int con_branching() { CONSTRAINT *row0,*row1; double old_lowerb = lowerb; #ifdef STAMP std::cout << " >>>>>>>>>>>>> constraint branching " << std::endl; if(branchs==0) write_sol(fsolution); #endif if( upperb < ceil(lowerb-ZERO)+ZERO ) return(1); //// constraint_branching(nbetter,better,&row0,&row1); constraint_branching(nsupport,support,&row0,&row1); if( upperb < ceil(lowerb-ZERO)+ZERO ) return(1); if(row0==NULL && row1==NULL)return(-1); if(row0==NULL || row1==NULL)return(0); /*** to do not use the branch-cuts ***/ //// return(-1); branchs++; #ifdef STAMP std::cout << "branching " << branchs << " on constraint" << std::endl; #endif /* making the left child */ row0->stat = LP_BA; add_rows(1,&row0); lowerb = solve_lp(0); get_solution(); get_base(); write_prob(); deletelastrow(); row0->stat = FIX_LB; /* making the left child */ row1->stat = LP_BA; add_rows(1,&row1); lowerb = solve_lp(0); get_solution(); get_base(); write_prob(); deletelastrow(); row1->stat = FIX_LB; lowerb = old_lowerb; return(1); }
void SDP::debug_prob(char* path) { struct blockmatrix* Cptr = (struct blockmatrix*)C_; struct blockmatrix& C = *Cptr; struct constraintmatrix* constraints = (struct constraintmatrix*)constraints_; write_prob(path,7,2,C,b_,constraints); }
int var_branching() { VARIABLE *col; double old_lowerb = lowerb; #ifdef STAMP std::cout << " >>>>>>>>>>>>> var branching " << std::endl; if(branchs==0) write_sol(fsolution); #endif if( upperb-ZERO < ceil(lowerb-ZERO) ) return(1); col = variable_branching(BETTERLP); if( upperb-ZERO < ceil(lowerb-ZERO) ) return(1); if(col==NULL) return(0); #ifdef STAMP std::cout << branchs << " on variable " << col->index << "=" << col->val << std::endl; #endif branchs++; /* making the left child */ if( ceil( solve_child_col( col , (double)0 , 1)-ZERO) < upperb-ZERO ) { col->stat = FIX_LB; write_prob(); } /* making the left child */ if( ceil( solve_child_col( col , (double)1 , 1)-ZERO) < upperb-ZERO ) { col->stat = FIX_UB; write_prob(); } lowerb = old_lowerb; return(1); }
int load_branch_tree() { FILE *pfile; mar = 1; mac = ncols; tree = NULL; pfile = fopen(fbranch,"w"); if(pfile==NULL){ std::cout << "ERROR: not possible to write on " << fbranch << std::endl; CSPexit(EXIT_ERROR); //exit(1); } fclose(pfile); write_prob(); return(0); }
//Main Function void mexFunction(int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[]) { //Input Args double *f, *blin = NULL, *lb = NULL, *ub = NULL, *y0 = NULL; //Return Args double *x, *pval, *dval, *exitflag, *iter, *pinf, *dinf, *realgap, *xzgap; //Options (most get defaults written in) int maxiter = 1500; //Internal Vars size_t ndec = 0, nlincon = 0, lincon_nz = 0, total_dim = 0, ncones = 0; size_t i, j; const char *onames[2] = {"pval","dval"}; const char *fnames[5] = {"iter","pinf","dinf","realgap","xzgap"}; double evaltime; int status = -1, nb = 0, linoffset = 0, indlb = 1, indub = 1, nLB = 0, nUB = 0; mwIndex *jc; //CSDP Problem Data struct blockmatrix C; double *b, *y, *xx, objconstant = 0.0; struct constraintmatrix *constraints; struct blockmatrix X, Z; struct sparseblock *blockptr; struct paramstruc params; //Version Return if(nrhs < 1) { if(nlhs < 1) printSolverInfo(); else plhs[0] = mxCreateString(CSDP_VERSION); return; } //Check Inputs checkInputs(prhs,nrhs); //Get pointers to Input variables f = mxGetPr(pF); ndec = mxGetNumberOfElements(pF); if(!mxIsEmpty(pA)) { blin = mxGetPr(pB); nlincon = mxGetM(pA); jc = mxGetJc(pA); lincon_nz = jc[ndec]; } if(nrhs > eLB && !mxIsEmpty(pLB)) { lb = mxGetPr(pLB); //Ensure we have at least one finite bound for(i=0,j=0;i<ndec;i++) if(mxIsInf(lb[i])) j++; if(j==ndec) lb = NULL; } if(nrhs > eUB && !mxIsEmpty(pUB)) { ub = mxGetPr(pUB); //Ensure we have at least one finite bound