Ejemplo n.º 1
0
/* Subroutine */ int zdrvpt_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, doublecomplex *a, 
	doublereal *d__, doublecomplex *e, doublecomplex *b, doublecomplex *x, 
	 doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer 
	*nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, N =\002,i5,\002, type \002,i2,"
	    "\002, test \002,i2,\002, ratio = \002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio = \002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double z_abs(doublecomplex *);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, n;
    doublereal z__[3];
    integer k1, ia, in, kl, ku, ix, nt, lda;
    char fact[1];
    doublereal cond;
    integer mode;
    doublereal dmax__;
    integer imat, info;
    char path[3], dist[1], type__[1];
    integer nrun, ifact;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    doublereal rcond;
    integer nimat;
    doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
), dcopy_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    integer izero, nerrs;
    extern /* Subroutine */ int zptt01_(integer *, doublereal *, 
	    doublecomplex *, doublereal *, doublecomplex *, doublecomplex *, 
	    doublereal *);
    logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zptt02_(char *, integer *, integer *, 
	     doublereal *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *), zptt05_(
	    integer *, integer *, doublereal *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublereal *), zptsv_(integer *, integer *, doublereal *, 
	    doublecomplex *, doublecomplex *, integer *, integer *), zlatb4_(
	    char *, integer *, integer *, integer *, char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *), alaerh_(char 
	    *, char *, integer *, integer *, char *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *);
    extern integer idamax_(integer *, doublereal *, integer *);
    doublereal rcondc;
    extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
	    doublecomplex *, integer *), alasvm_(char *, integer *, integer *, 
	     integer *, integer *), dlarnv_(integer *, integer *, 
	    integer *, doublereal *);
    doublereal ainvnm;
    extern doublereal zlanht_(char *, integer *, doublereal *, doublecomplex *
);
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    extern doublereal dzasum_(integer *, doublecomplex *, integer *);
    extern /* Subroutine */ int zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlaptm_(char *, integer *, integer *, doublereal *, 
	    doublereal *, doublecomplex *, doublecomplex *, integer *, 
	    doublereal *, doublecomplex *, integer *), zlatms_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *, char 
	    *, doublecomplex *, integer *, doublecomplex *, integer *), zlarnv_(integer *, integer *, integer *, 
	    doublecomplex *);
    doublereal result[6];
    extern /* Subroutine */ int zpttrf_(integer *, doublereal *, 
	    doublecomplex *, integer *), zerrvx_(char *, integer *), 
	    zpttrs_(char *, integer *, integer *, doublereal *, doublecomplex 
	    *, doublecomplex *, integer *, integer *), zptsvx_(char *, 
	     integer *, integer *, doublereal *, doublecomplex *, doublereal *
, doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *);

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZDRVPT tests ZPTSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) COMPLEX*16 array, dimension (NMAX*2) */

/*  D       (workspace) DOUBLE PRECISION array, dimension (NMAX*2) */

/*  E       (workspace) COMPLEX*16 array, dimension (NMAX*2) */

/*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --e;
    --d__;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (n > 0 && ! dotype[imat]) {
		goto L110;
	    }

/*           Set up parameters with ZLATB4. */

	    zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Type 1-6:  generate a symmetric tridiagonal matrix of */
/*              known condition number in lower triangular band storage. */

		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info);

/*              Check the error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L110;
		}
		izero = 0;

/*              Copy the matrix to D and E. */

		ia = 1;
		i__3 = n - 1;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    i__4 = i__;
		    i__5 = ia;
		    d__[i__4] = a[i__5].r;
		    i__4 = i__;
		    i__5 = ia + 1;
		    e[i__4].r = a[i__5].r, e[i__4].i = a[i__5].i;
		    ia += 2;
/* L20: */
		}
		if (n > 0) {
		    i__3 = n;
		    i__4 = ia;
		    d__[i__3] = a[i__4].r;
		}
	    } else {

/*              Type 7-12:  generate a diagonally dominant matrix with */
/*              unknown condition number in the vectors D and E. */

		if (! zerot || ! dotype[7]) {

/*                 Let D and E have values from [-1,1]. */

		    dlarnv_(&c__2, iseed, &n, &d__[1]);
		    i__3 = n - 1;
		    zlarnv_(&c__2, iseed, &i__3, &e[1]);

/*                 Make the tridiagonal matrix diagonally dominant. */

		    if (n == 1) {
			d__[1] = abs(d__[1]);
		    } else {
			d__[1] = abs(d__[1]) + z_abs(&e[1]);
			d__[n] = (d__1 = d__[n], abs(d__1)) + z_abs(&e[n - 1])
				;
			i__3 = n - 1;
			for (i__ = 2; i__ <= i__3; ++i__) {
			    d__[i__] = (d__1 = d__[i__], abs(d__1)) + z_abs(&
				    e[i__]) + z_abs(&e[i__ - 1]);
/* L30: */
			}
		    }

/*                 Scale D and E so the maximum element is ANORM. */

		    ix = idamax_(&n, &d__[1], &c__1);
		    dmax__ = d__[ix];
		    d__1 = anorm / dmax__;
		    dscal_(&n, &d__1, &d__[1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			d__1 = anorm / dmax__;
			zdscal_(&i__3, &d__1, &e[1], &c__1);
		    }

		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			d__[1] = z__[1];
			if (n > 1) {
			    e[1].r = z__[2], e[1].i = 0.;
			}
		    } else if (izero == n) {
			i__3 = n - 1;
			e[i__3].r = z__[0], e[i__3].i = 0.;
			d__[n] = z__[1];
		    } else {
			i__3 = izero - 1;
			e[i__3].r = z__[0], e[i__3].i = 0.;
			d__[izero] = z__[1];
			i__3 = izero;
			e[i__3].r = z__[2], e[i__3].i = 0.;
		    }
		}

/*              For types 8-10, set one row and column of the matrix to */
/*              zero. */

		izero = 0;
		if (imat == 8) {
		    izero = 1;
		    z__[1] = d__[1];
		    d__[1] = 0.;
		    if (n > 1) {
			z__[2] = e[1].r;
			e[1].r = 0., e[1].i = 0.;
		    }
		} else if (imat == 9) {
		    izero = n;
		    if (n > 1) {
			i__3 = n - 1;
			z__[0] = e[i__3].r;
			i__3 = n - 1;
			e[i__3].r = 0., e[i__3].i = 0.;
		    }
		    z__[1] = d__[n];
		    d__[n] = 0.;
		} else if (imat == 10) {
		    izero = (n + 1) / 2;
		    if (izero > 1) {
			i__3 = izero - 1;
			z__[0] = e[i__3].r;
			i__3 = izero - 1;
			e[i__3].r = 0., e[i__3].i = 0.;
			i__3 = izero;
			z__[2] = e[i__3].r;
			i__3 = izero;
			e[i__3].r = 0., e[i__3].i = 0.;
		    }
		    z__[1] = d__[izero];
		    d__[izero] = 0.;
		}
	    }

