// Called by the world update start event void GazeboWindPlugin::OnUpdate(const common::UpdateInfo& _info) { // Get the current simulation time. common::Time now = world_->GetSimTime(); // Constant wind double wind_strength = wind_force_mean_; math::Vector3 wind = wind_strength * wind_direction_; // Apply a force from the constant wind to the link this->link_->AddForceAtRelativePosition(wind, xyz_offset_); math::Vector3 wind_gust(0, 0, 0); // Wind Gusts if (now >= wind_gust_start_ && now < wind_gust_end_) { double wind_gust_strength = wind_gust_force_mean_; wind_gust = wind_gust_strength * wind_gust_direction_; // Apply a force from the wind gust to the link this->link_->AddForceAtRelativePosition(wind_gust, xyz_offset_); } geometry_msgs::WrenchStamped wrench_msg; wrench_msg.header.frame_id = frame_id_; wrench_msg.header.stamp.sec = now.sec; wrench_msg.header.stamp.nsec = now.nsec; wrench_msg.wrench.force.x = wind.x + wind_gust.x; wrench_msg.wrench.force.y = wind.y + wind_gust.y; wrench_msg.wrench.force.z = wind.z + wind_gust.z; wrench_msg.wrench.torque.x = 0; wrench_msg.wrench.torque.y = 0; wrench_msg.wrench.torque.z = 0; wind_pub_.publish(wrench_msg); }
// This gets called by the world update start event. void GazeboWindPlugin::OnUpdate(const common::UpdateInfo& _info) { // Get the current simulation time. common::Time now = world_->GetSimTime(); // Establish Random Number Generator unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); std::default_random_engine generator (seed); std::uniform_real_distribution<double> direction_distribution(-1,1); std::normal_distribution<double> force_distribution(wind_force_mean_,sqrt(wind_force_variance_)); std::normal_distribution<double> gust_force_distribution(wind_gust_force_mean_,sqrt(wind_gust_force_variance_)); std::normal_distribution<double> wind_change_distribution(1000,500); // Calculate the wind force if (wind_change_delay==wind_change_value) { wind_strength = force_distribution(generator); wind_x = direction_distribution(generator); wind_y = direction_distribution(generator); wind_z = direction_distribution(generator); wind_change_value = ceil(abs(wind_change_distribution(generator))); wind_change_delay=0; } else { wind_change_delay++; } //Vary the wind direction wind_direction={wind_x, wind_y, wind_z}; wind_direction.Normalize(); math::Vector3 wind = wind_strength * wind_direction; // Apply a force from the wind to the link. link_->AddForceAtRelativePosition(wind, xyz_offset_); //Wind Gust math::Vector3 wind_gust(0, 0, 0); // Calculate the wind gust force. if (now >= wind_gust_start_ && now < wind_gust_end_) { double wind_gust_strength = gust_force_distribution(generator); wind_gust = wind_gust_strength * wind_gust_direction_; // Apply a force from the wind gust to the link. link_->AddForceAtRelativePosition(wind_gust, xyz_offset_); } geometry_msgs::Vector3 wind_msg; wind_msg.x = wind.x + wind_gust.x; wind_msg.y = wind.y + wind_gust.y; wind_msg.z = wind.z + wind_gust.z; wind_pub_.publish(wind_msg); }
