void xdr_write_replica(as_remote_record *rr, bool is_delete, uint32_t set_id) { uint16_t generation = (uint16_t)rr->generation; xdr_op_type op_type = XDR_OP_TYPE_WRITE; // Note - in this code path, only durable deletes get here. if (is_delete) { generation = 0; op_type = XDR_OP_TYPE_DURABLE_DELETE; } // Don't send an XDR delete if it's disallowed. if (is_delete && ! is_xdr_delete_shipping_enabled()) { // TODO - should we also not ship if there was no record here before? return; } xdr_write(rr->rsv->ns, rr->keyd, generation, rr->src, op_type, set_id, NULL); }
int delete_replica(as_partition_reservation* rsv, cf_digest* keyd, bool is_subrec, bool is_nsup_delete, bool is_xdr_op, cf_node master) { // Shortcut pointers & flags. as_namespace* ns = rsv->ns; as_index_tree* tree = is_subrec ? rsv->sub_tree : rsv->tree; as_index_ref r_ref; r_ref.skip_lock = false; if (as_record_get(tree, keyd, &r_ref, ns) != 0) { return AS_PROTO_RESULT_FAIL_NOTFOUND; } as_record* r = r_ref.r; if (ns->storage_data_in_memory) { as_storage_rd rd; as_storage_record_open(ns, r, &rd, keyd); delete_adjust_sindex(&rd); as_storage_record_close(r, &rd); } // Save the set-ID and generation for XDR. uint16_t set_id = as_index_get_set_id(r); uint16_t generation = r->generation; as_index_delete(tree, keyd); as_record_done(&r_ref, ns); if (xdr_must_ship_delete(ns, is_nsup_delete, is_xdr_op)) { xdr_write(ns, *keyd, generation, master, true, set_id, NULL); } return AS_PROTO_RESULT_OK; }
/* Internal Function: Does the post processing for the UDF record after the * UDF execution. Does the following: * 1. Record is closed * 2. urecord_op is updated to delete in case there is no bin left in it. * 3. record->pickled_buf is populated before the record is close in case * it was write operation * 4. UDF updates cache is cleared * * Returns: Nothing * * Parameters: urecord - UDF record to operate on * urecord_op (out) - Populated with the optype */ void udf_rw_post_processing(udf_record *urecord, udf_optype *urecord_op, uint16_t set_id) { as_storage_rd *rd = urecord->rd; as_transaction *tr = urecord->tr; as_index_ref *r_ref = urecord->r_ref; // INIT urecord->pickled_buf = NULL; urecord->pickled_sz = 0; urecord->pickled_void_time = 0; as_rec_props_clear(&urecord->pickled_rec_props); bool udf_xdr_ship_op = false; // TODO: optimize not to allocate buffer if it is single // node cluster. No remote to send data to // Check if UDF has updates. if (urecord->flag & UDF_RECORD_FLAG_HAS_UPDATES) { // Check if the record is not deleted after an update if ( urecord->flag & UDF_RECORD_FLAG_OPEN) { *urecord_op = UDF_OPTYPE_WRITE; udf_xdr_ship_op = true; } else { // If the record has updates and it is not open, // and if it pre-existed it's an update followed by a delete. if ( urecord->flag & UDF_RECORD_FLAG_PREEXISTS) { *urecord_op = UDF_OPTYPE_DELETE; udf_xdr_ship_op = true; } // If the record did not pre-exist and is updated // and it is not open, then it is create followed by // delete essentially no_op. else { *urecord_op = UDF_OPTYPE_NONE; } } } else if ((urecord->flag & UDF_RECORD_FLAG_PREEXISTS) && !