/*           Generate NRHS random solution vectors. */

	    ix = 1;
	    i__3 = *nrhs;
	    for (j = 1; j <= i__3; ++j) {
		zlarnv_(&c__2, iseed, &n, &xact[ix]);
		ix += lda;
/* L40: */
	    }

/*           Set the right hand side. */

	    zlaptm_("Lower", &n, nrhs, &c_b24, &d__[1], &e[1], &xact[1], &lda, 
		     &c_b25, &b[1], &lda);

	    for (ifact = 1; ifact <= 2; ++ifact) {
		if (ifact == 1) {
		    *(unsigned char *)fact = 'F';
		} else {
		    *(unsigned char *)fact = 'N';
		}

/*              Compute the condition number for comparison with */
/*              the value returned by ZPTSVX. */

		if (zerot) {
		    if (ifact == 1) {
			goto L100;
		    }
		    rcondc = 0.;

		} else if (ifact == 1) {

/*                 Compute the 1-norm of A. */

		    anorm = zlanht_("1", &n, &d__[1], &e[1]);

		    dcopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			zcopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }

/*                 Factor the matrix A. */

		    zpttrf_(&n, &d__[n + 1], &e[n + 1], &info);

/*                 Use ZPTTRS to solve for one column at a time of */
/*                 inv(A), computing the maximum column sum as we go. */

		    ainvnm = 0.;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    i__5 = j;
			    x[i__5].r = 0., x[i__5].i = 0.;
/* L50: */
			}
			i__4 = i__;
			x[i__4].r = 1., x[i__4].i = 0.;
			zpttrs_("Lower", &n, &c__1, &d__[n + 1], &e[n + 1], &
				x[1], &lda, &info);
/* Computing MAX */
			d__1 = ainvnm, d__2 = dzasum_(&n, &x[1], &c__1);
			ainvnm = max(d__1,d__2);
/* L60: */
		    }

/*                 Compute the 1-norm condition number of A. */

		    if (anorm <= 0. || ainvnm <= 0.) {
			rcondc = 1.;
		    } else {
			rcondc = 1. / anorm / ainvnm;
		    }
		}

		if (ifact == 2) {

/*                 --- Test ZPTSV -- */

		    dcopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			zcopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }
		    zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                 Factor A as L*D*L' and solve the system A*X = B. */

		    s_copy(srnamc_1.srnamt, "ZPTSV ", (ftnlen)6, (ftnlen)6);
		    zptsv_(&n, nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, &
			    info);

/*                 Check error code from ZPTSV . */

		    if (info != izero) {
			alaerh_(path, "ZPTSV ", &info, &izero, " ", &n, &n, &
				c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }
		    nt = 0;
		    if (izero == 0) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			zptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);

/*                    Compute the residual in the solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zptt02_("Lower", &n, nrhs, &d__[1], &e[1], &x[1], &
				lda, &work[1], &lda, &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;
		    }

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    i__3 = nt;
		    for (k = 1; k <= i__3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___35.ciunit = *nout;
			    s_wsfe(&io___35);
			    do_fio(&c__1, "ZPTSV ", (ftnlen)6);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += nt;
		}

/*              --- Test ZPTSVX --- */

		if (ifact > 1) {

/*                 Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero. */

		    i__3 = n - 1;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			d__[n + i__] = 0.;
			i__4 = n + i__;
			e[i__4].r = 0., e[i__4].i = 0.;
/* L80: */
		    }
		    if (n > 0) {
			d__[n + n] = 0.;
		    }
		}

		zlaset_("Full", &n, nrhs, &c_b62, &c_b62, &x[1], &lda);

/*              Solve the system and compute the condition number and */
/*              error bounds using ZPTSVX. */

		s_copy(srnamc_1.srnamt, "ZPTSVX", (ftnlen)6, (ftnlen)6);
		zptsvx_(fact, &n, nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1]
, &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[
			*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 1], &info);

/*              Check the error code from ZPTSVX. */

		if (info != izero) {
		    alaerh_(path, "ZPTSVX", &info, &izero, fact, &n, &n, &
			    c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout);
		}
		if (izero == 0) {
		    if (ifact == 2) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			k1 = 1;
			zptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);
		    } else {
			k1 = 2;
		    }

/*                 Compute the residual in the solution. */

		    zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
		    zptt02_("Lower", &n, nrhs, &d__[1], &e[1], &x[1], &lda, &
			    work[1], &lda, &result[1]);

/*                 Check solution from generated exact solution. */

		    zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[2]);

/*                 Check error bounds from iterative refinement. */

		    zptt05_(&n, nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], &
			    lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], 
			     &result[3]);
		} else {
		    k1 = 6;
		}

/*              Check the reciprocal of the condition number. */

		result[5] = dget06_(&rcond, &rcondc);

/*              Print information about the tests that did not pass */
/*              the threshold. */

		for (k = k1; k <= 6; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    aladhd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, "ZPTSVX", (ftnlen)6);
			do_fio(&c__1, fact, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
/* L90: */
		}
		nrun = nrun + 7 - k1;
L100:
		;
	    }
L110:
	    ;
	}
/* L120: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVPT */

} /* zdrvpt_ */
Ejemplo n.º 2
0
/* Subroutine */ int zdrvpb_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublecomplex *a, doublecomplex *afac, doublecomplex *asav, 
	doublecomplex *b, doublecomplex *bsav, doublecomplex *x, 
	doublecomplex *xact, doublereal *s, doublecomplex *work, doublereal *
	rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, KD =\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";
    static char fmt_9997[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), EQUED='\002,a1,\002', type"
	    " \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), type \002,i1,\002, test(\002"
	    ",i1,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static integer ldab;
    static char fact[1];
    static integer ioff, mode, koff;
    static doublereal amax;
    static char path[3];
    static integer imat, info;
    static char dist[1], uplo[1], type__[1];
    static integer nrun, i__, k, n, ifact, nfail, iseed[4], nfact;
    extern doublereal dget06_(doublereal *, doublereal *);
    static integer kdval[4];
    extern logical lsame_(char *, char *);
    static char equed[1];
    static integer nbmin;
    static doublereal rcond, roldc, scond;
    static integer nimat;
    static doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    );
    static logical equil;
    extern /* Subroutine */ int zpbt01_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *), zpbt02_(char *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    ), zpbt05_(char *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *);
    static integer iuplo, izero, i1, i2, k1, nerrs;
    static logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zpbsv_(char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
	     integer *), zswap_(integer *, doublecomplex *, integer *,
	     doublecomplex *, integer *);
    static char xtype[1];
    extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), aladhd_(integer *, 
	    char *);
    static integer kd, nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static logical prefac;
    static integer iw, ku, nt;
    static doublereal rcondc;
    static logical nofact;
    static char packit[1];
    static integer iequed;
    extern doublereal zlanhb_(char *, char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *), 
	    zlange_(char *, integer *, integer *, doublecomplex *, integer *, 
	    doublereal *);
    extern /* Subroutine */ int zlaqhb_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublereal *, char *), alasvm_(char *, integer *, 
	    integer *, integer *, integer *);
    static doublereal cndnum;
    extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *,
	     integer *);
    static doublereal ainvnm;
    extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *), zlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zpbequ_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *), zpbtrf_(char *, integer *, integer *, doublecomplex *, 
	    integer *, integer *), zlatms_(integer *, integer *, char 
	    *, integer *, char *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, char *, doublecomplex *, 
	    integer *, doublecomplex *, integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zpbtrs_(char *, integer *, integer *, integer 
	    *, doublecomplex *, integer *, doublecomplex *, integer *, 
	    integer *), zpbsvx_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
	     char *, doublereal *, doublecomplex *, integer *, doublecomplex *
	    , integer *, doublereal *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *),
	     zerrvx_(char *, integer *);
    static integer lda, ikd, nkd;

    /* Fortran I/O blocks */
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    ZDRVPB tests the driver routines ZPBSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)   

    AFAC    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)   

    ASAV    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)   

    B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    BSAV    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    S       (workspace) DOUBLE PRECISION array, dimension (NMAX)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*max(3,NRHS))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;
    kdval[0] = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';

/*        Set limits on the number of loop iterations.   

