static void cpu_fans_tick_split(void)
{
    int err, cpu;
    s32 intake, temp, power, t_max = 0;

    DBG_LOTS("* cpu fans_tick_split()\n");

    for (cpu = 0; cpu < nr_chips; ++cpu) {
        struct wf_cpu_pid_state *sp = &cpu_pid[cpu];

        /* Read current speed */
        wf_control_get(cpu_rear_fans[cpu], &sp->target);

        DBG_LOTS("  CPU%d: cur_target = %d RPM\n", cpu, sp->target);

        err = read_one_cpu_vals(cpu, &temp, &power);
        if (err) {
            failure_state |= FAILURE_SENSOR;
            cpu_max_all_fans();
            return;
        }

        /* Keep track of highest temp */
        t_max = max(t_max, temp);

        /* Handle possible overtemps */
        if (cpu_check_overtemp(t_max))
            return;

        /* Run PID */
        wf_cpu_pid_run(sp, power, temp);

        DBG_LOTS("  CPU%d: target = %d RPM\n", cpu, sp->target);

        /* Apply result directly to exhaust fan */
        err = wf_control_set(cpu_rear_fans[cpu], sp->target);
        if (err) {
            pr_warning("wf_pm72: Fan %s reports error %d\n",
                       cpu_rear_fans[cpu]->name, err);
            failure_state |= FAILURE_FAN;
            break;
        }

        /* Scale result for intake fan */
        intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
        DBG_LOTS("  CPU%d: intake = %d RPM\n", cpu, intake);
        err = wf_control_set(cpu_front_fans[cpu], intake);
        if (err) {
            pr_warning("wf_pm72: Fan %s reports error %d\n",
                       cpu_front_fans[cpu]->name, err);
            failure_state |= FAILURE_FAN;
            break;
        }
    }
}
Ejemplo n.º 2
0
static void cpu_fans_tick(void)
{
	int err, cpu, i;
	s32 speed, temp, power, t_max = 0;

	DBG_LOTS("* cpu fans_tick_split()\n");

	for (cpu = 0; cpu < nr_chips; ++cpu) {
		struct wf_cpu_pid_state *sp = &cpu_pid[cpu];

		/* Read current speed */
		wf_control_get(cpu_fans[cpu][0], &sp->target);

		err = read_one_cpu_vals(cpu, &temp, &power);
		if (err) {
			failure_state |= FAILURE_SENSOR;
			cpu_max_all_fans();
			return;
		}

		/* Keep track of highest temp */
		t_max = max(t_max, temp);

		/* Handle possible overtemps */
		if (cpu_check_overtemp(t_max))
			return;

		/* Run PID */
		wf_cpu_pid_run(sp, power, temp);

		DBG_LOTS("  CPU%d: target = %d RPM\n", cpu, sp->target);

		/* Apply DIMMs clamp */
		speed = max(sp->target, dimms_output_clamp);

		/* Apply result to all cpu fans */
		for (i = 0; i < 3; i++) {
			err = wf_control_set(cpu_fans[cpu][i], speed);
			if (err) {
				pr_warning("wf_rm31: Fan %s reports error %d\n",
					   cpu_fans[cpu][i]->name, err);
				failure_state |= FAILURE_FAN;
			}
		}
	}
}
static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
{
    s32 new_setpoint, temp, power;
    int rc;

    if (--st->ticks != 0) {
        if (wf_smu_readjust)
            goto readjust;
        return;
    }
    st->ticks = WF_SMU_CPU_FANS_INTERVAL;

    rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
    if (rc) {
        printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
               rc);
        wf_smu_failure_state |= FAILURE_SENSOR;
        return;
    }

    rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
    if (rc) {
        printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
               rc);
        wf_smu_failure_state |= FAILURE_SENSOR;
        return;
    }

    DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
        FIX32TOPRINT(temp), FIX32TOPRINT(power));

#ifdef HACKED_OVERTEMP
    if (temp > 0x4a0000)
        wf_smu_failure_state |= FAILURE_OVERTEMP;
#else
    if (temp > st->pid.param.tmax)
        wf_smu_failure_state |= FAILURE_OVERTEMP;
#endif
    new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);

    DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);

    if (st->cpu_setpoint == new_setpoint)
        return;
    st->cpu_setpoint = new_setpoint;
readjust:
    if (fan_cpu_main && wf_smu_failure_state == 0) {
        rc = fan_cpu_main->ops->set_value(fan_cpu_main,
                                          st->cpu_setpoint);
        if (rc) {
            printk(KERN_WARNING "windfarm: CPU main fan"
                   " error %d\n", rc);
            wf_smu_failure_state |= FAILURE_FAN;
        }
    }
    if (fan_cpu_second && wf_smu_failure_state == 0) {
        rc = fan_cpu_second->ops->set_value(fan_cpu_second,
                                            st->cpu_setpoint);
        if (rc) {
            printk(KERN_WARNING "windfarm: CPU second fan"
                   " error %d\n", rc);
            wf_smu_failure_state |= FAILURE_FAN;
        }
    }
    if (fan_cpu_third && wf_smu_failure_state == 0) {
        rc = fan_cpu_main->ops->set_value(fan_cpu_third,
                                          st->cpu_setpoint);
        if (rc) {
            printk(KERN_WARNING "windfarm: CPU third fan"
                   " error %d\n", rc);
            wf_smu_failure_state |= FAILURE_FAN;
        }
    }
}
Ejemplo n.º 4
0
static void cpu_fans_tick(void)
{
	int err, cpu;
	s32 greatest_delta = 0;
	s32 temp, power, t_max = 0;
	int i, t, target = 0;
	struct wf_sensor *sr;
	struct wf_control *ct;
	struct wf_cpu_pid_state *sp;

