (int j = 0; j < nreg; ++j) { rcLayerRegion& rj = regions[j]; if (rj.layerId == oldId) { rj.base = 0; // Remap layerIds. rj.layerId = newId; // Add overlaid layers from 'rj' to 'ri'. for (int k = 0; k < rj.layers.size(); ++k) addUniqueLayerRegion(ri, rj.layers[k]); // Update height bounds. ri.ymin = rcMin(ri.ymin, rj.ymin); ri.ymax = rcMax(ri.ymax, rj.ymax); } } } } // Compress layer Ids. for (int i = 0; i < nreg; ++i) { regions[i].remap = regions[i].hasSpans; if (!regions[i].hasSpans) { regions[i].layerId = 0xffff; } } unsigned short maxLayerId = 0; for (int i = 0; i < nreg; ++i) { if (!regions[i].remap) continue; unsigned short oldId = regions[i].layerId; unsigned short newId = maxLayerId; for (int j = i; j < nreg; ++j) { if (regions[j].layerId == oldId) { regions[j].layerId = newId; regions[j].remap = false; } } maxLayerId++; } ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER); if (maxLayerId == 0) { ctx->stopTimer(RC_TIMER_BUILD_LAYERS); return true; } // Create layers. rcAssert(lset.layers == 0); const int lw = w - borderSize*2; const int lh = h - borderSize*2; // Build contracted bbox for layers. float bmin[3], bmax[3]; rcVcopy(bmin, chf.bmin); rcVcopy(bmax, chf.bmax); bmin[0] += borderSize*chf.cs; bmin[2] += borderSize*chf.cs; bmax[0] -= borderSize*chf.cs; bmax[2] -= borderSize*chf.cs; lset.nlayers = (int)maxLayerId; lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM); if (!lset.layers) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers); return false; } memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers); // Store layers. for (int i = 0; i < lset.nlayers; ++i) { unsigned short curId = (unsigned short)i; // Allocate memory for the current layer. rcHeightfieldLayer* layer = &lset.layers[i]; memset(layer, 0, sizeof(rcHeightfieldLayer)); const int gridSize = sizeof(unsigned char)*lw*lh; layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM); if (!layer->heights) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize); return false; } memset(layer->heights, 0xff, gridSize); layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM); if (!layer->areas) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize); return false; } memset(layer->areas, 0, gridSize); layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM); if (!layer->cons) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize); return false; } memset(layer->cons, 0, gridSize); // Find layer height bounds. int hmin = 0, hmax = 0; for (int j = 0; j < nreg; ++j) { if (regions[j].base && regions[j].layerId == curId) { hmin = (int)regions[j].ymin; hmax = (int)regions[j].ymax; } } layer->width = lw; layer->height = lh; layer->cs = chf.cs; layer->ch = chf.ch; // Adjust the bbox to fit the heighfield. rcVcopy(layer->bmin, bmin); rcVcopy(layer->bmax, bmax); layer->bmin[1] = bmin[1] + hmin*chf.ch; layer->bmax[1] = bmin[1] + hmax*chf.ch; layer->hmin = hmin; layer->hmax = hmax; // Update usable data region. layer->minx = layer->width; layer->maxx = 0; layer->miny = layer->height; layer->maxy = 0; // Copy height and area from compact heighfield. for (int y = 0; y < lh; ++y) { for (int x = 0; x < lw; ++x) { const int cx = borderSize+x; const int cy = borderSize+y; const rcCompactCell& c = chf.cells[cx+cy*w]; for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j) { const rcCompactSpan& s = chf.spans[j]; // Skip unassigned regions. if (srcReg[j] == 0 || srcReg[j] >= nreg) continue; // Skip of does not belong to current layer. unsigned short lid = regions[srcReg[j]].layerId; if (lid != curId) continue; // Update data bounds. layer->minx = rcMin(layer->minx, x); layer->maxx = rcMax(layer->maxx, x); layer->miny = rcMin(layer->miny, y); layer->maxy = rcMax(layer->maxy, y); // Store height and area type. const int idx = x+y*lw; layer->heights[idx] = (unsigned char)(s.y - hmin); layer->areas[idx] = chf.areas[j]; // Check connection. unsigned char portal = 0; unsigned char con = 0; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = cx + rcGetDirOffsetX(dir); const int ay = cy + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); unsigned short alid = (srcReg[ai] < nreg) ? regions[srcReg[ai]].layerId : 0xffff; // Portal mask if (chf.areas[ai] != RC_NULL_AREA && lid != alid) { portal |= (unsigned char)(1<<dir); // Update height so that it matches on both sides of the portal. const rcCompactSpan& as = chf.spans[ai]; if (as.y > hmin) layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin)); } // Valid connection mask if (chf.areas[ai] != RC_NULL_AREA && lid == alid) { const int nx = ax - borderSize; const int ny = ay - borderSize; if (nx >= 0 && ny >= 0 && nx < lw && ny < lh) con |= (unsigned char)(1<<dir); } } } layer->cons[idx] = (portal << 4) | con; } } } if (layer->minx > layer->maxx) layer->minx = layer->maxx = 0; if (layer->miny > layer->maxy) layer->miny = layer->maxy = 0; } ctx->stopTimer(RC_TIMER_BUILD_LAYERS); return true; }
static bool filterSmallRegions(int minRegionSize, int mergeRegionSize, unsigned short& maxRegionId, rcCompactHeightfield& chf, unsigned short* src) { const int w = chf.width; const int h = chf.height; int nreg = maxRegionId+1; rcRegion* regions = new rcRegion[nreg]; if (!regions) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "filterSmallRegions: Out of memory 'regions' (%d).", nreg); return false; } for (int i = 0; i < nreg; ++i) regions[i].id = (unsigned short)i; // Find edge of a region and find connections around the contour. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { unsigned short r = src[i*2]; if (r == 0 || r >= nreg) continue; rcRegion& reg = regions[r]; reg.count++; // Update floors. for (int j = (int)c.index; j < ni; ++j) { if (i == j) continue; unsigned short floorId = src[j*2]; if (floorId == 0 || floorId >= nreg) continue; addUniqueFloorRegion(reg, floorId); } // Have found contour if (reg.connections.size() > 0) continue; // Check if this cell is next to a border. int ndir = -1; for (int dir = 0; dir < 4; ++dir) { if (isSolidEdge(chf, src, x, y, i, dir)) { ndir = dir; break; } } if (ndir != -1) { // The cell is at border. // Walk around the contour to find all the neighbours. walkContour(x, y, i, ndir, chf, src, reg.connections); } } } } // Remove too small unconnected regions. for (int i = 0; i < nreg; ++i) { rcRegion& reg = regions[i]; if (reg.id == 0 || (reg.id & RC_BORDER_REG)) continue; if (reg.count == 0) continue; if (reg.connections.size() == 1 && reg.connections[0] == 0) { if (reg.count < minRegionSize) { // Non-connected small region, remove. reg.count = 0; reg.id = 0; } } } // Merge too small regions to neighbour regions. int mergeCount = 0 ; do { mergeCount = 0; for (int i = 0; i < nreg; ++i) { rcRegion& reg = regions[i]; if (reg.id == 0 || (reg.id & RC_BORDER_REG)) continue; if (reg.count == 0) continue; // Check to see if the region should be merged. if (reg.count > mergeRegionSize && isRegionConnectedToBorder(reg)) continue; // Small region with more than 1 connection. // Or region which is not connected to a border at all. // Find smallest neighbour region that connects to this one. int smallest = 0xfffffff; unsigned short mergeId = reg.id; for (int j = 0; j < reg.connections.size(); ++j) { if (reg.connections[j] & RC_BORDER_REG) continue; rcRegion& mreg = regions[reg.connections[j]]; if (mreg.id == 0 || (mreg.id & RC_BORDER_REG)) continue; if (mreg.count < smallest && canMergeWithRegion(reg, mreg.id) && canMergeWithRegion(mreg, reg.id)) { smallest = mreg.count; mergeId = mreg.id; } } // Found new id. if (mergeId != reg.id) { unsigned short oldId = reg.id; rcRegion& target = regions[mergeId]; // Merge neighbours. if (mergeRegions(target, reg)) { // Fixup regions pointing to current region. for (int j = 0; j < nreg; ++j) { if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue; // If another region was already merged into current region // change the nid of the previous region too. if (regions[j].id == oldId) regions[j].id = mergeId; // Replace the current region with the new one if the // current