Ejemplo n.º 1
0
int main(int argc, char* argv[])
{
    int nang, N;
    float dx, dz;
    int nx, nz;
    float ox, oz;
    int gnx, gnz;
    float gdx, gdz, gox, goz;
    struct point length;
    int inter;
    float TETAMAX, alpha2;
    FILE *outfile;
    int ii;
    int rays, wfront, gap;
    int lomx, first;
    int nr, nrmax, nt;
    int prcube, pr, ste;
    int ns, nou;
    float DSmax, dt, T, freq;
    float *vel;
    float ds, os, goox;
    float xmin, xmax, zmin, zmax;
    float depth;
    struct point *pos;
    struct heptagon *cube;
    struct grid *out;
    sf_file inp, ampl, time;

    sf_init(argc,argv);
    inp = sf_input("in");

/* GET MODEL PARAMETERS	*/
    if (!sf_histint(inp,"n1",&nz)) sf_error("No n1= in input");
    if (!sf_histint(inp,"n2",&nx)) sf_error("No n2= in input");
    if (!sf_histfloat(inp,"d1",&dz)) sf_error("No d1= in input");
    if (!sf_histfloat(inp,"d2",&dx)) sf_error("No d2= in input");
    if (!sf_histfloat(inp,"o1",&oz)) sf_error("No o1= in input");
    if (!sf_histfloat(inp,"o2",&ox)) sf_error("No o2= in input");

/* GET TRACING PARAMETERS */
    if(!sf_getint("nang",&nang))        nang = 10;    /* Number of take-off angles */
    if(!sf_getint("rays",&rays))        rays = 0;     /* If draw rays */
    if(!sf_getint("wfront",&wfront))    wfront = 0;   /* If draw wavefronts */ 
    if(!sf_getint("gap",&gap))        	gap = 1;      /* Draw wavefronts every gap intervals */
    if(!sf_getint("inter",&inter))      inter = 1;    /* If use linear interpolation */
    if(!sf_getfloat("DSmax",&DSmax))    DSmax = 5;    /* Maximum distance between contiguos points of a wavefront */
    if(!sf_getfloat("dt",&dt))          dt = 0.0005;  /* time step */
    if(!sf_getint("nt",&nt))            nt = 5;       /* Number of time steps between wavefronts */
    if(!sf_getint("nrmax",&nrmax))      nrmax = 2000; /* Maximum number of points that define a wavefront */
    if(!sf_getint("lomx",&lomx))        lomx = 1;     /* Use Lomax's waveray method */
    if(!sf_getint("first",&first))      first = 1;    /* Obtain first arrivals only */
    if(!sf_getint("nou",&nou))      	nou = 6;      

/* GET GRIDDING PARAMETERS */
    if(!sf_getint("gnx",&gnx))		gnx = nx;    /* Coordinates of output grid */
    if(!sf_getint("gnz",&gnz))		gnz = nz;
    if(!sf_getfloat("gdx",&gdx))	gdx = dx;
    if(!sf_getfloat("gdz",&gdz))	gdz = dz;
    if(!sf_getfloat("gox",&goox))	goox = ox;
    if(!sf_getfloat("goz",&goz))	goz = oz;

/* GET LOMAX SPECIFIC PARAMETERS */
    if(!sf_getint("N",&N))                N = 3;         /* Number of control points */
    if(!sf_getfloat("TETAMAX",&TETAMAX))  TETAMAX = 1.5; /* Truncation parameter */
    if(!sf_getfloat("alpha2",&alpha2))    alpha2 = 4.0;  /* Width of gaussian weighting function */
    if(!sf_getfloat("freq",&freq))	  freq = 100.;   /* Pseudo-frequency of waverays */

/* GET DEBUGGING INFO */
    if(!sf_getint("prcube",&prcube)) 	prcube=0;        /* For debugging porpouses */
    if(!sf_getint("pr",&pr)) 		pr=0;            /* For debugging porpouses */

/* GET SOURCE LOCATIONS */
    if(!sf_getint("ns",&ns) || ns==0)	  ns=1;          /* Number of source locations */
    if(!sf_getfloat("ds",&ds))		  ds=1.;         /* interval between sources */
    if(!sf_getfloat("os",&os))		  os=0.;         /* first source location */
    if(!sf_getfloat("depth",&depth))	  depth=dz;      /* Depth location of sources */

    pos = (struct point *) sf_alloc (ns,sizeof(struct point));
    for(ii=0;ii<ns;ii++) {
	pos[ii] = makepoint(ii*ds + os, depth);
    }