   Computing MAX */
	i__2 = 1, i__3 = min(n,4);
	nkd = max(i__2,i__3);
	nimat = 8;
	if (n == 0) {
	    nimat = 1;
	}

	kdval[1] = n + (n + 1) / 4;
	kdval[2] = (n * 3 - 1) / 4;
	kdval[3] = (n + 1) / 4;

	i__2 = nkd;
	for (ikd = 1; ikd <= i__2; ++ikd) {

/*           Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order   
             makes it easier to skip redundant values for small values   
             of N. */

	    kd = kdval[ikd - 1];
	    ldab = kd + 1;

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		koff = 1;
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'Q';
/* Computing MAX */
		    i__3 = 1, i__4 = kd + 2 - n;
		    koff = max(i__3,i__4);
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'B';
		}

		i__3 = nimat;
		for (imat = 1; imat <= i__3; ++imat) {

/*                 Do the tests only if DOTYPE( IMAT ) is true. */

		    if (! dotype[imat]) {
			goto L80;
		    }

/*                 Skip types 2, 3, or 4 if the matrix size is too small. */

		    zerot = imat >= 2 && imat <= 4;
		    if (zerot && n < imat - 1) {
			goto L80;
		    }

		    if (! zerot || ! dotype[1]) {

/*                    Set up parameters with ZLATB4 and generate a test   
                      matrix with ZLATMS. */

			zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm,
				 &mode, &cndnum, dist);

			s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)
				6);
			zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode,
				 &cndnum, &anorm, &kd, &kd, packit, &a[koff], 
				&ldab, &work[1], &info);

/*                    Check error code from ZLATMS. */

			if (info != 0) {
			    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			    goto L80;
			}
		    } else if (izero > 0) {

/*                    Use the same matrix for types 3 and 4 as for type   
                      2 by copying back the zeroed out column, */

			iw = (lda << 1) + 1;
			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    zcopy_(&i__4, &work[iw], &c__1, &a[ioff - izero + 
				    i1], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &i__5);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    zcopy_(&i__4, &work[iw], &c__1, &a[ioff + izero - 
				    i1], &i__5);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &c__1);
			}
		    }

/*                 For types 2-4, zero one row and column of the matrix   
                   to test that INFO is returned correctly. */

		    izero = 0;
		    if (zerot) {
			if (imat == 2) {
			    izero = 1;
			} else if (imat == 3) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

/*                    Save the zeroed out row and column in WORK(*,3) */

			iw = lda << 1;
/* Computing MIN */
			i__5 = (kd << 1) + 1;
			i__4 = min(i__5,n);
			for (i__ = 1; i__ <= i__4; ++i__) {
			    i__5 = iw + i__;
			    work[i__5].r = 0., work[i__5].i = 0.;
/* L20: */
			}
			++iw;
/* Computing MAX */
			i__4 = izero - kd;
			i1 = max(i__4,1);
/* Computing MIN */
			i__4 = izero + kd;
			i2 = min(i__4,n);

			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    zswap_(&i__4, &a[ioff - izero + i1], &c__1, &work[
				    iw], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    zswap_(&i__4, &a[ioff], &i__5, &work[iw], &c__1);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    zswap_(&i__4, &a[ioff + izero - i1], &i__5, &work[
				    iw], &c__1);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    zswap_(&i__4, &a[ioff], &c__1, &work[iw], &c__1);
			}
		    }

/*                 Set the imaginary part of the diagonals. */

		    if (iuplo == 1) {
			zlaipd_(&n, &a[kd + 1], &ldab, &c__0);
		    } else {
			zlaipd_(&n, &a[1], &ldab, &c__0);
		    }

/*                 Save a copy of the matrix A in ASAV. */

		    i__4 = kd + 1;
		    zlacpy_("Full", &i__4, &n, &a[1], &ldab, &asav[1], &ldab);

		    for (iequed = 1; iequed <= 2; ++iequed) {
			*(unsigned char *)equed = *(unsigned char *)&equeds[
				iequed - 1];
			if (iequed == 1) {
			    nfact = 3;
			} else {
			    nfact = 1;
			}

			i__4 = nfact;
			for (ifact = 1; ifact <= i__4; ++ifact) {
			    *(unsigned char *)fact = *(unsigned char *)&facts[
				    ifact - 1];
			    prefac = lsame_(fact, "F");
			    nofact = lsame_(fact, "N");
			    equil = lsame_(fact, "E");

			    if (zerot) {
				if (prefac) {
				    goto L60;
				}
				rcondc = 0.;

			    } else if (! lsame_(fact, "N")) {

/*                          Compute the condition number for comparison   
                            with the value returned by ZPBSVX (FACT =   
                            'N' reuses the condition number from the   
                            previous iteration with FACT = 'F'). */

				i__5 = kd + 1;
				zlacpy_("Full", &i__5, &n, &asav[1], &ldab, &
					afac[1], &ldab);
				if (equil || iequed > 1) {

/*                             Compute row and column scale factors to   
                               equilibrate the matrix A. */

				    zpbequ_(uplo, &n, &kd, &afac[1], &ldab, &
					    s[1], &scond, &amax, &info);
				    if (info == 0 && n > 0) {
					if (iequed > 1) {
					    scond = 0.;
					}

/*                                Equilibrate the matrix. */

					zlaqhb_(uplo, &n, &kd, &afac[1], &
						ldab, &s[1], &scond, &amax, 
						equed);
				    }
				}

/*                          Save the condition number of the   
                            non-equilibrated system for use in ZGET04. */

				if (equil) {
				    roldc = rcondc;
				}

/*                          Compute the 1-norm of A. */

				anorm = zlanhb_("1", uplo, &n, &kd, &afac[1], 
					&ldab, &rwork[1]);

/*                          Factor the matrix A. */

				zpbtrf_(uplo, &n, &kd, &afac[1], &ldab, &info);