(urecord->flag & UDF_RECORD_FLAG_OPEN)) { *urecord_op = UDF_OPTYPE_DELETE; udf_xdr_ship_op = true; } else { *urecord_op = UDF_OPTYPE_READ; } cf_detail(AS_UDF, "FINISH working with LDT Record %p %p %p %p %d", &urecord, urecord->tr, urecord->r_ref, urecord->rd, (urecord->flag & UDF_RECORD_FLAG_STORAGE_OPEN)); // If there exists a record reference but no bin of the record is in use, // delete the record. remove from the tree. Only LDT_RECORD here not needed // for LDT_SUBRECORD (only do it if requested by UDF). All the SUBRECORD of // removed LDT_RECORD will be lazily cleaned up by defrag. if (!(urecord->flag & UDF_RECORD_FLAG_IS_SUBRECORD) && urecord->flag & UDF_RECORD_FLAG_OPEN && !as_bin_inuse_has(rd)) { as_index_delete(tr->rsv.tree, &tr->keyd); urecord->starting_memory_bytes = 0; *urecord_op = UDF_OPTYPE_DELETE; udf_xdr_ship_op = true; } else if (*urecord_op == UDF_OPTYPE_WRITE) { cf_detail(AS_UDF, "Committing Changes %"PRIx64" n_bins %d", rd->keyd, as_bin_get_n_bins(r_ref->r, rd)); size_t rec_props_data_size = as_storage_record_rec_props_size(rd); uint8_t rec_props_data[rec_props_data_size]; if (rec_props_data_size > 0) { as_storage_record_set_rec_props(rd, rec_props_data); } write_local_post_processing(tr, tr->rsv.ns, NULL, &urecord->pickled_buf, &urecord->pickled_sz, &urecord->pickled_void_time, &urecord->pickled_rec_props, true/*increment_generation*/, NULL, r_ref->r, rd, urecord->starting_memory_bytes); // Now ok to accommodate a new stored key... if (! as_index_is_flag_set(r_ref->r, AS_INDEX_FLAG_KEY_STORED) && rd->key) { if (rd->ns->storage_data_in_memory) { as_record_allocate_key(r_ref->r, rd->key, rd->key_size); } as_index_set_flags(r_ref->r, AS_INDEX_FLAG_KEY_STORED); } // ... or drop a stored key. else if (as_index_is_flag_set(r_ref->r, AS_INDEX_FLAG_KEY_STORED) && ! rd->key) { if (rd->ns->storage_data_in_memory) { as_record_remove_key(r_ref->r); } as_index_clear_flags(r_ref->r, AS_INDEX_FLAG_KEY_STORED); } } // Collect the record information (for XDR) before closing the record as_generation generation = 0; if (urecord->flag & UDF_RECORD_FLAG_OPEN) { generation = r_ref->r->generation; set_id = as_index_get_set_id(r_ref->r); } // Close the record for all the cases udf_record_close(urecord, false); // Write to XDR pipe after closing the record, in order to release the record lock as // early as possible. if (udf_xdr_ship_op == true) { if (UDF_OP_IS_WRITE(*urecord_op)) { cf_detail(AS_UDF, "UDF write shipping for key %" PRIx64, tr->keyd); xdr_write(tr->rsv.ns, tr->keyd, generation, 0, false, set_id); } else if (UDF_OP_IS_DELETE(*urecord_op)) { cf_detail(AS_UDF, "UDF delete shipping for key %" PRIx64, tr->keyd); xdr_write(tr->rsv.ns, tr->keyd, generation, 0, true, set_id); } } // Replication happens when the main record replicates if (urecord->particle_data) { cf_free(urecord->particle_data); urecord->particle_data = 0; } udf_record_cache_free(urecord); }
int write_replica(as_partition_reservation* rsv, cf_digest* keyd, uint8_t* pickled_buf, size_t pickled_sz, const as_rec_props* p_rec_props, as_generation generation, uint32_t void_time, uint64_t last_update_time, cf_node master, uint32_t info, ldt_prole_info* linfo) { as_namespace* ns = rsv->ns; if (! as_storage_has_space(rsv->ns)) { cf_warning(AS_RW, "{%s} write_replica: drives full", ns->name); return AS_PROTO_RESULT_FAIL_PARTITION_OUT_OF_SPACE; } as_index_tree* tree = rsv->tree; bool is_subrec = false; bool is_ldt_parent = false; if (ns->ldt_enabled) { if ((info & RW_INFO_LDT_SUBREC) != 0 || (info & RW_INFO_LDT_ESR) != 0) { tree = rsv->sub_tree; is_subrec = true; } else if ((info & RW_INFO_LDT_PARENTREC) != 0) { is_ldt_parent = true; } } as_index_ref