/* PREPARE OUTPUT */
    ampl = sf_output("ampl");
    sf_putint(ampl,"n1",gnz);
    sf_putint(ampl,"n2",gnx);
    sf_putint(ampl,"n3",ns);
    sf_putfloat(ampl,"d1",gdz);
    sf_putfloat(ampl,"d2",gdx);
    sf_putfloat(ampl,"d3",ds);
    sf_putfloat(ampl,"o1",goz);
    sf_putfloat(ampl,"o2",goox);
    sf_putfloat(ampl,"o3",os);

    time = sf_output("time");
    sf_putint(time,"n1",gnz);
    sf_putint(time,"n2",gnx);
    sf_putint(time,"n3",ns);
    sf_putfloat(time,"d1",gdz);
    sf_putfloat(time,"d2",gdx);
    sf_putfloat(time,"d3",ds);
    sf_putfloat(time,"o1",goz);
    sf_putfloat(time,"o2",goox);
    sf_putfloat(time,"o3",os);

/* READ VELOCITY MODEL */
    vel = sf_floatalloc(nx*nz+2);
    sf_floatread(vel,nx*nz,inp); 

/* ALLOCATE MEMORY FOR OUTPUT */
    out = (struct grid *) sf_alloc (1,sizeof(struct grid));

    out->time = sf_floatalloc (gnx*gnz);
    out->ampl = sf_floatalloc (gnx*gnz);
    out->flag = sf_intalloc (gnx*gnz);

    T = 1. / freq;

    length = makepoint((nx-1)*dx,(nz-1)*dz);

    cube = (struct heptagon *) sf_alloc (nrmax,sizeof(struct heptagon));

/* FOR DEBUGGING PORPOUSES, PRINT TO FILE */
    if(pr||prcube) {
	outfile = fopen("junk","w");
    } else {
	outfile = NULL;
    }

/*  SET DISPLAY IN ORDER TO SHOW RAYS ON SCREEN */
/*  NOTE: THIS PROGRAM USES DIRECT CALLS TO LIB_VPLOT
 *  TO DRAW THE RAYS AND THE WAVEFRONTS */
    if(rays || wfront) {
	setgraphics(ox, oz, length.x, length.z);
/*
	vp_color(BLUE);
	for(ii=0;ii<gnx;ii++)  {
	    vp_umove(ii*gdx+gox, goz); vp_udraw(ii*gdx+gox, (gnz-1)*gdz+goz); }
	for(ii=0;ii<gnz;ii++) {
	    vp_umove(gox, ii*gdz+goz); vp_udraw((gnx-1)*gdx+gox, ii*gdz+goz); } 
*/
    }

    norsar_init(gnx,gnz,
		TETAMAX,N,alpha2,inter,
		nx,nz,ox,oz,dx,dz,length);

/*  ALGORITHM: 
 *    For every source: */
    for(ii=0;ii<ns;ii++) {
	ste = 0;
	gox = goox + pos[ii].x;
	sf_warning("\nSource #%d\n", ii);

/*	1.- Construct the inital wavefront 			*/
	nr = nang;
    	initial (pos[ii], cube, vel, dt, nt, T, lomx, nr, out);

	gridding_init(gnx,gnz,
		      gdx,gdz,gox,goz,
		      outfile);

/*	run while the wavefront is not too small 		*/
	while (nr > 4) {
	    ste++;

/*	    2.- Propagate wavefront 				*/
	    wavefront (cube, nr, vel, dt, nt, T, lomx);
	    if(prcube || pr) {
		fprintf(outfile,"\n\nwavefront");
		printcube(cube, nr, outfile);
	    }

/*	    3.- Get rid of caustics				*/
            if(first) {
		if(ste%2==1) {			
		    caustics_up (cube, 0, nr);
		} else {
		    caustics_down (cube, nr-1, nr);
		}					
		if(prcube || pr) {	
		    fprintf(outfile,"\n\ncaustics");
		    printcube(cube, nr, outfile);
		}
	    }