/*                          Form the inverse of A. */

				zlaset_("Full", &n, &n, &c_b47, &c_b48, &a[1],
					 &lda);
				s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (
					ftnlen)6);
				zpbtrs_(uplo, &n, &kd, &n, &afac[1], &ldab, &
					a[1], &lda, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = zlange_("1", &n, &n, &a[1], &lda, &
					rwork[1]);
				if (anorm <= 0. || ainvnm <= 0.) {
				    rcondc = 1.;
				} else {
				    rcondc = 1. / anorm / ainvnm;
				}
			    }

/*                       Restore the matrix A. */

			    i__5 = kd + 1;
			    zlacpy_("Full", &i__5, &n, &asav[1], &ldab, &a[1],
				     &ldab);

/*                       Form an exact solution and set the right hand   
                         side. */

			    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (
				    ftnlen)6);
			    zlarhs_(path, xtype, uplo, " ", &n, &n, &kd, &kd, 
				    nrhs, &a[1], &ldab, &xact[1], &lda, &b[1],
				     &lda, iseed, &info);
			    *(unsigned char *)xtype = 'C';
			    zlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &
				    lda);

			    if (nofact) {

/*                          --- Test ZPBSV  ---   

                            Compute the L*L' or U'*U factorization of the   
                            matrix and solve the system. */

				i__5 = kd + 1;
				zlacpy_("Full", &i__5, &n, &a[1], &ldab, &
					afac[1], &ldab);
				zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], 
					&lda);

				s_copy(srnamc_1.srnamt, "ZPBSV ", (ftnlen)6, (
					ftnlen)6);
				zpbsv_(uplo, &n, &kd, nrhs, &afac[1], &ldab, &
					x[1], &lda, &info);

/*                          Check error code from ZPBSV . */

				if (info != izero) {
				    alaerh_(path, "ZPBSV ", &info, &izero, 
					    uplo, &n, &n, &kd, &kd, nrhs, &
					    imat, &nfail, &nerrs, nout);
				    goto L40;
				} else if (info != 0) {
				    goto L40;
				}

/*                          Reconstruct matrix from factors and compute   
                            residual. */

				zpbt01_(uplo, &n, &kd, &a[1], &ldab, &afac[1],
					 &ldab, &rwork[1], result);

/*                          Compute residual of the computed solution. */

				zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				zpbt02_(uplo, &n, &kd, nrhs, &a[1], &ldab, &x[
					1], &lda, &work[1], &lda, &rwork[1], &
					result[1]);

/*                          Check solution from generated exact solution. */

				zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda,
					 &rcondc, &result[2]);
				nt = 3;

/*                          Print information about the tests that did   
                            not pass the threshold. */

				i__5 = nt;
				for (k = 1; k <= i__5; ++k) {
				    if (result[k - 1] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					io___57.ciunit = *nout;
					s_wsfe(&io___57);
					do_fio(&c__1, "ZPBSV ", (ftnlen)6);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
					++nfail;
				    }
/* L30: */
				}
				nrun += nt;
L40:
				;
			    }

/*                       --- Test ZPBSVX --- */

			    if (! prefac) {
				i__5 = kd + 1;
				zlaset_("Full", &i__5, &n, &c_b47, &c_b47, &
					afac[1], &ldab);
			    }
			    zlaset_("Full", &n, nrhs, &c_b47, &c_b47, &x[1], &
				    lda);
			    if (iequed > 1 && n > 0) {

/*                          Equilibrate the matrix if FACT='F' and   
                            EQUED='Y' */

				zlaqhb_(uplo, &n, &kd, &a[1], &ldab, &s[1], &
					scond, &amax, equed);
			    }

/*                       Solve the system and compute the condition   
                         number and error bounds using ZPBSVX. */

			    s_copy(srnamc_1.srnamt, "ZPBSVX", (ftnlen)6, (
				    ftnlen)6);
			    zpbsvx_(fact, uplo, &n, &kd, nrhs, &a[1], &ldab, &
				    afac[1], &ldab, equed, &s[1], &b[1], &lda,
				     &x[1], &lda, &rcond, &rwork[1], &rwork[*
				    nrhs + 1], &work[1], &rwork[(*nrhs << 1) 
				    + 1], &info);

/*                       Check the error code from ZPBSVX. */

			    if (info != izero) {
/* Writing concatenation */
				i__7[0] = 1, a__1[0] = fact;
				i__7[1] = 1, a__1[1] = uplo;
				s_cat(ch__1, a__1, i__7, &c__2, (ftnlen)2);
				alaerh_(path, "ZPBSVX", &info, &izero, ch__1, 
					&n, &n, &kd, &kd, nrhs, &imat, &nfail,
					 &nerrs, nout);
				goto L60;
			    }

			    if (info == 0) {
				if (! prefac) {

/*                             Reconstruct matrix from factors and   
                               compute residual. */

				    zpbt01_(uplo, &n, &kd, &a[1], &ldab, &
					    afac[1], &ldab, &rwork[(*nrhs << 
					    1) + 1], result);
				    k1 = 1;
				} else {
				    k1 = 2;
				}

/*                          Compute residual of the computed solution. */

				zlacpy_("Full", &n, nrhs, &bsav[1], &lda, &
					work[1], &lda);
				zpbt02_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&x[1], &lda, &work[1], &lda, &rwork[(*
					nrhs << 1) + 1], &result[1]);

/*                          Check solution from generated exact solution. */

				if (nofact || prefac && lsame_(equed, "N")) {
				    zget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &rcondc, &result[2]);
				} else {
				    zget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &roldc, &result[2]);
				}

/*                          Check the error bounds from iterative   
                            refinement. */

				zpbt05_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&b[1], &lda, &x[1], &lda, &xact[1], &
					lda, &rwork[1], &rwork[*nrhs + 1], &
					result[3]);
			    } else {
				k1 = 6;
			    }

/*                       Compare RCOND from ZPBSVX with the computed   
                         value in RCONDC. */

			    result[5] = dget06_(&rcond, &rcondc);

/*                       Print information about the tests that did not   
                         pass the threshold. */

			    for (k = k1; k <= 6; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___60.ciunit = *nout;
					s_wsfe(&io___60);
					do_fio(&c__1, "ZPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    } else {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "ZPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L50: */
			    }
			    nrun = nrun + 7 - k1;
L60:
			    ;
			}
/* L70: */
		    }
L80:
		    ;
		}
/* L90: */
	    }
/* L100: */
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVPB */

} /* zdrvpb_ */
Ejemplo n.º 3
0
/* Subroutine */ int zdrvgt_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, doublecomplex *a, 
	doublecomplex *af, doublecomplex *b, doublecomplex *x, doublecomplex *
	xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer 
	*nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, N =\002,i5,\002, type \002,i2,"
	    "\002, test \002,i2,\002, ratio = \002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002,"
	    "a1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002,"
	    " ratio = \002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6[2];
    doublereal d__1, d__2;
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static doublereal cond;
    static integer mode, koff, imat, info;
    static char path[3], dist[1], type__[1];
    static integer nrun, i__, j, k, m, n, ifact, nfail, iseed[4];
    static doublereal z__[3];
    extern doublereal dget06_(doublereal *, doublereal *);
    static doublereal rcond;
    static integer nimat;
    static doublereal anorm;
    static integer itran;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    );
    static char trans[1];
    static integer izero, nerrs;
    extern /* Subroutine */ int zgtt01_(integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
	    , doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *);
    static integer k1;
    extern /* Subroutine */ int zgtt02_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
	    , integer *, doublecomplex *, integer *, doublereal *, doublereal 
	    *), zgtt05_(char *, integer *, integer *, doublecomplex *,
	     doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *);
    static logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zgtsv_(integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
	    , integer *, integer *), zlatb4_(char *, integer *, integer *, 
	    integer *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), aladhd_(integer *, 
	    char *);
    static integer in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer ku, ix, nt;
    static doublereal rcondc, rcondi;
    extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
	    doublecomplex *, integer *), alasvm_(char *, integer *, integer *,
	     integer *, integer *);
    static doublereal rcondo, anormi, ainvnm;
    static logical trfcon;
    static doublereal anormo;
    extern /* Subroutine */ int zlagtm_(char *, integer *, integer *, 
	    doublereal *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    doublecomplex *, integer *, doublereal *, doublecomplex *, 
	    integer *);
    extern doublereal zlangt_(char *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *);
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    extern doublereal dzasum_(integer *, doublecomplex *, integer *);
    extern /* Subroutine */ int zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *, char *, doublecomplex *, integer *, doublecomplex *, 
	    integer *), zlarnv_(integer *, integer *, 
	    integer *, doublecomplex *);
    static doublereal result[6];
    extern /* Subroutine */ int zgttrf_(integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
	    integer *), zgttrs_(char *, integer *, integer *, doublecomplex *,
	     doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *), zerrvx_(char *, 
	    integer *), zgtsvx_(char *, char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
	    , doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublecomplex *, 
	    doublereal *, integer *);
    static integer lda;

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZDRVGT tests ZGTSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    A       (workspace) COMPLEX*16 array, dimension (NMAX*4)   

    AF      (workspace) COMPLEX*16 array, dimension (NMAX*4)   

    B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*max(3,NRHS))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)   

    IWORK   (workspace) INTEGER array, dimension (2*NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --af;
    --a;
    --nval;
    --dotype;

    /* Function Body */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
/* Computing MAX */
	i__2 = n - 1;
	m = max(i__2,0);
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L130;
	    }

/*           Set up parameters with ZLATB4. */

	    zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Types 1-6:  generate matrices of known condition number.   

   Computing MAX */
		i__3 = 2 - ku, i__4 = 3 - max(1,n);
		koff = max(i__3,i__4);
		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], &
			info);

/*              Check the error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L130;
		}
		izero = 0;

		if (n > 1) {
		    i__3 = n - 1;
		    zcopy_(&i__3, &af[4], &c__3, &a[1], &c__1);
		    i__3 = n - 1;
		    zcopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1);
		}
		zcopy_(&n, &af[2], &c__3, &a[m + 1], &c__1);
	    } else {

/*              Types 7-12:  generate tridiagonal matrices with   
                unknown condition numbers. */

		if (! zerot || ! dotype[7]) {

/*                 Generate a matrix with elements from [-1,1]. */

		    i__3 = n + (m << 1);
		    zlarnv_(&c__2, iseed, &i__3, &a[1]);
		    if (anorm != 1.) {
			i__3 = n + (m << 1);
			zdscal_(&i__3, &anorm, &a[1], &c__1);
		    }
		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out   
                   elements. */

		    if (izero == 1) {
			i__3 = n;
			a[i__3].r = z__[1], a[i__3].i = 0.;
			if (n > 1) {
			    a[1].r = z__[2], a[1].i = 0.;
			}
		    } else if (izero == n) {
			i__3 = n * 3 - 2;
			a[i__3].r = z__[0], a[i__3].i = 0.;
			i__3 = (n << 1) - 1;
			a[i__3].r = z__[1], a[i__3].i = 0.;
		    } else {
			i__3 = (n << 1) - 2 + izero;
			a[i__3].r = z__[0], a[i__3].i = 0.;
			i__3 = n - 1 + izero;
			a[i__3].r = z__[1], a[i__3].i = 0.;
			i__3 = izero;
			a[i__3].r = z__[2], a[i__3].i = 0.;
		    }
		}

/*              If IMAT > 7, set one column of the matrix to 0. */

		if (! zerot) {
		    izero = 0;
		} else if (imat == 8) {
		    izero = 1;
		    i__3 = n;
		    z__[1] = a[i__3].r;
		    i__3 = n;
		    a[i__3].r = 0., a[i__3].i = 0.;
		    if (n > 1) {
			z__[2] = a[1].r;
			a[1].r = 0., a[1].i = 0.;
		    }
		} else if (imat == 9) {
		    izero = n;
		    i__3 = n * 3 - 2;
		    z__[0] = a[i__3].r;
		    i__3 = (n << 1) - 1;
		    z__[1] = a[i__3].r;
		    i__3 = n * 3 - 2;
		    a[i__3].r = 0., a[i__3].i = 0.;
		    i__3 = (n << 1) - 1;
		    a[i__3].r = 0., a[i__3].i = 0.;
		} else {
		    izero = (n + 1) / 2;
		    i__3 = n - 1;
		    for (i__ = izero; i__ <= i__3; ++i__) {
			i__4 = (n << 1) - 2 + i__;
			a[i__4].r = 0., a[i__4].i = 0.;
			i__4 = n - 1 + i__;
			a[i__4].r = 0., a[i__4].i = 0.;
			i__4 = i__;
			a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
		    }
		    i__3 = n * 3 - 2;
		    a[i__3].r = 0., a[i__3].i = 0.;
		    i__3 = (n << 1) - 1;
		    a[i__3].r = 0., a[i__3].i = 0.;
		}
	    }

	    for (ifact = 1; ifact <= 2; ++ifact) {
		if (ifact == 1) {
		    *(unsigned char *)fact = 'F';
		} else {
		    *(unsigned char *)fact = 'N';
		}

/*              Compute the condition number for comparison with   
                the value returned by ZGTSVX. */

		if (zerot) {
		    if (ifact == 1) {
			goto L120;
		    }
		    rcondo = 0.;
		    rcondi = 0.;

		} else if (ifact == 1) {
		    i__3 = n + (m << 1);
		    zcopy_(&i__3, &a[1], &c__1, &af[1], &c__1);

/*                 Compute the 1-norm and infinity-norm of A. */

		    anormo = zlangt_("1", &n, &a[1], &a[m + 1], &a[n + m + 1]);
		    anormi = zlangt_("I", &n, &a[1], &a[m + 1], &a[n + m + 1]);

/*                 Factor the matrix A. */

		    zgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (
			    m << 1) + 1], &iwork[1], &info);

/*                 Use ZGTTRS to solve for one column at a time of   
                   inv(A), computing the maximum column sum as we go. */

		    ainvnm = 0.;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    i__5 = j;
			    x[i__5].r = 0., x[i__5].i = 0.;
/* L30: */
			}
			i__4 = i__;
			x[i__4].r = 1., x[i__4].i = 0.;
			zgttrs_("No transpose", &n, &c__1, &af[1], &af[m + 1],
				 &af[n + m + 1], &af[n + (m << 1) + 1], &
				iwork[1], &x[1], &lda, &info);
/* Computing MAX */
			d__1 = ainvnm, d__2 = dzasum_(&n, &x[1], &c__1);
			ainvnm = max(d__1,d__2);
/* L40: */
		    }