	DBG_LOTS(KERN_DEBUG);
	for (cpu = 0; cpu < nr_cores; ++cpu) {
		/* Get CPU core temperature */
		sr = sens_cpu_temp[cpu];
		err = sr->ops->get_value(sr, &temp);
		if (err) {
			DBG("\n");
//			printk(KERN_WARNING "windfarm: CPU %d temperature "
;
			failure_state |= FAILURE_SENSOR;
			cpu_max_all_fans();
			return;
		}

		/* Keep track of highest temp */
		t_max = max(t_max, temp);

		/* Get CPU power */
		sr = sens_cpu_power[cpu];
		err = sr->ops->get_value(sr, &power);
		if (err) {
			DBG("\n");
//			printk(KERN_WARNING "windfarm: CPU %d power "
;
			failure_state |= FAILURE_SENSOR;
			cpu_max_all_fans();
			return;
		}

		/* Run PID */
		sp = &cpu_pid[cpu];
		t = wf_cpu_pid_run(sp, power, temp);

		if (cpu == 0 || sp->last_delta > greatest_delta) {
			greatest_delta = sp->last_delta;
			target = t;
		}
		DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
		    cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
	}
	DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));

	/* Darwin limits decrease to 20 per iteration */
	if (target < (cpu_last_target - 20))
		target = cpu_last_target - 20;
	cpu_last_target = target;
	for (cpu = 0; cpu < nr_cores; ++cpu)
		cpu_pid[cpu].target = target;

	/* Handle possible overtemps */
	if (cpu_check_overtemp(t_max))
		return;

	/* Set fans */
	for (i = 0; i < NR_CPU_FANS; ++i) {
		ct = cpu_fans[i];
		if (ct == NULL)
			continue;
		err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
		if (err) {
//			printk(KERN_WARNING "windfarm: fan %s reports "
;
			failure_state |= FAILURE_FAN;
			break;
		}
	}
}
static void cpu_fans_tick_combined(void)
{
    s32 temp0, power0, temp1, power1, t_max = 0;
    s32 temp, power, intake, pump;
    struct wf_control *pump0, *pump1;
    struct wf_cpu_pid_state *sp = &cpu_pid[0];
    int err, cpu;

    DBG_LOTS("* cpu fans_tick_combined()\n");

    /* Read current speed from cpu 0 */
    wf_control_get(cpu_rear_fans[0], &sp->target);

    DBG_LOTS("  CPUs: cur_target = %d RPM\n", sp->target);

    /* Read values for both CPUs */
    err = read_one_cpu_vals(0, &temp0, &power0);
    if (err) {
        failure_state |= FAILURE_SENSOR;
        cpu_max_all_fans();
        return;
    }
    err = read_one_cpu_vals(1, &temp1, &power1);
    if (err) {
        failure_state |= FAILURE_SENSOR;
        cpu_max_all_fans();
        return;
    }

    /* Keep track of highest temp */
    t_max = max(t_max, max(temp0, temp1));

    /* Handle possible overtemps */
    if (cpu_check_overtemp(t_max))
        return;

    /* Use the max temp & power of both */
    temp = max(temp0, temp1);
    power = max(power0, power1);

    /* Run PID */
    wf_cpu_pid_run(sp, power, temp);

    /* Scale result for intake fan */
    intake = (sp->target * CPU_INTAKE_SCALE) >> 16;

    /* Same deal with pump speed */
    pump0 = cpu_pumps[0];
    pump1 = cpu_pumps[1];
    if (!pump0) {
        pump0 = pump1;
        pump1 = NULL;
    }
    pump = (sp->target * wf_control_get_max(pump0)) /
           cpu_mpu_data[0]->rmaxn_exhaust_fan;

    DBG_LOTS("  CPUs: target = %d RPM\n", sp->target);
    DBG_LOTS("  CPUs: intake = %d RPM\n", intake);
    DBG_LOTS("  CPUs: pump   = %d RPM\n", pump);

    for (cpu = 0; cpu < nr_chips; cpu++) {
        err = wf_control_set(cpu_rear_fans[cpu], sp->target);
        if (err) {
            pr_warning("wf_pm72: Fan %s reports error %d\n",
                       cpu_rear_fans[cpu]->name, err);
            failure_state |= FAILURE_FAN;
        }
        err = wf_control_set(cpu_front_fans[cpu], intake);
        if (err) {
            pr_warning("wf_pm72: Fan %s reports error %d\n",
                       cpu_front_fans[cpu]->name, err);
            failure_state |= FAILURE_FAN;
        }
        err = 0;
        if (cpu_pumps[cpu])
            err = wf_control_set(cpu_pumps[cpu], pump);
        if (err) {
            pr_warning("wf_pm72: Pump %s reports error %d\n",
                       cpu_pumps[cpu]->name, err);
            failure_state |= FAILURE_FAN;
        }
    }
}