/*          4.- Eliminate rays that cross boundaries, defined
		by xmin, xmax, zmin, zmax.
		Note that the computational grid is a little bigger 
		than the ouput grid. 				*/

	    xmin = gox-nou*gdx;	xmax = 2*pos[ii].x-gox+nou*gdx;
	    zmin = oz-nou*gdz;	zmax = length.z+oz+nou*gdz;
            mark_pts_outofbounds (cube, nr, xmin, xmax, zmin, zmax);
	    if(prcube) {
                fprintf(outfile, "\n\nboundaries");
                printcube(cube, nr, outfile);
            }

/*          5.- Rearrange cube                                  */
            makeup(cube, &nr);
	    if(nr<4) break;
	    if(prcube || pr) {	
                fprintf(outfile, "\n\nmakeup");
                printcube(cube, nr, outfile);
            }

/*          6.- Calculate amplitudes for new wavefront 		*/
	    amplitudes (cube, nr); 
	    if(prcube) {
                fprintf(outfile, "\n\namplitudes");
                printcube(cube, nr, outfile);
            }

/*	    7.- Draw rays 					*/
	    if(rays)
		draw_rays (cube, nr); 

/*          8.- Draw wavefront 					*/
	    if(wfront && (ste%gap==0)) 
		draw_wavefronts (cube, nr, DSmax); 

/*          9.- Parameter estimation at receivers 		*/
	    gridding (cube, nr, out, DSmax, (ste-1)*nt*dt, vel, first); /* pos[ii]); */

/*          10.- Interpolate new points of wavefront 		*/
            interpolation (cube, &nr, nrmax, DSmax); /* 0); */
	    if(prcube) {
                fprintf(outfile,"\n\ninterpolation");
                printcube(cube, nr, outfile);
            }

/*	    11.- Prepare to trace new wavefront 		*/
	    movwavf (cube, nr);
	    if(prcube) {
                fprintf(outfile,"\n\nmovwavf");
                printcube(cube, nr, outfile);
            }

	    if((wfront || rays) && (ste%gap==0)) vp_erase();
	}

/*	Finally interpolate amplitude and traveltime values to
        receivers that has not being covered.			*/
	TwoD_interp (out, gnx, gnz);

	sf_floatwrite(out->time, gnx * gnz, time); 
	sf_floatwrite(out->ampl, gnx * gnz, ampl);  
    }

   if(pr||prcube)
	fclose(outfile);

   exit(0);
}
Ejemplo n.º 2
0
// graph where s_i = {pos_D, pos_R, cost}, pointer to parents.
// possible entries (diamond pushes) are added with wavefront
// the shortest path till now is explored further (heap)
// hash table to check if node exists
bool Sokoban::findPath(){
    printMap(map_);

    std::cout << "Init. finding paths..." << std::endl;
    // graph to store the tree of possibilities
    graph paths;
    // has a solution been found
    bool solution_found = false;

    // - make needed maps
    // heuristic map
    std::vector< std::vector<char> > heuristic_map = map_;
    wavefront(heuristic_map, goals_);
//    printMap(heuristic_map);

//    std::cout << std::endl;
    // deadlock map
    std::vector< std::vector<char> > deadlock_map = map_;
    deadlocks(deadlock_map);
//    printMap(deadlock_map);


    // the next child to consider (lowest cost)
    node * cheapest_leaf = nullptr;

    // node to add
    node nextnode(0, cheapest_leaf, heuristic_map);
    nextnode.setRobot(pos_t(robot_.x_, robot_.y_));
    nextnode.setDiamonds(diamonds_);
    std::cout << "# of Diamonds: " << diamonds_.size() << std::endl;
    // add the initial position
    paths.createChild(nextnode);


    int lastCost = 0;
    std::cout << "Exploring paths..." << std::endl;
    // run this until the path is found or no paths can be taken
    int iterations = 0; // debug thing
    while(!solution_found && paths.getNextChild(cheapest_leaf)){
        iterations++;
//        if(lastCost < cheapest_leaf->getCost() + cheapest_leaf->getHeuristic()){
//            lastCost = cheapest_leaf->getCost() + cheapest_leaf->getHeuristic();
//            std::cout << "current cost: " << lastCost << ", open-/closed-list size: " << paths.getOpenListSize() << " / " << paths.getClosedListSize() << std::endl;

//        }
        // check cheapest leaf if it is the solution
        solution_found = cheapest_leaf->compSolution(map_);
        if(!solution_found){
            // generate the key for the element
            std::string key = cheapest_leaf->getKey(map_size_.x_);
            // check that this node has not already been found, if so, remove it
            bool unique_node = paths.nodeUnique(key);
            bool valid_node = false;
            std::vector< pos_t > * diamonds;
            if(unique_node){
                paths.addChild(cheapest_leaf, key);
                // get diamonds pointer
                diamonds = cheapest_leaf->getDiamonds();
                // check that the node is valid (all diamonds are in valid positions)
                valid_node = validNode(diamonds, deadlock_map);