/*                 Compute the 1-norm condition number of A. */

		    if (anormo <= 0. || ainvnm <= 0.) {
			rcondo = 1.;
		    } else {
			rcondo = 1. / anormo / ainvnm;
		    }

/*                 Use ZGTTRS to solve for one column at a time of   
                   inv(A'), computing the maximum column sum as we go. */

		    ainvnm = 0.;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    i__5 = j;
			    x[i__5].r = 0., x[i__5].i = 0.;
/* L50: */
			}
			i__4 = i__;
			x[i__4].r = 1., x[i__4].i = 0.;
			zgttrs_("Conjugate transpose", &n, &c__1, &af[1], &af[
				m + 1], &af[n + m + 1], &af[n + (m << 1) + 1],
				 &iwork[1], &x[1], &lda, &info);
/* Computing MAX */
			d__1 = ainvnm, d__2 = dzasum_(&n, &x[1], &c__1);
			ainvnm = max(d__1,d__2);
/* L60: */
		    }

/*                 Compute the infinity-norm condition number of A. */

		    if (anormi <= 0. || ainvnm <= 0.) {
			rcondi = 1.;
		    } else {
			rcondi = 1. / anormi / ainvnm;
		    }
		}

		for (itran = 1; itran <= 3; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    if (itran == 1) {
			rcondc = rcondo;
		    } else {
			rcondc = rcondi;
		    }

/*                 Generate NRHS random solution vectors. */

		    ix = 1;
		    i__3 = *nrhs;
		    for (j = 1; j <= i__3; ++j) {
			zlarnv_(&c__2, iseed, &n, &xact[ix]);
			ix += lda;
/* L70: */
		    }

/*                 Set the right hand side. */

		    zlagtm_(trans, &n, nrhs, &c_b43, &a[1], &a[m + 1], &a[n + 
			    m + 1], &xact[1], &lda, &c_b44, &b[1], &lda);

		    if (ifact == 2 && itran == 1) {

/*                    --- Test ZGTSV  ---   

                      Solve the system using Gaussian elimination with   
                      partial pivoting. */

			i__3 = n + (m << 1);
			zcopy_(&i__3, &a[1], &c__1, &af[1], &c__1);
			zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

			s_copy(srnamc_1.srnamt, "ZGTSV ", (ftnlen)6, (ftnlen)
				6);
			zgtsv_(&n, nrhs, &af[1], &af[m + 1], &af[n + m + 1], &
				x[1], &lda, &info);

/*                    Check error code from ZGTSV . */

			if (info != izero) {
			    alaerh_(path, "ZGTSV ", &info, &izero, " ", &n, &
				    n, &c__1, &c__1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			}
			nt = 1;
			if (izero == 0) {

/*                       Check residual of computed solution. */

			    zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &
				    lda);
			    zgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + 
				    m + 1], &x[1], &lda, &work[1], &lda, &
				    rwork[1], &result[1]);

/*                       Check solution from generated exact solution. */

			    zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);
			    nt = 3;
			}

/*                    Print information about the tests that did not pass   
                      the threshold. */

			i__3 = nt;
			for (k = 2; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "ZGTSV ", (ftnlen)6);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L80: */
			}
			nrun = nrun + nt - 1;
		    }

/*                 --- Test ZGTSVX --- */

		    if (ifact > 1) {

/*                    Initialize AF to zero. */

			i__3 = n * 3 - 2;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = i__;
			    af[i__4].r = 0., af[i__4].i = 0.;
/* L90: */
			}
		    }
		    zlaset_("Full", &n, nrhs, &c_b65, &c_b65, &x[1], &lda);

/*                 Solve the system and compute the condition number and   
                   error bounds using ZGTSVX. */

		    s_copy(srnamc_1.srnamt, "ZGTSVX", (ftnlen)6, (ftnlen)6);
		    zgtsvx_(fact, trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m 
			    + 1], &af[1], &af[m + 1], &af[n + m + 1], &af[n + 
			    (m << 1) + 1], &iwork[1], &b[1], &lda, &x[1], &
			    lda, &rcond, &rwork[1], &rwork[*nrhs + 1], &work[
			    1], &rwork[(*nrhs << 1) + 1], &info);

/*                 Check the error code from ZGTSVX. */

		    if (info != izero) {
/* Writing concatenation */
			i__6[0] = 1, a__1[0] = fact;
			i__6[1] = 1, a__1[1] = trans;
			s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2);
			alaerh_(path, "ZGTSVX", &info, &izero, ch__1, &n, &n, 
				&c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    if (ifact >= 2) {

/*                    Reconstruct matrix from factors and compute   
                      residual. */

			zgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &
				af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 
				1], &iwork[1], &work[1], &lda, &rwork[1], 
				result);
			k1 = 1;
		    } else {
			k1 = 2;
		    }

		    if (info == 0) {
			trfcon = FALSE_;

/*                    Check residual of computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 
				1], &x[1], &lda, &work[1], &lda, &rwork[1], &
				result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			zgtt05_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 
				1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, 
				&rwork[1], &rwork[*nrhs + 1], &result[3]);
			nt = 5;
		    }

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    i__3 = nt;
		    for (k = k1; k <= i__3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___46.ciunit = *nout;
			    s_wsfe(&io___46);
			    do_fio(&c__1, "ZGTSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L100: */
		    }

/*                 Check the reciprocal of the condition number. */

		    result[5] = dget06_(&rcond, &rcondc);
		    if (result[5] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    aladhd_(nout, path);
			}
			io___47.ciunit = *nout;
			s_wsfe(&io___47);
			do_fio(&c__1, "ZGTSVX", (ftnlen)6);
			do_fio(&c__1, fact, (ftnlen)1);
			do_fio(&c__1, trans, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
		    nrun = nrun + nt - k1 + 2;

/* L110: */
		}
L120:
		;
	    }
L130:
	    ;
	}
/* L140: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVGT */

} /* zdrvgt_ */
Ejemplo n.º 4
0
/* Subroutine */ int zdrvpo_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublecomplex *a, doublecomplex *afac, doublecomplex *asav, 
	doublecomplex *b, doublecomplex *bsav, doublecomplex *x, 
	doublecomplex *xact, doublereal *s, doublecomplex *work, doublereal *
	rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002,"
	    "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1,"
	    "\002, test(\002,i1,\002) =\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002,"
	    "a1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    char ch__1[2];

    /* Local variables */
    integer i__, k, n, k1, nb, in, kl, ku, nt, lda;
    char fact[1];
    integer ioff, mode;
    doublereal amax;
    char path[3];
    integer imat, info;
    char dist[1], uplo[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nfact;
    char equed[1];
    integer nbmin;
    doublereal rcond, roldc, scond;
    integer nimat;
    doublereal anorm;
    logical equil;
    integer iuplo, izero, nerrs;
    logical zerot;
    char xtype[1];
    logical prefac;
    doublereal rcondc;
    logical nofact;
    integer iequed;
    doublereal cndnum;
    doublereal ainvnm;
    doublereal result[6];