for(i=0,j=0;i<ndec;i++) if(mxIsInf(ub[i])) j++; if(j==ndec) ub = NULL; } if(nrhs > eSDP && !mxIsEmpty(pSDP)) { if(mxIsCell(pSDP)) ncones = mxGetNumberOfElements(pSDP); else ncones = 1; } if(nrhs > eY0 && !mxIsEmpty(pY0)) y0 = mxGetPr(pY0); //Create Outputs plhs[0] = mxCreateDoubleMatrix(ndec,1, mxREAL); plhs[1] = mxCreateStructMatrix(1,1,2,onames); mxSetField(plhs[1],0,onames[0],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[1],0,onames[1],mxCreateDoubleMatrix(1,1, mxREAL)); plhs[2] = mxCreateDoubleMatrix(1,1, mxREAL); x = mxGetPr(plhs[0]); pval = mxGetPr(mxGetField(plhs[1],0,onames[0])); dval = mxGetPr(mxGetField(plhs[1],0,onames[1])); exitflag = mxGetPr(plhs[2]); //Info Output plhs[3] = mxCreateStructMatrix(1,1,5,fnames); mxSetField(plhs[3],0,fnames[0],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[1],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[2],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[3],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[4],mxCreateDoubleMatrix(1,1, mxREAL)); iter = mxGetPr(mxGetField(plhs[3],0,fnames[0])); pinf = mxGetPr(mxGetField(plhs[3],0,fnames[1])); dinf = mxGetPr(mxGetField(plhs[3],0,fnames[2])); realgap = mxGetPr(mxGetField(plhs[3],0,fnames[3])); xzgap = mxGetPr(mxGetField(plhs[3],0,fnames[4])); //Set Defaults citer = 0; maxtime = 1000; printLevel = 0; //Allocate Initial Storage for the Problem b = (double*)malloc((ndec+1)*sizeof(double)); //objective vector //C matrices [LB UB LIN SD] nb = (int)ncones+(int)(nlincon>0)+(int)(lb!=NULL)+(int)(ub!=NULL); #ifdef DEBUG mexPrintf("Number of blocks (including bounds, linear and sdcones): %d\n",nb); #endif C.nblocks = nb; C.blocks = (struct blockrec*)malloc((nb+1)*sizeof(struct blockrec)); //+1 due to fortran index if(C.blocks == NULL) mexErrMsgTxt("Error allocating memory for C matrices"); //Constraints (i.e. 1 per decision variable) constraints = (struct constraintmatrix*)malloc((ndec+1)*sizeof(struct constraintmatrix)); //+1 due to fortran index if(constraints == NULL) { free(C.blocks); mexErrMsgTxt("Error allocating memory for A matrices"); } for(i=1;i<=ndec;i++) constraints[i].blocks=NULL; //initially set as NULL //Copy in and negate objective vector for(i=0;i<ndec;i++) b[i+1] = -f[i]; //Create Bounds if Present if(lb || ub) linoffset += addBounds(C,lb,ub,ndec,&nLB,&nUB); //Create Linear Cone (diagonal) if present if(nlincon) { //Initialize C C.blocks[linoffset+1].blockcategory = DIAG; C.blocks[linoffset+1].blocksize = (int)nlincon; C.blocks[linoffset+1].data.vec = (double*)malloc((nlincon+1)*sizeof(double)); if(C.blocks[linoffset+1].data.vec == NULL) mexErrMsgTxt("Error allocating memory for LP C diagonal"); #ifdef DEBUG mexPrintf("LP C[%d] Vector size: %d\n",linoffset+1,nlincon); #endif //Copy Elements for(i=0;i<nlincon;i++) { C.blocks[linoffset+1].data.vec[i+1] = -blin[i]; #ifdef DEBUG mexPrintf(" C vec[%d] = %f\n",i+1,-blin[i]); #endif } linoffset++; } #ifdef DEBUG mexPrintf("\nBlock offset after bounds + linear con: %d\n\n",linoffset); #endif //Setup Semidefinite C matrices (note all full matrices, dense, in order from 1) for(i=1;i<=ncones;i++) { //Single Cone if(ncones == 1 && !mxIsCell(pSDP)) total_dim += addCMatrix(C,pSDP,(int)i+linoffset); //Multiple Cones else total_dim += addCMatrix(C,mxGetCell(pSDP,i-1),(int)i+linoffset); } //Add Linear Dims total_dim += nLB+nUB+nlincon; #ifdef DEBUG mexPrintf("\nTotal dimension of all cones: %d\n\n",total_dim); #endif //Setup Each Constraint (for each decision var) (in order from 1) indlb = 1; indub = 1; for(i=1;i<=ndec;i++) { //For each Semidefinte A matrix (sparse triu, in reverse order, i.e. [SD, LP, UB, LB]) for(j=ncones;j>0;j--) { //Create an A matrix blockptr=(struct sparseblock*)malloc(sizeof(struct