// This gets called by the world update start event. void GazeboWindPlugin::OnUpdate(const common::UpdateInfo& _info) { if (kPrintOnUpdates) { gzdbg << __FUNCTION__ << "() called." << std::endl; } if (!pubs_and_subs_created_) { CreatePubsAndSubs(); pubs_and_subs_created_ = true; } // Get the current simulation time. common::Time now = world_->GetSimTime(); math::Vector3 wind_velocity(0.0, 0.0, 0.0); // Choose user-specified method for calculating wind velocity. if (!use_custom_static_wind_field_) { // Calculate the wind force. double wind_strength = wind_force_mean_; math::Vector3 wind = wind_strength * wind_direction_; // Apply a force from the constant wind to the link. link_->AddForceAtRelativePosition(wind, xyz_offset_); math::Vector3 wind_gust(0.0, 0.0, 0.0); // Calculate the wind gust force. if (now >= wind_gust_start_ && now < wind_gust_end_) { double wind_gust_strength = wind_gust_force_mean_; wind_gust = wind_gust_strength * wind_gust_direction_; // Apply a force from the wind gust to the link. link_->AddForceAtRelativePosition(wind_gust, xyz_offset_); } wrench_stamped_msg_.mutable_header()->set_frame_id(frame_id_); wrench_stamped_msg_.mutable_header()->mutable_stamp()->set_sec(now.sec); wrench_stamped_msg_.mutable_header()->mutable_stamp()->set_nsec(now.nsec); wrench_stamped_msg_.mutable_wrench()->mutable_force()->set_x(wind.x + wind_gust.x); wrench_stamped_msg_.mutable_wrench()->mutable_force()->set_y(wind.y + wind_gust.y); wrench_stamped_msg_.mutable_wrench()->mutable_force()->set_z(wind.z + wind_gust.z); // No torque due to wind, set x,y and z to 0. wrench_stamped_msg_.mutable_wrench()->mutable_torque()->set_x(0); wrench_stamped_msg_.mutable_wrench()->mutable_torque()->set_y(0); wrench_stamped_msg_.mutable_wrench()->mutable_torque()->set_z(0); wind_force_pub_->Publish(wrench_stamped_msg_); // Calculate the wind speed. wind_velocity = wind_speed_mean_ * wind_direction_; } else { // Get the current position of the aircraft in world coordinates. math::Vector3 link_position = link_->GetWorldPose().pos; // Calculate the x, y index of the grid points with x, y-coordinate // just smaller than or equal to aircraft x, y position. std::size_t x_inf = floor((link_position.x - min_x_) / res_x_); std::size_t y_inf = floor((link_position.y - min_y_) / res_y_); // In case aircraft is on one of the boundary surfaces at max_x or max_y, // decrease x_inf, y_inf by one to have x_sup, y_sup on max_x, max_y. if (x_inf == n_x_ - 1u) { x_inf = n_x_ - 2u; } if (y_inf == n_y_ - 1u) { y_inf = n_y_ - 2u; } // Calculate the x, y index of the grid points with x, y-coordinate just // greater than the aircraft x, y position. std::size_t x_sup = x_inf + 1u; std::size_t y_sup = y_inf + 1u; // Save in an array the x, y index of each of the eight grid points // enclosing the aircraft. constexpr unsigned int n_vertices = 8; std::size_t idx_x[n_vertices] = {x_inf, x_inf, x_sup, x_sup, x_inf, x_inf, x_sup, x_sup}; std::size_t idx_y[n_vertices] = {y_inf, y_inf, y_inf, y_inf, y_sup, y_sup, y_sup, y_sup}; // Find the vertical factor of the aircraft in each of the four surrounding // grid columns, and their minimal/maximal value. constexpr unsigned int n_columns = 4; float vertical_factors_columns[n_columns]; for (std::size_t i = 0u; i < n_columns; ++i) { vertical_factors_columns[i] = ( link_position.z - bottom_z_[idx_x[2u * i] + idx_y[2u * i] * n_x_]) / (top_z_[idx_x[2u * i] + idx_y[2u * i] * n_x_] - bottom_z_[idx_x[2u * i] + idx_y[2u * i] * n_x_]); } // Find maximal and minimal value amongst vertical factors. float vertical_factors_min = std::min(std::min(std::min( vertical_factors_columns[0], vertical_factors_columns[1]), vertical_factors_columns[2]), vertical_factors_columns[3]); float vertical_factors_max = std::max(std::max(std::max( vertical_factors_columns[0], vertical_factors_columns[1]), vertical_factors_columns[2]), vertical_factors_columns[3]); // Check