regions is neighbour. replaceNeighbour(regions[j], oldId, mergeId); } mergeCount++; } } } } while (mergeCount > 0); // Compress region Ids. for (int i = 0; i < nreg; ++i) { regions[i].remap = false; if (regions[i].id == 0) continue; // Skip nil regions. if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. regions[i].remap = true; } unsigned short regIdGen = 0; for (int i = 0; i < nreg; ++i) { if (!regions[i].remap) continue; unsigned short oldId = regions[i].id; unsigned short newId = ++regIdGen; for (int j = i; j < nreg; ++j) { if (regions[j].id == oldId) { regions[j].id = newId; regions[j].remap = false; } } } maxRegionId = regIdGen; // Remap regions. for (int i = 0; i < chf.spanCount; ++i) { if ((src[i*2] & RC_BORDER_REG) == 0) src[i*2] = regions[src[i*2]].id; } delete [] regions; return true; }
/// @par /// /// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen /// parameters control how closely the simplified contours will match the raw contours. /// /// Simplified contours are generated such that the vertices for portals between areas match up. /// (They are considered mandatory vertices.) /// /// Setting @p maxEdgeLength to zero will disabled the edge length feature. /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, const float maxError, const int maxEdgeLen, rcContourSet& cset, const int buildFlags) { rcAssert(ctx); const int w = chf.width; const int h = chf.height; const int borderSize = chf.borderSize; ctx->startTimer(RC_TIMER_BUILD_CONTOURS); rcVcopy(cset.bmin, chf.bmin); rcVcopy(cset.bmax, chf.bmax); if (borderSize > 0) { // If the heightfield was build with bordersize, remove the offset. const float pad = borderSize*chf.cs; cset.bmin[0] += pad; cset.bmin[2] += pad; cset.bmax[0] -= pad; cset.bmax[2] -= pad; } cset.cellSizeXZ = chf.cs; cset.cellSizeY = chf.ch; cset.width = chf.width - chf.borderSize*2; cset.height = chf.height - chf.borderSize*2; cset.borderSize = chf.borderSize; int maxContours = rcMax((int)chf.maxRegions, 8); cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); if (!cset.conts) return false; cset.nconts = 0; rcScopedDelete<unsigned char> flags = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP); if (!flags) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount); return false; } ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); // Mark boundaries. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { unsigned char res = 0; const rcCompactSpan& s = chf.spans[i]; if (!chf.spans[i].regionID || (chf.spans[i].regionID & RC_BORDER_REG)) { flags[i] = 0; continue; } for (int dir = 0; dir < 4; ++dir) { unsigned short r = 0; if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); r = chf.spans[ai].regionID; } if (r == chf.spans[i].regionID) res |= (1 << dir); } flags[i] = res ^ 0xf; // Inverse, mark non connected edges. } } } ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); rcIntArray verts(256); rcIntArray simplified(64); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (flags[i] == 0 || flags[i] == 0xf) { flags[i] = 0; continue; } const unsigned short reg = chf.spans[i].regionID; if (!reg || (reg & RC_BORDER_REG)) continue; const navAreaMask areaMask = chf.areaMasks[ i ]; verts.resize(0); simplified.resize(0); ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); walkContour(x, y, i, chf, flags, verts); ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags); removeDegenerateSegments(simplified); ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); // Store region->contour remap info. // Create contour. if (simplified.size()/4 >= 3) { if (cset.nconts >= maxContours) { // Allocate more contours. // This happens when a region has holes. const int oldMax = maxContours; maxContours *= 2; rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); for (int j = 0; j < cset.nconts; ++j) { newConts[j] = cset.conts[j]; // Reset source pointers to prevent data deletion. cset.conts[j].verts = 0; cset.conts[j].rverts = 0; } rcFree(cset.conts); cset.conts = newConts; ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours); } rcContour* cont = &cset.conts[cset.nconts++]; cont->nverts = simplified.size()/4; cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM); if (!cont->verts) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts); return false; } memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4); if (borderSize > 0) { // If the heightfield was build with bordersize, remove the offset. for (int j = 0; j < cont->nverts; ++j) { int* v = &cont->verts[j*4]; v[0] -= borderSize; v[2] -= borderSize; } } cont->nrverts = verts.size()/4; cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM); if (!cont->rverts) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts); return false; } memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4); if (borderSize > 0) { // If the heightfield was build with bordersize, remove the offset. for (int j = 0; j < cont->nrverts; ++j) { int* v = &cont->rverts[j*4]; v[0] -= borderSize; v[2] -= borderSize; } } cont->reg = reg; cont->areaMask = areaMask; } } } } // Merge holes if needed. if (cset.nconts > 0) { // Calculate winding of all polygons. rcScopedDelete<char> winding = (char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP); if (!winding) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts); return false; } int nholes = 0; for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; // If the contour is wound backwards, it is a hole. winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1; if (winding[i] < 0) nholes++; } if (nholes > 0) { // Collect outline contour and holes contours per region. // We assume that there is one outline and multiple holes. const int nregions = chf.maxRegions+1; rcScopedDelete<rcContourRegion> regions = (rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP); if (!regions) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions); return false; } memset(regions, 0, sizeof(rcContourRegion)*nregions); rcScopedDelete<rcContourHole> holes = (rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP); if (!holes) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts); return false; } memset(holes, 0, sizeof(rcContourHole)*cset.nconts); for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; // Positively would contours are outlines, negative holes. if (winding[i] > 0) { if (regions[cont.reg].outline) ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg); regions[cont.reg].outline = &cont; } else { regions[cont.reg].nholes++; } } int index = 0; for (int i = 0; i < nregions; i++) { if (regions[i].nholes > 0) { regions[i].holes = &holes[index]; index += regions[i].nholes; regions[i].nholes = 0; } } for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; rcContourRegion& reg = regions[cont.reg]; if (winding[i] < 0) reg.holes[reg.nholes++].contour = &cont; } // Finally merge each regions holes into the outline. for (int i = 0; i < nregions; i++) { rcContourRegion& reg = regions[i]; if (!reg.nholes) continue; if (reg.outline) { mergeRegionHoles(ctx, reg); } else { // The region does not have an outline. // This can happen if the contour becaomes selfoverlapping because of // too aggressive simplification settings. ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i); } } } } ctx->stopTimer(RC_TIMER_BUILD_CONTOURS); return true; }
static dtStatus filterSmallRegions(dtTileCacheAlloc* alloc, dtTileCacheLayer& layer, int minRegionArea, int mergeRegionSize, unsigned short& maxRegionId, unsigned short* srcReg) { const int w = (int)layer.header->width; const int h = (int)layer.header->height; const int nreg = maxRegionId+1; dtFixedArray<dtLayerRegion> regions(alloc, nreg); if (!regions) { return DT_FAILURE | DT_OUT_OF_MEMORY; } // Construct regions regions.set(0); for (int i = 0; i < nreg; ++i) regions[i] = dtLayerRegion((unsigned short)i); // Find edge of a region and find connections around the contour. for (int y = 0; y < h; ++y) { const bool borderY = (y == 0) || (y == (h - 1)); for (int x = 0; x < w; ++x) { const