sparseblock)); if(blockptr==NULL) { sprintf(msgbuf,"Error allocating memory for Semidefinite A[%d,%d]",i,j+linoffset); mexErrMsgTxt(msgbuf); } //Single Cone if(ncones == 1 && !mxIsCell(pSDP)) addAMatrix(blockptr,pSDP,(int)i,(int)j+linoffset); //Multiple Cones else addAMatrix(blockptr,mxGetCell(pSDP,j-1),(int)i,(int)j+linoffset); //Insert A matrix into constraint list blockptr->next=constraints[i].blocks; constraints[i].blocks=blockptr; } //Linear Inequality Constraints if(nlincon) { //Create an A matrix blockptr=(struct sparseblock*)malloc(sizeof(struct sparseblock)); if(blockptr==NULL) { sprintf(msgbuf,"Error allocating memory for LP A[%d]",i); mexErrMsgTxt(msgbuf); } //Insert LP A entries j = 1 + (int)(nUB > 0) + (int)(nLB > 0); insertLPVector(blockptr, pA, (int)i, (int)j); //Insert A matrix into constraint list blockptr->next=constraints[i].blocks; constraints[i].blocks=blockptr; } //Upper Bounds if(nUB) { //Create an A matrix blockptr=(struct sparseblock*)malloc(sizeof(struct sparseblock)); if(blockptr==NULL) { sprintf(msgbuf,"Error allocating memory for UB A[%d]",i); mexErrMsgTxt(msgbuf); } //Insert Bound A matrix entries if(nLB > 0) indub += insertBound(blockptr,ub,nUB,(int)i,2,indub,1.0); //block 2 ([LB,UB,..] 1.0 for ub) else indub += insertBound(blockptr,ub,nUB,(int)i,1,indub,1.0); //block 1 (first block, 1.0 for ub) //Insert A matrix into constraint list blockptr->next=constraints[i].blocks; constraints[i].blocks=blockptr; } //Lower Bounds if(nLB) { //Create an A matrix blockptr=(struct sparseblock*)malloc(sizeof(struct sparseblock)); if(blockptr==NULL) { sprintf(msgbuf,"Error allocating memory for LB A[%d]",i); mexErrMsgTxt(msgbuf); } //Insert Bound A matrix entries indlb += insertBound(blockptr,lb,nLB,(int)i,1,indlb,-1.0); //block 1 (always first block, -1.0 for lb) //Insert A matrix into constraint list blockptr->next=constraints[i].blocks; constraints[i].blocks=blockptr; } } // //Set y0 // if (y0) // for (i=0;i<ndec;i++) { // DSDP_ERR( DSDPSetY0(dsdp,(int)i+1,y0[i]), "Error setting Y0"); // } // //Get CSDP Default Options initparams(¶ms,&printLevel); //Set OPTI default printLevel (none) printLevel = 0; //Get User Options (overwrites defaults above) if(nrhs > eOPTS && !mxIsEmpty(pOPTS)) { //OPTI Options GetIntegerOption(pOPTS,"maxiter",¶ms.maxiter); GetDoubleOption(pOPTS,"maxtime",&maxtime); GetIntegerOption(pOPTS,"display",&printLevel); GetDoubleOption(pOPTS,"objconstant",&objconstant); //CSDP Options GetDoubleOption(pOPTS,"axtol",¶ms.axtol); GetDoubleOption(pOPTS,"atytol",¶ms.atytol); GetDoubleOption(pOPTS,"objtol",¶ms.objtol); GetDoubleOption(pOPTS,"pinftol",¶ms.pinftol); GetDoubleOption(pOPTS,"dinftol",¶ms.dinftol); GetDoubleOption(pOPTS,"minstepfrac",¶ms.minstepfrac); GetDoubleOption(pOPTS,"maxstepfrac",¶ms.maxstepfrac); GetDoubleOption(pOPTS,"minstepp",¶ms.minstepp); GetDoubleOption(pOPTS,"minstepd",¶ms.minstepd); GetIntegerOption(pOPTS,"usexzgap",¶ms.usexzgap); GetIntegerOption(pOPTS,"tweakgap",¶ms.tweakgap); GetIntegerOption(pOPTS,"affine",¶ms.affine); GetDoubleOption(pOPTS,"perturbobj",¶ms.perturbobj); //Optionally write problem to a SDPA sparse file if(mxGetField(pOPTS,0,"writeprob") && !mxIsEmpty(mxGetField(pOPTS,0,"writeprob")) && mxIsChar(mxGetField(pOPTS,0,"writeprob"))) { mxGetString(mxGetField(pOPTS,0,"writeprob"),msgbuf,1024); write_prob(msgbuf,(int)total_dim,(int)ndec,C,b,constraints); } } //Print Header if(printLevel) { mexPrintf("\n------------------------------------------------------------------\n"); mexPrintf(" This is CSDP v%s\n",CSDP_VERSION); mexPrintf(" Author: Brian Borchers\n MEX Interface J. Currie 2013\n\n"); mexPrintf(" Problem Properties:\n"); mexPrintf(" # Decision Variables: %4d\n",ndec); mexPrintf(" # Linear Inequalities: %4d ",nlincon); if(nlincon) mexPrintf("[%d nz]\n",lincon_nz); else mexPrintf("\n"); mexPrintf(" # Semidefinite Cones: %4d\n",ncones); mexPrintf("------------------------------------------------------------------\n"); } //Start timer start = clock(); //Find Initial Solution initsoln((int)total_dim,(int)ndec,C,b,constraints,&X,&y,&Z); //Solve the problem status=easy_sdp((int)total_dim,(int)ndec,C,b,constraints,objconstant,params,&X,&y,&Z,pval,dval,pinf,dinf,realgap,xzgap); //Stop Timer end = clock(); evaltime = ((double)(end-start))/CLOCKS_PER_SEC; //Copy and negate solution for(i=0;i<ndec;i++) x[i] = -y[i+1]; //Assign other MATLAB outputs *iter = (double)citer-1; *exitflag = (double)status; //Print Header if(printLevel){ //Detail termination reason switch(status) { //Success case 0: mexPrintf("\n *** CSDP CONVERGED ***\n"); break; //Infeasible case 1: mexPrintf("\n *** TERMINATION: Primal Infeasible ***\n"); break; case 2: mexPrintf("\n *** TERMINATION: Dual Infeasible ***\n"); break; //Partial Success case 3: mexPrintf("\n *** TERMINATION: PARTIAL SUCESS ***\n *** A Solution is found but full accuracy was not achieved ***\n"); break; //Error case 4: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Maximum Iterations Reached ***\n"); break; case CSDP_MAX_TIME: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Maximum Time Reached ***\n"); break; case 5: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Stuck at edge of primal feasibility ***\n"); break; case 6: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Stuck at edge of dual infeasibility ***\n"); break; case 7: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Lack of progress ***\n"); break; case 8: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: X, Z, or O was singular ***\n"); break; case 9: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Detected NaN or Inf values ***\n"); break; case 10: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Easy-SDP General Failure ***\n"); break; case 11: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Failed C Check - Check Symmetry! ***\n"); break; case 12: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Failed Constraints Check ***\n"); break; case CSDP_USER_TERMINATION: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: User Exited ***\n"); break; //Here is ok too? default: mexPrintf("\n *** CSDP FINISHED ***\n"); break; } if(status==0 || status==3) mexPrintf("\n Final Primal Objective: %2.5g\n Final Dual Objective: %2.5g\n In %5d iterations\n %5.2f seconds\n",*pval,*dval,citer-1,evaltime); mexPrintf("------------------------------------------------------------------\n\n"); } //Optionally write solution to a SDPA sparse file if(nrhs > eOPTS && !mxIsEmpty(pOPTS) && mxGetField(pOPTS,0,"writesol") && !mxIsEmpty(mxGetField(pOPTS,0,"writesol")) && mxIsChar(mxGetField(pOPTS,0,"writesol"))) { mxGetString(mxGetField(pOPTS,0,"writesol"),msgbuf,1024); write_sol(msgbuf,(int)total_dim,(int)ndec,X,y,Z); } //Optionally retrieve X if(nlhs > 4) { plhs[4] = mxCreateCellMatrix(X.nblocks,1); for(i=0;i<X.nblocks;i++) { //Set Block Values if(X.blocks[i+1].blockcategory == DIAG) { mxSetCell(plhs[4],i,mxCreateDoubleMatrix(X.blocks[i+1].blocksize,1,mxREAL)); //create vector xx = mxGetPr(mxGetCell(plhs[4],i)); for(j=0;j<X.blocks[i+1].blocksize;j++) xx[j] = X.blocks[i+1].data.vec[j+1]; } else { mxSetCell(plhs[4],i,mxCreateDoubleMatrix(X.blocks[i+1].blocksize,X.blocks[i+1].blocksize,mxREAL)); //create matrix xx = mxGetPr(mxGetCell(plhs[4],i)); for(j=0;j<(X.blocks[i+1].blocksize*X.blocks[i+1].blocksize);j++) xx[j] = X.blocks[i+1].data.mat[j]; } } } //Free CSDP Problem (including all allocated memory) free_prob((int)total_dim,(int)ndec,C,b,constraints,X,y,Z); }