if aircraft is out of wind field or not, and act accordingly. if (x_inf >= 0u && y_inf >= 0u && vertical_factors_max >= 0u && x_sup <= (n_x_ - 1u) && y_sup <= (n_y_ - 1u) && vertical_factors_min <= 1u) { // Find indices in z-direction for each of the vertices. If link is not // within the range of one of the columns, set to lowest or highest two. std::size_t idx_z[n_vertices] = {0u, static_cast<int>(vertical_spacing_factors_.size()) - 1u, 0u, static_cast<int>(vertical_spacing_factors_.size()) - 1u, 0u, static_cast<int>(vertical_spacing_factors_.size()) - 1u, 0u, static_cast<int>(vertical_spacing_factors_.size()) - 1u}; for (std::size_t i = 0u; i < n_columns; ++i) { if (vertical_factors_columns[i] < 0u) { // Link z-position below lowest grid point of that column. idx_z[2u * i + 1u] = 1u; } else if (vertical_factors_columns[i] >= 1u) { // Link z-position above highest grid point of that column. idx_z[2u * i] = vertical_spacing_factors_.size() - 2u; } else { // Link z-position between two grid points in that column. for (std::size_t j = 0u; j < vertical_spacing_factors_.size() - 1u; ++j) { if (vertical_spacing_factors_[j] <= vertical_factors_columns[i] && vertical_spacing_factors_[j + 1u] > vertical_factors_columns[i]) { idx_z[2u * i] = j; idx_z[2u * i + 1u] = j + 1u; break; } } } } // Extract the wind velocities corresponding to each vertex. math::Vector3 wind_at_vertices[n_vertices]; for (std::size_t i = 0u; i < n_vertices; ++i) { wind_at_vertices[i].x = u_[idx_x[i] + idx_y[i] * n_x_ + idx_z[i] * n_x_ * n_y_]; wind_at_vertices[i].y = v_[idx_x[i] + idx_y[i] * n_x_ + idx_z[i] * n_x_ * n_y_]; wind_at_vertices[i].z = w_[idx_x[i] + idx_y[i] * n_x_ + idx_z[i] * n_x_ * n_y_]; } // Extract the relevant coordinate of every point needed for trilinear // interpolation (first z-direction, then x-direction, then y-direction). constexpr unsigned int n_points_interp_z = 8; constexpr unsigned int n_points_interp_x = 4; constexpr unsigned int n_points_interp_y = 2; double interpolation_points[n_points_interp_x + n_points_interp_y + n_points_interp_z]; for (std::size_t i = 0u; i < n_points_interp_x + n_points_interp_y + n_points_interp_z; ++i) { if (i < n_points_interp_z) { interpolation_points[i] = ( top_z_[idx_x[i] + idx_y[i] * n_x_] - bottom_z_[idx_x[i] + idx_y[i] * n_x_]) * vertical_spacing_factors_[idx_z[i]] + bottom_z_[idx_x[i] + idx_y[i] * n_x_]; } else if (i >= n_points_interp_z && i < n_points_interp_x + n_points_interp_z) { interpolation_points[i] = min_x_ + res_x_ * idx_x[2u * (i - n_points_interp_z)]; } else { interpolation_points[i] = min_y_ + res_y_ * idx_y[4u * (i - n_points_interp_z - n_points_interp_x)]; } } // Interpolate wind velocity at aircraft position. wind_velocity = TrilinearInterpolation( link_position, wind_at_vertices, interpolation_points); } else { // Set the wind velocity to the default constant value specified by user. wind_velocity = wind_speed_mean_ * wind_direction_; } } wind_speed_msg_.mutable_header()->set_frame_id(frame_id_); wind_speed_msg_.mutable_header()->mutable_stamp()->set_sec(now.sec); wind_speed_msg_.mutable_header()->mutable_stamp()->set_nsec(now.nsec); wind_speed_msg_.mutable_velocity()->set_x(wind_velocity.x); wind_speed_msg_.mutable_velocity()->set_y(wind_velocity.y); wind_speed_msg_.mutable_velocity()->set_z(wind_velocity.z); wind_speed_pub_->Publish(wind_speed_msg_); }