            }
            else{
                paths.deleteChild(cheapest_leaf);
            }
            std::vector< std::vector<char> > wf_map;
            if(unique_node && valid_node){
                wf_map = map_;
                // make wf map
                for(int d = 0; d < diamonds->size(); d++){
                    int x = (*diamonds)[d].x_;
                    int y = (*diamonds)[d].y_;
                    wf_map[y][x] = MAP_DIAMOND;
                }
                // make wavefront from pos to see the distance to the diamonds
                std::vector< pos_t > robot_position = {*(cheapest_leaf->getRobotPos())};
                wavefront(wf_map, robot_position);
                // find the diamonds that can be moved
                std::vector< node > moves;
                possibleMoves(wf_map, diamonds, moves, cheapest_leaf);
                // add the moves to the heap (does not take care of states being the same)
                for(int newChild = 0; newChild < moves.size(); newChild++){
                    // update heuristics first
                    moves[newChild].updateHeuristic(heuristic_map);
                    // add the child
//                    paths.createChild(moves[newChild]);
                }
                paths.createChild(moves);
            }
        }
        else{
            // return shortest path
            node * parent = cheapest_leaf->getParent();
            node * child = cheapest_leaf;
            path_ = "";
            while(parent != nullptr){
                std::vector< pos_t > p_diamonds;
                std::vector< pos_t > c_diamonds;
                std::vector< std::vector<char> > wf_map;
                p_diamonds = *(parent->getDiamonds());
                c_diamonds = *(child->getDiamonds());
                // set diamonds to walls to generate wfamp to move with
                wf_map = map_;
                for(int d = 0; d < p_diamonds.size(); d++){
                    int x = (p_diamonds)[d].x_;
                    int y = (p_diamonds)[d].y_;
                    wf_map[y][x] = MAP_DIAMOND;
                }
                // robot pos
                pos_t p_position = *(parent->getRobotPos());
                pos_t c_position = *(child->getRobotPos());
                std::vector< pos_t > wf_start = {p_position};
                wavefront(wf_map, wf_start);
                // find the diamond that was moved
                int p_d = 0;
                int c_d = 0;
                while(p_diamonds.size() != 1){
                    bool somethingremoved = false;
                    c_d = 0;
                    while(c_d < c_diamonds.size() && !somethingremoved){
                        if((p_diamonds)[p_d].y_ == (c_diamonds)[c_d].y_ &&(p_diamonds)[p_d].x_ == (c_diamonds)[c_d].x_){
                            // remove the diamond
                            p_diamonds.erase(p_diamonds.begin() + p_d);
                            c_diamonds.erase(c_diamonds.begin() + c_d);
                            somethingremoved = true;

                        }
                        c_d++;
                    }
                    p_d++;
                    if(p_d >= p_diamonds.size()){
                        p_d = 0;
                    }
                }
                // adjust the start pos to be t push spot
                int x = (p_diamonds)[0].x_ - (c_diamonds)[0].x_;
                int y = (p_diamonds)[0].y_ - (c_diamonds)[0].y_;
                c_position.x_ += x;
                c_position.y_ += y;
                // find sub path
                std::string subpath = "";
                findSubPath(subpath,wf_map, p_position, c_position);
                // add the final push
                if(x == 1 && y == 0){
                    subpath += "W";
                } else if(x == -1 && y == 0){
                    subpath += "E";
                } else if(x == 0 && y == 1){
                    subpath += "N";
                } else if(x == 0 && y == -1){
                    subpath += "S";
                }
                // add the path
                path_ = subpath + path_;
                // find new nodes
                child = parent;
                parent = child->getParent();
            }
            std::cout << "Cheapest path length: " << cheapest_leaf->getCost() << std::endl;
        }
    }

    if(!paths.getNextChild(cheapest_leaf)){
        std::cout << "No more possible paths left to explore.\n";
    }

    std::cout << "# of iterations gone through: " << iterations << "\n";

    std::cout << "# of elements in closed list: " << paths.getClosedListSize() << "\n";

    std::cout << "# of elements in open list: " << paths.getOpenListSize() << "\n";


    return solution_found;
}