r_ref; r_ref.skip_lock = false; int rv = as_record_get_create(tree, keyd, &r_ref, ns, is_subrec); if (rv < 0) { cf_warning_digest(AS_RW, keyd, "{%s} write_replica: fail as_record_get_create() ", ns->name); return AS_PROTO_RESULT_FAIL_UNKNOWN; } as_record* r = r_ref.r; as_storage_rd rd; bool is_create = false; if (rv == 1) { as_storage_record_create(ns, r, &rd, keyd); is_create = true; } else { as_storage_record_open(ns, r, &rd, keyd); } bool has_sindex = (info & RW_INFO_SINDEX_TOUCHED) != 0; rd.ignore_record_on_device = ! has_sindex && ! is_ldt_parent; rd.n_bins = as_bin_get_n_bins(r, &rd); // TODO - we really need an inline utility for this! uint16_t newbins = ntohs(*(uint16_t*)pickled_buf); if (! rd.ns->storage_data_in_memory && ! rd.ns->single_bin && newbins > rd.n_bins) { rd.n_bins = newbins; } as_bin stack_bins[rd.ns->storage_data_in_memory ? 0 : rd.n_bins]; rd.bins = as_bin_get_all(r, &rd, stack_bins); uint32_t stack_particles_sz = rd.ns->storage_data_in_memory ? 0 : as_record_buf_get_stack_particles_sz(pickled_buf); uint8_t stack_particles[stack_particles_sz + 256]; uint8_t* p_stack_particles = stack_particles; // + 256 for LDT control bin, to hold version. if (! ldt_get_prole_version(rsv, keyd, linfo, info, &rd, is_create)) { if (is_create) { as_index_delete(tree, keyd); } as_storage_record_close(r, &rd); as_record_done(&r_ref, ns); return AS_PROTO_RESULT_FAIL_UNKNOWN; } uint64_t memory_bytes = 0; if (! is_create) { memory_bytes = as_storage_record_get_n_bytes_memory(&rd); } as_record_set_properties(&rd, p_rec_props); if (as_record_unpickle_replace(r, &rd, pickled_buf, pickled_sz, &p_stack_particles, has_sindex) != 0) { if (is_create) { as_index_delete(tree, keyd); } as_storage_record_close(r, &rd); as_record_done(&r_ref, ns); return AS_PROTO_RESULT_FAIL_UNKNOWN; // TODO - better granularity? } r->generation = generation; r->void_time = void_time; r->last_update_time = last_update_time; as_storage_record_adjust_mem_stats(&rd, memory_bytes); uint64_t version_to_set = 0; bool set_version = false; if (is_ldt_parent) { if (linfo->replication_partition_version_match && linfo->ldt_prole_version_set) { version_to_set = linfo->ldt_prole_version; set_version = true; } else if (! linfo->replication_partition_version_match) { version_to_set = linfo->ldt_source_version; set_version = true; } } if (set_version) { int ldt_rv = as_ldt_parent_storage_set_version(&rd, version_to_set, p_stack_particles, __FILE__, __LINE__); if (ldt_rv < 0) { cf_warning(AS_LDT, "write_replica: LDT parent storage version set failed %d", ldt_rv); // TODO - roll back. } } bool is_delete = false; if (! as_bin_inuse_has(&rd)) { // A master write that deletes a record by deleting (all) bins sends a // binless pickle that ends up here. is_delete = true; as_index_delete(tree, keyd); } as_storage_record_write(r, &rd); as_storage_record_close(r, &rd); uint16_t set_id = as_index_get_set_id(r); as_record_done(&r_ref, ns); // Don't send an XDR delete if it's disallowed. if (is_delete && ! is_xdr_delete_shipping_enabled()) { // TODO - should we also not ship if there was no record here before? return AS_PROTO_RESULT_OK; } // Do XDR write if the write is a non-XDR write or forwarding is enabled. if ((info & RW_INFO_XDR) == 0 || is_xdr_forwarding_enabled() || ns->ns_forward_xdr_writes) { xdr_write(ns, *keyd, generation, master, is_delete, set_id, NULL); } return AS_PROTO_RESULT_OK; }