    /* Fortran I/O blocks */
    static cilist io___48 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZDRVPO tests the driver routines ZPOSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */

/*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */

/*  S       (workspace) DOUBLE PRECISION array, dimension (NMAX) */

/*  WORK    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PO", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 9;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L120;
	    }

/*           Skip types 3, 4, or 5 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 5;
	    if (zerot && n < imat - 2) {
		goto L120;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*              Set up parameters with ZLATB4 and generate a test matrix */
/*              with ZLATMS. */

		zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], 
			 &info);

/*              Check error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L110;
		}

/*              For types 3-5, zero one row and column of the matrix to */
/*              test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }
		    ioff = (izero - 1) * lda;

/*                 Set row and column IZERO of A to 0. */

		    if (iuplo == 1) {
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
			}
			ioff += izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0., a[i__4].i = 0.;
			    ioff += lda;
/* L30: */
			}
		    } else {
			ioff = izero;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0., a[i__4].i = 0.;
			    ioff += lda;
/* L40: */
			}
			ioff -= izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		i__3 = lda + 1;
		zlaipd_(&n, &a[1], &i__3, &c__0);

/*              Save a copy of the matrix A in ASAV. */

		zlacpy_(uplo, &n, &n, &a[1], &lda, &asav[1], &lda);

		for (iequed = 1; iequed <= 2; ++iequed) {
		    *(unsigned char *)equed = *(unsigned char *)&equeds[
			    iequed - 1];
		    if (iequed == 1) {
			nfact = 3;
		    } else {
			nfact = 1;
		    }

		    i__3 = nfact;
		    for (ifact = 1; ifact <= i__3; ++ifact) {
			*(unsigned char *)fact = *(unsigned char *)&facts[
				ifact - 1];
			prefac = lsame_(fact, "F");
			nofact = lsame_(fact, "N");
			equil = lsame_(fact, "E");

			if (zerot) {
			    if (prefac) {
				goto L90;
			    }
			    rcondc = 0.;

			} else if (! lsame_(fact, "N")) 
				{

/*                       Compute the condition number for comparison with */
/*                       the value returned by ZPOSVX (FACT = 'N' reuses */
/*                       the condition number from the previous iteration */
/*                       with FACT = 'F'). */

			    zlacpy_(uplo, &n, &n, &asav[1], &lda, &afac[1], &
				    lda);
			    if (equil || iequed > 1) {

/*                          Compute row and column scale factors to */
/*                          equilibrate the matrix A. */

				zpoequ_(&n, &afac[1], &lda, &s[1], &scond, &
					amax, &info);
				if (info == 0 && n > 0) {
				    if (iequed > 1) {
					scond = 0.;
				    }

/*                             Equilibrate the matrix. */

				    zlaqhe_(uplo, &n, &afac[1], &lda, &s[1], &
					    scond, &amax, equed);
				}
			    }

/*                       Save the condition number of the */
/*                       non-equilibrated system for use in ZGET04. */

			    if (equil) {
				roldc = rcondc;
			    }

/*                       Compute the 1-norm of A. */

			    anorm = zlanhe_("1", uplo, &n, &afac[1], &lda, &
				    rwork[1]);

/*                       Factor the matrix A. */

			    zpotrf_(uplo, &n, &afac[1], &lda, &info);

/*                       Form the inverse of A. */

			    zlacpy_(uplo, &n, &n, &afac[1], &lda, &a[1], &lda);
			    zpotri_(uplo, &n, &a[1], &lda, &info);

/*                       Compute the 1-norm condition number of A. */

			    ainvnm = zlanhe_("1", uplo, &n, &a[1], &lda, &
				    rwork[1]);
			    if (anorm <= 0. || ainvnm <= 0.) {
				rcondc = 1.;
			    } else {
				rcondc = 1. / anorm / ainvnm;
			    }
			}

/*                    Restore the matrix A. */

			zlacpy_(uplo, &n, &n, &asav[1], &lda, &a[1], &lda);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, (ftnlen)
				6);
			zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			zlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact) {

/*                       --- Test ZPOSV  --- */

/*                       Compute the L*L' or U'*U factorization of the */
/*                       matrix and solve the system. */

			    zlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			    zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "ZPOSV ", (ftnlen)32, (
				    ftnlen)6);
			    zposv_(uplo, &n, nrhs, &afac[1], &lda, &x[1], &
				    lda, &info);

/*                       Check error code from ZPOSV . */

			    if (info != izero) {
				alaerh_(path, "ZPOSV ", &info, &izero, uplo, &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
				goto L70;
			    } else if (info != 0) {
				goto L70;
			    }

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    zpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &
				    rwork[1], result);

/*                       Compute residual of the computed solution. */

			    zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &
				    lda);
			    zpot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, 
				    &work[1], &lda, &rwork[1], &result[1]);

/*                       Check solution from generated exact solution. */

			    zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);
			    nt = 3;

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___48.ciunit = *nout;
				    s_wsfe(&io___48);
				    do_fio(&c__1, "ZPOSV ", (ftnlen)6);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L60: */
			    }
			    nrun += nt;
L70:
			    ;
			}

/*                    --- Test ZPOSVX --- */

			if (! prefac) {
			    zlaset_(uplo, &n, &n, &c_b51, &c_b51, &afac[1], &
				    lda);
			}
			zlaset_("Full", &n, nrhs, &c_b51, &c_b51, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT='F' and */
/*                       EQUED='Y'. */

			    zlaqhe_(uplo, &n, &a[1], &lda, &s[1], &scond, &
				    amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using ZPOSVX. */

			s_copy(srnamc_1.srnamt, "ZPOSVX", (ftnlen)32, (ftnlen)
				6);
			zposvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &
				lda, equed, &s[1], &b[1], &lda, &x[1], &lda, &
				rcond, &rwork[1], &rwork[*nrhs + 1], &work[1], 
				 &rwork[(*nrhs << 1) + 1], &info);

/*                    Check the error code from ZPOSVX. */

			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = uplo;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "ZPOSVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			    goto L90;
			}

			if (info == 0) {
			    if (! prefac) {

/*                          Reconstruct matrix from factors and compute */
/*                          residual. */

				zpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, 
					 &rwork[(*nrhs << 1) + 1], result);
				k1 = 1;
			    } else {
				k1 = 2;
			    }

/*                       Compute residual of the computed solution. */

			    zlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    zpot02_(uplo, &n, nrhs, &asav[1], &lda, &x[1], &
				    lda, &work[1], &lda, &rwork[(*nrhs << 1) 
				    + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative */
/*                       refinement. */

			    zpot05_(uplo, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &rwork[*nrhs + 1], &result[3]);
			} else {
			    k1 = 6;
			}