int i = x+y*w; unsigned short r = srcReg[i]; if (r == DT_TILECACHE_NULL_AREA || r >= nreg) continue; dtLayerRegion& reg = regions[r]; reg.cellCount++; reg.border |= borderY || (x == 0) || (x == (w - 1)); // Have found contour if (reg.connections.size() > 0) continue; reg.areaType = layer.areas[i]; // Check if this cell is next to a border. int ndir = -1; for (int dir = 0; dir < 4; ++dir) { if (isSolidEdge(layer, srcReg, x, y, i, dir)) { ndir = dir; break; } } if (ndir != -1) { // The cell is at border. // Walk around the contour to find all the neighbours. walkContour(x, y, i, ndir, layer, srcReg, reg.connections); } } } // Remove too small regions. dtIntArray stack(32); dtIntArray trace(32); for (int i = 0; i < nreg; ++i) { dtLayerRegion& reg = regions[i]; if (reg.id == 0) continue; if (reg.cellCount == 0) continue; if (reg.visited) continue; // Count the total size of all the connected regions. // Also keep track of the regions connects to a tile border. bool connectsToBorder = false; int cellCount = 0; stack.resize(0); trace.resize(0); reg.visited = true; stack.push(i); while (stack.size()) { // Pop int ri = stack.pop(); dtLayerRegion& creg = regions[ri]; connectsToBorder |= creg.border; cellCount += creg.cellCount; trace.push(ri); for (int j = 0; j < creg.connections.size(); ++j) { dtLayerRegion& neireg = regions[creg.connections[j]]; if (neireg.visited) continue; if (neireg.id == 0) continue; // Visit stack.push(neireg.id); neireg.visited = true; } } // If the accumulated regions size is too small, remove it. // Do not remove areas which connect to tile borders // as their size cannot be estimated correctly and removing them // can potentially remove necessary areas. if (cellCount < minRegionArea && !connectsToBorder) { // Kill all visited regions. for (int j = 0; j < trace.size(); ++j) { regions[trace[j]].cellCount = 0; regions[trace[j]].id = 0; } } } // Merge too small regions to neighbour regions. int mergeCount = 0 ; do { mergeCount = 0; for (int i = 0; i < nreg; ++i) { dtLayerRegion& reg = regions[i]; if (reg.id == 0) continue; if (reg.cellCount == 0) continue; // Check to see if the region should be merged. if (reg.cellCount > mergeRegionSize && reg.border) continue; // Small region with more than 1 connection. // Or region which is not connected to a border at all. // Find smallest neighbour region that connects to this one. int smallest = 0xfffffff; unsigned short mergeId = reg.id; for (int j = 0; j < reg.connections.size(); ++j) { dtLayerRegion& mreg = regions[reg.connections[j]]; if (mreg.id == 0) continue; if (mreg.cellCount < smallest && canMergeWithRegion(reg, mreg) && canMergeWithRegion(mreg, reg)) { smallest = mreg.cellCount; mergeId = mreg.id; } } // Found new id. if (mergeId != reg.id) { unsigned short oldId = reg.id; dtLayerRegion& target = regions[mergeId]; // Merge neighbours. if (mergeRegions(target, reg)) { // Fixup regions pointing to current region. for (int j = 0; j < nreg; ++j) { if (regions[j].id == 0) continue; // If another region was already merged into current region // change the nid of the previous region too. if (regions[j].id == oldId) regions[j].id = mergeId; // Replace the current region with the new one if the // current regions is neighbour. replaceNeighbour(regions[j], oldId, mergeId); } mergeCount++; } } } } while (mergeCount > 0); // Compress region Ids. for (int i = 0; i < nreg; ++i) { regions[i].remap = false; if (regions[i].id == DT_TILECACHE_NULL_AREA) continue; // Skip nil regions. regions[i].remap = true; } unsigned short regIdGen = 0; for (int i = 0; i < nreg; ++i) { if (!regions[i].remap) continue; unsigned short oldId = regions[i].id; unsigned short newId = ++regIdGen; for (int j = i; j < nreg; ++j) { if (regions[j].id == oldId) { regions[j].id = newId; regions[j].remap = false; } } } maxRegionId = regIdGen; // Remap regions. for (int i = w*h-1; i >= 0; i--) { srcReg[i] = regions[srcReg[i]].id; } for (int i = 0; i < nreg; ++i) regions[i].~dtLayerRegion(); return DT_SUCCESS; }