/* Internal Function: Does the post processing for the UDF record after the * UDF execution. Does the following: * 1. Record is closed * 2. urecord_op is updated to delete in case there is no bin left in it. * 3. record->pickled_buf is populated before the record is close in case * it was write operation * 4. UDF updates cache is cleared * * Returns: Nothing * * Parameters: urecord - UDF record to operate on * urecord_op (out) - Populated with the optype */ static void post_processing(udf_record *urecord, udf_optype *urecord_op, uint16_t set_id) { as_storage_rd *rd = urecord->rd; as_transaction *tr = urecord->tr; as_index_ref *r_ref = urecord->r_ref; // INIT urecord->pickled_buf = NULL; urecord->pickled_sz = 0; as_rec_props_clear(&urecord->pickled_rec_props); bool udf_xdr_ship_op = false; getop(urecord, urecord_op); if (UDF_OP_IS_DELETE(*urecord_op) || UDF_OP_IS_WRITE(*urecord_op)) { udf_xdr_ship_op = true; } cf_detail(AS_UDF, "FINISH working with LDT Record %p %p %p %p %d", &urecord, urecord->tr, urecord->r_ref, urecord->rd, (urecord->flag & UDF_RECORD_FLAG_STORAGE_OPEN)); // If there exists a record reference but no bin of the record is in use, // delete the record. remove from the tree. Only LDT_RECORD here not needed // for LDT_SUBRECORD (only do it if requested by UDF). All the SUBRECORD of // removed LDT_RECORD will be lazily cleaned up by defrag. if (udf_zero_bins_left(urecord)) { as_transaction *tr = urecord->tr; as_index_delete(tr->rsv.tree, &tr->keyd); urecord->starting_memory_bytes = 0; *urecord_op = UDF_OPTYPE_DELETE; } else if (*urecord_op == UDF_OPTYPE_WRITE) { cf_detail_digest(AS_UDF, &rd->keyd, "Committing Changes n_bins %d", as_bin_get_n_bins(r_ref->r, rd)); size_t rec_props_data_size = as_storage_record_rec_props_size(rd); uint8_t rec_props_data[rec_props_data_size]; if (rec_props_data_size > 0) { as_storage_record_set_rec_props(rd, rec_props_data); } write_udf_post_processing(tr, rd, &urecord->pickled_buf, &urecord->pickled_sz, &urecord->pickled_rec_props, urecord->starting_memory_bytes); // Now ok to accommodate a new stored key... if (! as_index_is_flag_set(r_ref->r, AS_INDEX_FLAG_KEY_STORED) && rd->key) { if (rd->ns->storage_data_in_memory) { as_record_allocate_key(r_ref->r, rd->key, rd->key_size); } as_index_set_flags(r_ref->r, AS_INDEX_FLAG_KEY_STORED); } // ... or drop a stored key. else if (as_index_is_flag_set(r_ref->r, AS_INDEX_FLAG_KEY_STORED) && ! rd->key) { if (rd->ns->storage_data_in_memory) { as_record_remove_key(r_ref->r); } as_index_clear_flags(r_ref->r, AS_INDEX_FLAG_KEY_STORED); } } // Collect the record information (for XDR) before closing the record as_generation generation = 0; if (urecord->flag & UDF_RECORD_FLAG_OPEN) { generation = r_ref->r->generation; set_id = as_index_get_set_id(r_ref->r); } urecord->op = *urecord_op; // Close the record for all the cases udf_record_close(urecord); // Write to XDR pipe after closing the record, in order to release the record lock as // early as possible. if (udf_xdr_ship_op == true) { if (UDF_OP_IS_WRITE(*urecord_op)) { cf_detail(AS_UDF, "UDF write shipping for key %" PRIx64, tr->keyd); xdr_write(tr->rsv.ns, tr->keyd, generation, 0, false, set_id); } else if (UDF_OP_IS_DELETE(*urecord_op)) { cf_detail(AS_UDF, "UDF delete shipping for key %" PRIx64, tr->keyd); xdr_write(tr->rsv.ns, tr->keyd, generation, 0, true, set_id); } } }