/*                    Compare RCOND from ZPOSVX with the computed value */
/*                    in RCONDC. */

			result[5] = dget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			for (k = k1; k <= 6; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___51.ciunit = *nout;
				    s_wsfe(&io___51);
				    do_fio(&c__1, "ZPOSVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___52.ciunit = *nout;
				    s_wsfe(&io___52);
				    do_fio(&c__1, "ZPOSVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
			    }
/* L80: */
			}
			nrun = nrun + 7 - k1;
L90:
			;
		    }
/* L100: */
		}
L110:
		;
	    }
L120:
	    ;
	}
/* L130: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVPO */

} /* zdrvpo_ */
Ejemplo n.º 5
0
/* Subroutine */ int zdrvsp_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, 
	doublecomplex *b, doublecomplex *x, doublecomplex *xact, 
	doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static integer ioff, mode, imat, info;
    static char path[3], dist[1], uplo[1], type__[1];
    static integer nrun, i__, j, k, n, ifact, nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    static integer nbmin;
    static doublereal rcond;
    static integer nimat;
    static doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    );
    static integer iuplo, izero, i1, i2, k1, nerrs;
    extern /* Subroutine */ int zspt01_(char *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *), zppt05_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *);
    static logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zspt02_(char *, integer *, integer *,
	     doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *);
    static char xtype[1];
    extern /* Subroutine */ int zspsv_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    char *), aladhd_(integer *, char *);
    static integer nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer ku, nt;
    static doublereal rcondc;
    static char packit[1];
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    static doublereal cndnum, ainvnm;
    extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *), zlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *);
    extern doublereal zlansp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    extern /* Subroutine */ int zlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zlatsp_(char 
	    *, integer *, doublecomplex *, integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zsptrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zsptri_(char *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zerrvx_(char *, integer *), zspsvx_(char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublecomplex *, 
	    doublereal *, integer *);
    static integer lda, npp;

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZDRVSP tests the driver routines ZSPSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AFAC    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AINV    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*max(2,NRHS))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "SP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	npp = n * (n + 1) / 2;
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'R';
		}

		if (imat != 11) {

/*                 Set up parameters with ZLATB4 and generate a test   
                   matrix with ZLATMS. */

		    zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &
			    mode, &cndnum, dist);

		    s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
		    zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			    cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &
			    work[1], &info);

/*                 Check error code from ZLATMS. */

		    if (info != 0) {
			alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
			goto L160;
		    }

/*                 For types 3-6, zero one or more rows and columns of   
                   the matrix to test that INFO is returned correctly. */

		    if (zerot) {
			if (imat == 3) {
			    izero = 1;
			} else if (imat == 4) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

			if (imat < 6) {

/*                       Set row and column IZERO to zero. */

			    if (iuplo == 1) {
				ioff = (izero - 1) * izero / 2;
				i__3 = izero - 1;
				for (i__ = 1; i__ <= i__3; ++i__) {
				    i__4 = ioff + i__;
				    a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
				}
				ioff += izero;
				i__3 = n;
				for (i__ = izero; i__ <= i__3; ++i__) {
				    i__4 = ioff;
				    a[i__4].r = 0., a[i__4].i = 0.;
				    ioff += i__;
/* L30: */
				}
			    } else {
				ioff = izero;
				i__3 = izero - 1;
				for (i__ = 1; i__ <= i__3; ++i__) {
				    i__4 = ioff;
				    a[i__4].r = 0., a[i__4].i = 0.;
				    ioff = ioff + n - i__;
/* L40: */
				}
				ioff -= izero;
				i__3 = n;
				for (i__ = izero; i__ <= i__3; ++i__) {
				    i__4 = ioff + i__;
				    a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
				}
			    }
			} else {
			    if (iuplo == 1) {

/*                          Set the first IZERO rows and columns to zero. */

				ioff = 0;
				i__3 = n;
				for (j = 1; j <= i__3; ++j) {
				    i2 = min(j,izero);
				    i__4 = i2;
				    for (i__ = 1; i__ <= i__4; ++i__) {
					i__5 = ioff + i__;
					a[i__5].r = 0., a[i__5].i = 0.;
/* L60: */
				    }
				    ioff += j;
/* L70: */
				}
			    } else {

/*                          Set the last IZERO rows and columns to zero. */

				ioff = 0;
				i__3 = n;
				for (j = 1; j <= i__3; ++j) {
				    i1 = max(j,izero);
				    i__4 = n;
				    for (i__ = i1; i__ <= i__4; ++i__) {
					i__5 = ioff + i__;
					a[i__5].r = 0., a[i__5].i = 0.;
/* L80: */
				    }
				    ioff = ioff + n - j;
/* L90: */
				}
			    }
			}
		    } else {
			izero = 0;
		    }
		} else {

/*                 Use a special block diagonal matrix to test alternate   
                   code for the 2-by-2 blocks. */

		    zlatsp_(uplo, &n, &a[1], iseed);
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with   
                   the value returned by ZSPSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = zlansp_("1", uplo, &n, &a[1], &rwork[1]);

/*                    Factor the matrix A. */

			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zsptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*                    Compute inv(A) and take its norm. */

			zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
			zsptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &
				info);
			ainvnm = zlansp_("1", uplo, &n, &ainv[1], &rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0. || ainvnm <= 0.) {
			    rcondc = 1.;
			} else {
			    rcondc = 1. / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6);
		    zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test ZSPSV  --- */

		    if (ifact == 2) {
			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using ZSPSV. */

			s_copy(srnamc_1.srnamt, "ZSPSV ", (ftnlen)6, (ftnlen)
				6);
			zspsv_(uplo, &n, nrhs, &afac[1], &iwork[1], &x[1], &
				lda, &info);

/*                    Adjust the expected value of INFO to account for   
                      pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from ZSPSV . */

			if (info != k) {
			    alaerh_(path, "ZSPSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute   
                      residual. */

			zspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1]
				, &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zspt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass   
                      the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "ZSPSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test ZSPSVX --- */

		    if (ifact == 2 && npp > 0) {
			zlaset_("Full", &npp, &c__1, &c_b61, &c_b61, &afac[1],
				 &npp);
		    }
		    zlaset_("Full", &n, nrhs, &c_b61, &c_b61, &x[1], &lda);

/*                 Solve the system and compute the condition number and   
                   error bounds using ZSPSVX. */

		    s_copy(srnamc_1.srnamt, "ZSPSVX", (ftnlen)6, (ftnlen)6);
		    zspsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], &iwork[1], 
			    &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &
			    rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 
			    1], &info);

/*                 Adjust the expected value of INFO to account for   
                   pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from ZSPSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__6[0] = 1, a__1[0] = fact;
			i__6[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2);
			alaerh_(path, "ZSPSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    zspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &
				    ainv[1], &lda, &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zspt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[(*nrhs << 1) + 1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			zppt05_(uplo, &n, nrhs, &a[1], &b[1], &lda, &x[1], &
				lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs 
				+ 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from ZSPSVX with the computed value   
                   in RCONDC. */

		    result[5] = dget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___45.ciunit = *nout;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "ZSPSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVSP */

} /* zdrvsp_ */